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The integral of the mean squared error of an estimator of a regression function is used as a criterion

for de®ning an optimal design measure in the context of local linear regression, when the bandwidth

is chosen in a locally optimal manner. An algorithm is proposed that constructs a sequence of

piecewise uniform designs with the help of current estimates of the integral of the mean squared error.

These estimates do not require direct estimation of the second derivative of the regression function.

Asymptotic properties of the algorithm are established and numerical results illustrate the gains that

can be made, relative to a uniform design, by using the optimal design or sub-optimal, piecewise

uniform designs. The behaviour of the algorithm in practice is also illustrated.
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1. Introduction

The problem of optimal design for linear regression models began with seminal work by

Kiefer (1959), leading to research summarized in books by Fedorov (1972), Silvey (1980)

and Pukelsheim (1993). In contrast to the linear case, in nonlinear problems the true values of

parameters can strongly in¯uence optimal designs; see, for instance, Ford et al. (1989) and

Chaloner and Verdinelli (1995) for reviews of, respectively, non-Bayesian and Bayesian

approaches. Recently, optimal design ideas have been applied to particular nonlinear models

in the neural computation literature, where the concept of optimally slanted sequential design

is described as `active learning'; see, for example, Fedorov (1972), MacKay (1992), Cohn

(1994) and the statistical introduction by Cheng and Titterington (1994).

Cohn (1994) mentions the possibility of extending these ideas to environments such as

locally weighted regression. It is this direction that the present paper takes, by considering
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the application of optimal design ideas to so-called `nonparametric' regression. We shall

modify the usual criterion on which optimality is based, since in nonparametric regression it

is central that the `model' represented by the ®tted curve is incorrect. Indeed, optimality is

achieved by trading off model inaccuracy, expressed through bias, against model suitability,

represented by purely stochastic error. As our optimality criterion we shall use the integral

of the mean squared error over a compact design space, although, in principle, versions that

re¯ect differential weighting across the design space could be employed instead.

Using this viewpoint of optimality, Section 2 will propose an empirical, asymptotically

optimal sequential rule for selecting both the bandwidth and the design density when the

estimator is based on local linear regression. For purposes of illustration we shall adopt as

our goal the modi®cation of uniform design obtained by putting less weight in regions of

low curvature. Thus, the task becomes one of determining how to estimate the curve

reasonably in places of high curvature, subject to a constant weight in the de®nition of

mean squared error. Other options will be discussed in Section 2.3. Numerical properties of

our procedure will be reported in Section 3, in terms of a simulation study. Section 4 will

outline technical arguments behind the results in Section 2.

It is assumed that observations are generated by the model

Y � g(x)� å, (1:1)

where g is the function to be estimated, å has mean zero and variance ó 2 (and a distribution

not depending on x), and, conditional on design points x � X i, the ordinates Y � Yi are

independent with a distribution determined by the model at (1.1). The algorithm for selecting

design points is at the disposal of the experimenter, and should be chosen to optimize

performance. We shall suppose that the design is restricted to the interval I � [0, 1],

although clearly other possibilities may be treated in a similar way.

2. An algorithm and its properties

2.1. Algorithm for computing design and bandwidth

The sequential rule that we propose is based on updating in a geometric sequence of steps.

This represents a compromise between the fully sequential Anscombe-type algorithm, which

involves adjusting the algorithm for datum-by-datum increments in sample size, n, and is not

really appropriate in nonparametric regression; and the double sampling Stein-type approach,

which `guesses' the ®nal order of magnitude of the desired sample size, and uses a single but

sizeable subsample to re®ne the initial guess. A wide variety of approaches, involving, for

example, polynomial increases in n instead of fully sequential methods, can be effective,

depending on the `cost' of each update. In the context to which we shall apply our

techniques, cost would depend largely on computational complexity.

Given r . 1, let nk denote the integer part of rk . Estimation of g is conducted iteratively,

with step k employing information derived from the previous nkÿ1 data pairs. Step k may

be conveniently broken into two parts: (a) determining a design density f̂ k from which to

draw the design points for the next Nk � nk ÿ nkÿ1 pairs; and (b) drawing these new data,
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adjoining them to the earlier nkÿ1 pairs to produce a new set X k � f(X i, Yi), 1 < i < nkg,
and using X k to construct estimators ĝ k of g and ó̂ 2

k of ó 2. We compute f̂ k as a histo-

gram, de®ne ĝ k using local linear smoothing, and construct ó̂ k using ®rst-order differences.

