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A number of generalizations of the Kolmogorov strong law of large numbers are known including

convex combinations of random variables (rvs) with random coef®cients. In the case of pairs of i.i.d.

rvs (X 1, Y1), . . . , (X n, Yn), with ì being the probability distribution of the xs, the averages of the Ys

for which the accompanying Xs are in a vicinity of a given point x may converge with probability 1

(w.p. 1) and for ì-almost everywhere (ì a.e.) x to conditional expectation r(x) � E(Y jX � x). We

consider the Nadaraya±Watson estimator of E(Y jX � x) where the vicinities of x are determined by

window widths hn. Its convergence towards r(x) w.p. 1 and for ì a.e. x under the condition EjY j,1
is called a strong law of large numbers for conditional expectations (SLLNCE). If no other

assumptions on ì except that implied by EjY j,1 are required then the SLLNCE is called universal.

In the present paper we investigate the minimal assumptions for the SLLNCE and for the universal

SLLNCE. We improve the best-known results in this direction.

Keywords: conditional expectation; kernel estimator; Nadaraya±Watson estimator; nonparametric

regression; strong convergence; strong law of large numbers; universal convergence

1. Introduction and summary

Let (X , Y ) be a (d � 1)-dimensional random vector (rv), X 2 Rd , Y 2 R1, and let ì stand

for the probability distribution of X. Throughout the paper we shall use the abbreviation r.v.

to denote either a random vector or a random variable. The regression function r(x) is de®ned

by

r(x) � E(Y jX � x): (1:1)

Let (X1, Y1), . . . , (X n, Yn) be independent, identically distributed (i.i.d.) copies of (X , Y ).

One of the simplest and most investigated estimators of r(x), the Nadaraya±Watson (NW)

estimator (Nadaraya 1964; Watson 1964), is given by

r̂n(x) �Pn
i�1YiK

xÿ X i

hn

� ��Pn
i�1 K

xÿ Xi

hn

� �
(1:2)
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where K(x) is a kernel and hn is a window width. In this paper we restrict our attention to

kernel K(x) being an indicator function of a unit ball in Rd .

The NW estimator has the form of an arithmetical mean of those rvs Y which have the

accompanying X component in the hn vicinity of x. Hence its strong convergence under the

condition EjY j,1 corresponds to the strong law of large numbers for conditional

expectations (SLLNCE) and goes beyond the classical extensions of the Kolmogorov strong

law of large numbers (SLLN) in which the arithmetic mean has been replaced with convex

combinations, also random, but in a way preserving convergence to the expected value; we

refer the reader to Howell et al. (1981) and Taylor and Calhoun (1983) for results in this

direction. If no other assumptions on ì except that implied by EjY j,1 are required then

the SLLNCE is called universal.

The existing theory of the strong convergence of the NW estimator requires either the

existence of Lebesgue density of X ± and many other technical assumptions (see Mukerjee

1989) ± but only the ®rst ®nite moment of Y, or assumptions on the existence of s-moments

with s . 1; cf. Zhao and Fang (1985) and Stute (1986). It is natural to ask if the universal

SLLNCE holds true and in the present paper we investigate this problem.

The study of the universal convergence, where only moment conditions on Y and no other

conditions on ì are required, began in Stone (1977), where the convergence in probability and

in L p were proved. The universal convergence in probability and for ì a.e. xs of the NW

estimator to the regression function and under the assumption of the ®rst moment ®nite only,

was proved in Greblicki et al. (1984). Research towards the universal SLLNCE has a long

history; however, we mention only those papers that are most relevant for the present approach