Algorithm for completing part (a). (i) De®nition of histogram. Given an integer mk � nk,

and positive constants a1, . . . , am k
satisfying

P
ai � mk , let f � f (:ja1, . . . , am k

) denote the

density on I that equals ai on ((iÿ 1)=mk , i=mk] for 1 < i < mk.

(ii) Estimation of mean squared error. Write ĝ kÿ1 and ó̂ 2
kÿ1 for the estimators of g and ó 2

computed from the set X kÿ1 of the ®rst nkÿ1 data pairs. Let ík � nk be an integer, let K

be the kernel that we shall employ to construct ĝ k , and de®ne k1 �
�

K2 and

h � h(:ja1, . . . , amk
, b) � bíÿ1=5

k f ÿ2, where b . 0. (Thus, in contradistinction to near-

neighbour methods which effectively take h inversely proportional to f, we ask that h be

inversely proportional to the square of f.) Our estimator of mean integrated squared error is

Ä(a1, . . . , amk
, b) � k1ó̂

2
kÿ1í

ÿ4=5
k bÿ1 � Ä1(a1, . . . , amk

, b),

where

Ä1(a1, . . . , am k
, b) �

�
J

�
[ ĝ kÿ1fxÿ h(x)yg ÿ ĝ kÿ1(x)]K(y) dy

� �2

dx,

J � (Cíÿ1=5
k , 1ÿ Cíÿ1=5

k ), and C . 0 is a constant such that the restriction 0 , h < Cíÿ1=5
k

is imposed by constraints on the choice of (a1, . . . , am k
, b).

(iii) De®nition of f̂ k . Estimate a1, . . . , am k
, b as the values of those quantities that minimize

Ä, subject to a restriction which implies that 0 , h < Cíÿ1=5
k . (There are many examples of

such restrictions. Simple ones will be considered in Section 2.2.) Note that minimizing Ä
over a1, . . . , am k

, for ®xed b, is equivalent to minimizing Ä1 over a1, . . . , am k
. Let f̂ k be the

version of f obtained on substituting the estimators for the values of a1, . . . , amk
, b. Write b̂k

for the estimator of b.

A key feature of our approach is that the term, Ä1, that measures the contribution due to

bias avoids the troublesome, direct estimation of the second derivative of the curve.

Algorithm for completing part (b). Conditional on X kÿ1, draw Nk independent and

identically distributed random pairs Y k � f(X ki, Yki), 1 < i < Nkg, generated by the

model, with the Xki having density f̂ k. Compute the local linear estimator ĝ k, based on

the data X k � X kÿ1 [Y k and using locally adaptive bandwidth h � b̂k n
ÿ1=5
k f̂ ÿ2

k and

kernel K. De®ne

~ó 2
k � f2(Nk ÿ 1)gÿ1

XN kÿ1

i�1

(Y 9k,i�1 ÿ Y 9ki)
2,

where f(X 9ki, Y 9ki), 1 < i < Nkg denotes an ordering of the pairs in Y k such that

X 9k1 , � � � , X 9kNk
. De®ne ó̂ 2

k by either ó̂ 2
k � ~ó 2

k or

ó̂ 2
k � nkÿ1(nkÿ1 � Nk)ÿ1ó̂ 2

kÿ1 � Nk(nkÿ1 � Nk)ÿ1 ~ó 2
k :
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2.2. Motivation for the algorithm

We shall motivate the algorithm in terms of its ability to minimize integrated squared error.

This is often appropriate when the curve is to be used for calibration or prediction, for

example. In other cases, where applications will be more interpretative, perhaps through

analysis of unusual features or turning points, a different criterion would be employed. The

difference in the criterion may be as simple as employing a weight function when de®ning

mean squared error, perhaps with the weight chosen adaptively so as to select features of

interest. Alternatively, a measure of risk allied to a geometric description of distance, such as

the Haussdorff metric, might be employed instead of squared error loss. The broad approach

to constructing the algorithm would be similar in such cases, with the aim still being to

optimize an empirical measure of loss. But details will of course differ.

We shall describe motivation in a heuristic fashion, but it may be rigorously justi®ed

under the following conditions: (a) the target function g has two continuous derivatives on

I , and g 0 vanishes only at a ®nite number of points; (b) the error distribution has all

moments ®nite, mean zero and variance ó 2; and (c) the symmetric, non-negative kernel K

is HoÈlder continuous and supported on a bounded interval, say (ÿc, c). With these

assumptions, Section 2.3 will state a theorem addressing the performance of the algorithm.

Suppose n independent observations are made of a pair (X , Y ) generated as Y �
g(X )� å, in which the design variables X are distributed with a continuous density f, and

the distribution of the error, å, has mean zero and variance ó 2. An estimator of g based on

local linear smoothing, using kernel K and bandwidth h, has its asymptotic mean squared

error at x 2 I given by

Hn(x, hj f ) � (nh)ÿ1k1ó
2 f (x)ÿ1 � 1

4
h4k2 g 0(x)2, (2:1)

where k1 is as in Section 2.1 and k2 � f
�

y2 K(y) dyg2; see, for example, Fan (1993) and

Hastie and Loader (1993). For ®xed x, which we now suppress, the quantity at (2.1) is

minimized by taking h � h0 � (nk3 f g 02)ÿ1=5, where k3 � k2=(k1ó 2). Substituting back into

(2.1), we deduce that with an optimal local choice of bandwidth, mean squared error is given

asymptotically by nÿ4=5k4(g 02= f 4)1=5, where the constant k4 depends only on K and ó 2. The

minimum mean integrated squared error is obtained by integrating this quantity over I ,

producing a functional proportional to A( f ) � �I (g 02= f 4)1=5.

The optimal design density f is that function which minimizes A( f ) subject to
�

I f � 1

and f > 0. A simple calculus of variations argument shows that this is given by

f0 � c0jg 0j2=9, where the constant c0 is chosen to ensure that
�

I f 0 � 1. Note particularly

that for this choice, the optimal bandwidth is inversely proportional to the square of

f : h0 � c1 f ÿ2, where c1 is a constant. This explains why, in the algorithm suggested in

Section 2.1, we took the bandwidth for computing ĝ k to vary in proportion to f̂ ÿ2
k .

In (2.1), let the bandwidth h be h1 � bnÿ1=5 f ÿ2, where b is an arbitrary positive

constant and f is an arbitrary continuous density, bounded away from zero on I . On

integrating Hn(:, h1j f ) over I the contribution from the ®rst term may be seen to equal�
I

(nh1)ÿ1k1ó
2 f ÿ1 � k1ó

2 nÿ4=5bÿ1:
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Note particularly that the effect of f has disappeared. This explains the origin of the ®rst term

in the formula for Ä, and why it depends only on b, not on a1, . . . , amk
. The second term is

an estimate of the integral of the second term of (2.1), again with h1 substituted for h.

If the function g is at all `interesting' then it will enjoy one or more points of in¯ection,

where g 0 � 0. There, the optimal design density determined by the argument two

paragraphs above equals zero, and in such cases the approximate formula at (2.1) is not

valid. We overcome this problem by introducing a threshold, ç, below which the value of f̂ k

is not allowed to fall. When discussing theoretical properties of our algorithm it is

convenient to also impose a ceiling on f. For economy of notation we take this to be çÿ1,

although we could have used any large positive number. Given ç 2 (0, 1), de®ne

fç �
cçjg 0j2=9 if cçjg 0j2=9 2 (ç, çÿ1)

ç if cçjg 0j2=9 < ç

çÿ1 if cçjg 0j2=9 > çÿ1,

8><>: (2:2)

where the positive constant cç is uniquely de®ned by the requirement that
�

fç � 1, and where

fç ! f 0 and cç ! c0 as ç! 0. Let bç denote the value of the constant b which minimizes

bÿ1k1ó
2 � 1

4
b4k2

2

�
I

g 02 f ÿ8
ç ,

and let ç1 2 (0, 1) be so small that bç 2 (ç1, çÿ1
1 ).

If in part (a) of the algorithm we restrict attention to (a1, . . . , am k
, b) such that

ç < ai <çÿ1 for 1 < i < mk ,

ç1 < b < çÿ1
1 ,

(2:3)

where ç 2 (0, 1) and ç1 is as de®ned in the previous paragraph, then the histogram f̂ k is an

estimator of fç, b̂k is an estimator of bç, and the constant C in the de®nition of J may be

taken equal to cçÿ2çÿ1
1 . The consistency of f̂ k and b̂k for fç and bç, respectively, will be

shown during the proof of Theorem 2.1.

In problems involving high orders of estimation the optimal design density is broadly

similar to that at (2.2). For example, if we are locally ®tting a polynomial of degree 2íÿ 3,

where í > 2 is an integer, then the asymptotically optimal design density is proportional to

jg(í)j2=(4í�1). This generalizes the case í � 2 treated just above. (The case of ®tting

polynomials of even order is a little different; note for example the results of Ruppert and

Wand 1994.)

2.3. Properties of the algorithm

Let (C) denote conditions (a)±(c) introduced in the second paragraph of Section 2.2, as well

as condition (2.3) for suf®ciently small ç1, and the assumption that for some ä 2 (0, 1) we

have ík � O(n1ÿä
k ), mk � O(í1ÿä

k ) and mk !1. Let fç have the de®nition given in Section

2.2, with ç as in (2.3). The minimum mean squared error derived by optimizing over all

design densities, subject to the constraint at (2.3), is Hn(x, hj fç). Our main theorem states

that ĝ k achieves this optimum.
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Theorem 2.1. Assume conditions (C), with ç1 in (2.3) chosen as suggested in Section 2.2.

Then �
I

( ĝ k ÿ g)2

� �� �
I

inf
h

Hn(:, hj fç)

� �
! 1 (2:4)

with probability 1 as k !1.

Remark 2.1 Use of ridge methods. The local linear estimator ĝ k is de®ned without recourse

to adjustments, such as ridging, which are designed to induce more stable numerical

properties. For a discussion of stabilization methods in non-sequential contexts, see, for

example, Seifert and Gasser (1996). There is no dif®culty in developing an analogue of

Theorem 2.1 for the case where ĝ k is de®ned by ridged or interpolated local linear

smoothing.

Remark 2.2 Ef®ciency. The ef®ciency of employing an optimal design density may be

expressed as the ratio of two mean integrated squared errors, the ®rst using the optimal

density and the second using another density, f, say. In view of Theorem 2.1, ef®ciency may

also be expressed in purely empirical terms. Indeed, the ratio of
�

I ( ĝ k ÿ g)2 to�
I inf f ,h E f ( ĝ ÿ g)2, where ĝ is a standard local linear estimator using kernel K (with

ridging employed to ensure that mean squared error is well de®ned), and where the in®mum

is taken over all choices of f and of a non-stochastic, locally adaptive bandwidth h, converges

(as ®rst k !1 and then ç! 0) to 1. In this sense, the sequential estimator ĝ k is fully

ef®cient.

Remark 2.3 Alternative regression estimators. It is of interest to consider alternative

approaches to regression, not least because they can produce results of a different character

from those described earlier. We shall treat two, the classical Nadaraya±Watson method (see,

for example HaÈrdle 1990, Section 3.1; and Wand and Jones 1995, p. 119) and a

`transformation approach' (Hart 1991). By judicious choice of the design density, depending

on the target function g, both these techniques permit the asymptotic bias of a second-order

kernel estimator ĝ to vanish, and hence the mean squared error to be an order of magnitude

smaller than in the case of local linear smoothing. This result may seem to contradict the

known minimax optimality of local linear smoothing (Fan 1993), but it should be noted that

such optimality results pertain only to the case of a ®xed design density that is bounded away

from zero and in®nity, and hence do not apply to sequentially chosen design. While reduced

mean squared error is an attractive feature, it is achieved only at the expense of signi®cant

practical dif®culties in constructing the sequential version of the estimator. Therefore, we do

not develop the methods here beyond outlining theoretical properties and discussing their

implications.

For a Nadaraya±Watson kernel estimator the asymptotic mean squared error formula, the

analogue of (2.1), may be written as

(nh)ÿ1k1ó
2 f (x)ÿ1 � kh4fg 0(x)� 2g9(x) f 9(x) f (x)ÿ1g2, (2:5)
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where the constant k depends only on the kernel. The second term here represents the

squared bias contribution to the mean squared error, and may be rendered equal to zero

(except at zeros of g9) by de®ning f � f 0 � c0jg9jÿ1=2, where cÿ1
0 �

� jg9jÿ1=2. Hart's

transformation estimator has a mean squared error which enjoys a similar expansion, this

time with the second term in (2.5) replaced by

kh4fg 0(x) f (x)ÿ2 ÿ g9(x) f 9(x) f (x)ÿ3g2:

This quantity is rendered equal to zero by using the design density f 0 � c0jg9j, with

cÿ1
0 �

� jg9j.
For both the Nadaraya±Watson and transformation de®nitions of ĝ we may estimate jg9j

either explicitly or implicitly, and employ the estimator in the obvious way to construct an

estimator of f0. In principle, if g has four bounded derivatives then this technique can

produce an order of squared bias equal to h8, and hence an order of mean squared error

equal to nÿ8=9 (rather than the nÿ4=5 typically associated with second-order methods), away

from points where g9 � 0. In practice, however, there are signi®cant obstacles to achieving

such performance. The ®rst problem is that these methods demand an estimator of g9
whose high-order derivatives accurately estimate those of g9. While this is feasible for large

samples, it is not really practicable with smaller data sets. Since a sequential procedure

would usually start with relatively small samples, this is a drawback. The inherent

numerical instability of estimators of ratios of functions, such as appear in formulae for bias

terms of Nadaraya±Watson or transformation estimators, makes it even more dif®cult to

ensure good performance in small samples.

Secondly, attaining optimal performance at the level nÿ8=9 demands a particularly

complex bandwidth formula, depending on the fourth derivative of g. The theoretical

dif®culties are easily overcome, but an attractive numerical algorithm seems to be out of

reach. In particular, there does not appear to exist a high-order analogue of the simple

algorithm suggested in Section 2.1, which simultaneously produces an estimator of the

optimal bandwidth and optimal design density. Therefore, selection of the appropriate

bandwidth in a high-order sequential procedure is a particularly awkward problem. Thirdly,

this high-order performance seems to be achievable only away from points where g9
vanishes; at those points the optimal design density is either in®nite (in the case of the

Nadaraya±Watson estimator) or zero (for the transformation estimator). Different bandwidth

selection procedures seem to be necessary at those points, producing different convergence

rates. This makes for a cumbersome approach to inference.

3. Numerical results

3.1. Ef®ciencies of some suboptimal designs

Recall, from Section 2.2, that the mean integrated squared error associated with a design f

and an optimally chosen bandwidth, is proportional to A( f ) � �I (g 02= f 4)1=5, and that the

optimal design is given by f0 � c0jg 0j2=9. Thus, A( f 0) � (
�

I jg 0j2=9)9=5 is the minimum

achievable value of A( f ), and it is natural to de®ne the ef®ciency of design f, relative to the
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optimal design, by A( f 0)=A( f ). We evaluated this in the context of 15 true curves given by

the class of Gaussian mixtures proposed by Marron and Wand (1992). These vary from the

standard Gaussian density function through a range of Gaussian mixtures of varying

complexity. The design space is the interval (ÿ3, 3). We describe our results here only in

words. A more detailed account, including tabular results, is available in a technical report

(Cheng et al. 1995).

We computed Monte Carlo approximations to ef®ciencies of designs that are themselves

mixtures of the optimal design, f 0, and the uniform design on (ÿ3, 3), with mixing weights

è and 1ÿ è, respectively. The range of è was between 0 and 1 in steps of 0.1. For many of

the 15 curves, there was not much to be gained from using the optimal design rather than

the uniform, but in some cases the gains were considerable. Particular instances were curves

3±5 and 10±14, in the nomenclature of Marron and Wand (1992).

Bearing the above robustness in mind, as well as the fact that our algorithm for

sequential design involves a sequence of piecewise uniform designs, we computed the

ef®ciencies of such designs. We addressed cases corresponding to m � 2r, for

r � 0, 1, . . . , 4, and with the ai chosen at their optimal values. If such a design is

denoted by f m0 then it is straightforward to show that A( f m0) � (L=m)4=5(
P

A
5=9
i )9=5, in

which L denotes the length of the design space (an interval), and Ai �
� jg 0j2=5, where the

range of integration is the interval ((iÿ 1)L=mk , iL=mk] for 1 < i < mk. We obtained good

gains in ef®ciency by m � 8. For example, in the case of curves 3±5, ef®ciencies were

respectively 69%, 74% and 52% for m � 1, but had increased to 93%, 90% and 82% by

m � 8.

Since zeros of the optimal design density correspond to points of in¯exion of g (see

(2.2)), the departure of optimal design from uniformity will tend to be in proportion to the

`wiggliness' of g. The numerical analyses described above con®rm this informal theoretical

conclusion. For example, functions 10±15 in Marron and Wand (1992) exhibit the greatest

number of points of in¯exion, and include a class of functions for which we observed

substantial gains in performance when attempting to optimize design.

3.2. An illustration of the algorithm

In the small study reported here we concentrated on the mutual similarity of the formula for

the asymptotic integrated mean squared error and the corresponding estimator thereof, de®ned

by Ä, and on how closely the design created after one iteration of the algorithm approximates

the optimal design. Although our theory is asymptotic in k, in practice only a small number of

iterations of the algorithm would be carried out, bearing in mind the relationships between

successive sample sizes. The design procedure is best described as batch-sequential, with large

batch sizes, and anything approaching genuinely sequential design, in which the design is

updated one observation at a time, does not make sense in the context of nonparametric

regression. To help make the conclusions clear, the exemplar curve chosen was the continuous,

but not continuously differentiable, piecewise quadratic curve given by

g(x) � x(1ÿ 2x)=4 if 0 < x < 1=2

2(1ÿ 2x)(1ÿ x) if 1=2 < x < 1:

�
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For this curve, therefore, the optimal design is piecewise uniform, corresponding to m � 2,

and with a1 � 2=(1� 641=9) � 0:773 and a2 � 2ÿ a1. The Epanechnikov kernel was used

in the local linear ®tting. Thus k1 � 3=5 and k2 � 1=25, so that the optimal value of b

was (29 . 15 . ó 2)1=5=(1� 641=9)6=5. Therefore, the experiment involved choosing an initial

sample of size n0, taking m1 � 2 and investigating the fruits of the algorithm in terms of

the resulting estimates of a1 and a2. A variety of values were chosen for n0 and í1, and

care was taken to choose the range of integration J suitably when calculating Ä1. In

fact Ä1 included a small gap near the discontinuity in g9(x) at x � 1
2
, where the

calculations were unstable. The bandwidth used for calculating the local linear curve

estimates ĝ0 was the asymptotically optimal value, constant in x, based on the estimate of ó
calculated from ®rst-order differences and on an assumption of constant curvature, for g, of

magnitude 4. (Note that the true curvature has magnitude 1 on the ®rst half of the interval,

and 8 thereafter.)

We report here on ten replicates of each of the cases ó � 0:01, 0.05 and n0 � 400, 1000.

Throughout, í1 � 200. For each replicate, Ä was evaluated on a grid of values of (b, a1),

and the optimal combination of values was found, correct to two decimal places in each of

the two variables. This would seem to be adequate from a practical point of view. The

optimal values for b were 0.171 and 0.326, for ó � 0:01 and 0.05 respectively, and the

algorithm achieved these values closely, especially for ó � 0:01. In this case, the optimal

value of a1 (0.773) was slightly overestimated, because of the smoothing involved in

calculating the bias term Ä1, but the errors were not great. The Ä surface always had a nice

single minimum in (b, a1), at least in the region investigated in the experiment. The values

of Ä were typically within a few per cent of those from the asymptotic formula.

Occasionally, the difference went into double ®gures, in percentage terms, but was fairly

constant as (b, a1) varied, so that, as reported above, the positions of the minima on the two

surfaces were very similar.

4. Outline proof of Theorem 2.1

The proof is given only in barest outline. Details are given in Cheng et al. (1995).

The ®rst step is to establish a relatively crude upper bound to j ĝ k ÿ gj,
sup

I
j ĝ k ÿ gj � O(n

ÿ(2=5)�ç
k ) (4:1)

with probability 1, as k !1, for all ç. 0. As a prelude to establishing (4.1), de®ne

N (l) � f1, . . . , Nlg, let fX li, i 2 N (l)g denote the set of design points constructed in step

l of the algorithm, write Yki � g(X ki)� åki for the associated measurements of Y, and let

h � b̂k n
ÿ1=5
k f̂ ÿ2

k . Let skj(x) denote the sum of (xÿ X li)
j Kf(xÿ X li)=hg over i 2 N (l) and

1 < l < k, put wli(x) � fsk2(x)ÿ sk1(x)(xÿ X li)gKf(xÿ Xli)=hg for i 2 N (l), and de®ne

Wk to equal the sum of wli over i 2 N (l) and 1 < l < k. In this notation,

ĝ k � g � (Ak � Bk)Wÿ1
k , (4:2)
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where

Ak �
Xk

l�1

A(l), A(l) �
X

i2N ( l)

wliå li,

Bk �
Xk

l�1

B(l), B(l) �
X

i2N ( l)

wlifg(Xki)ÿ gg:

De®ning K1 � K, K2(y) � yK(y) and

Vlj(x) �
X

i2N ( l)

Kjf(xÿ Xli)=hgå li,

we have

jAk j <
Xk

l�1

jA(l)j <
Xk

l�1

X2

j�1

jsk,3ÿ jjh jÿ1jVljj

< (sk2 � jsk1jh)
Xk

l�1

(jVl1j � jVl2j):

Also, jskjj < (ch) jUk , where c . 0 is chosen so that (ÿc, c) contains the support of K, and

Uk �
Xk

l�1

X
i2N ( l)

Kf(xÿ Xli)=hg:

Therefore,

jAk j < C1 h2Uk

Xk

l�1

(jVl1j � jVl2j),

where, here and below, C1 and C2 are positive constants. Similarly, an upper bound may be

established for Bk. In consequence, it may be shown from (4.2) that

j ĝ k ÿ gj < C2Wÿ1
k h2Uk

Xk

l�1

(jVl1j � jVl2j)� h4U2
k

( )
: (4:3)

Computations based on large-deviation bounds for the variables Vl1 and Vl2 show that

supI jVljj � Op(n
(2=5)�ç
k ) for all ç. 0. Hence, by (4.3),

sup
I
j ĝ k ÿ gj � OfWÿ1

k0 (h2
0 n

(2=5)�ç
k Uk0 � h4

0U2
k0)g, (4:4)

with probability 1, where Uk0 � supI Uk , W k0 � inf I Wk and h0 � supI h. It may be shown

that Uk0 � O(n
4=5
k ) and Wÿ1

k0 � O(n
ÿ6=5
k ); and, by de®nition of h, that h0 � O(n

ÿ1=5
k ), all

results holding with probability 1. The desired result (4.1) follows from these bounds and

(4.4).
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The next step is to show that

sup
I
j f̂ k ÿ fçj ! 0, b̂k ! bç, (4:5)

with probability 1. First, using (4.1), we may prove that

Ä1(a1, . . . , am k
, b) � 1

4
íÿ4=5

k b4k2
2ø( f )� o(íÿ4=5

k ),

Ä(a1, . . . , am k
, b) � íÿ4=5

k ö( f , b)� o(íÿ4=5
k ), (4:6)

uniformly in a1, . . . , amk
, b satisfying (2.3), where ø( f ) � �I (g 0= f 4)2 and

ö( f , b) � k1ó 2bÿ1 � 1
4
b4k2

2ø( f ). Results (4.5) may be derived from (4.6).

Using (4.5), it may be shown that

skj � n
(4ÿ j)=5
k t( j�1)=5r j fç � o(n

(4ÿ j)=5
k ) (4:7)

uniformly on I , with probability 1, where r j �
�

yjK(y) dy and t is de®ned by h � n
ÿ1=5
k t.

Now, r0 � 1, r1 � 0, r2 � k2 and Wk(x) � sk2sk0 ÿ s2
k1, and so by (4.7),

sup
I
jWk(n2

k h4
çk2 f 2

ç)ÿ1 ÿ 1j ! 0, (4:8)

where hç � n
ÿ1=5
k f ÿ2

ç bç. Similarly, it may be shown that

sup
I
jBk(1

2
n2

k h6
çk

2
2 f 2

ç)ÿ1 ÿ g 0j ! 0: (4:9)

Combining (4.8) and (4.9), we conclude that

sup
I
jBkWÿ1

k ÿ 1
2
h2
çk2 g 0j � o(n

ÿ2=5
k ): (4:10)

Combining (4.2), (4.8) and (4.10), we deduce that�
I

( ĝ k ÿ g)2 � (1� î1)

�
I
fAk(n2

k h4
çk2 f 2

ç)ÿ1 � (1� ä)1
2
h2
çk2 g 0g2

� (1� î2)

�
I
fA2

k(n2
k h4

çk2 f 2
ç)ÿ2 � 1

4
(h2

çk2 g 0)2g

� 2

�
I

Ak(n2
k h4

çk2 f 2
ç)ÿ1(1

2
h2
çk2 g 0), (4:11)

where the function ä satis®es supI jäj ! 0 with probability 1, and the random variables î j

converge to 0 with probability 1. After some simpli®cation of the right-hand side of (4.11),

we obtain (2.4).
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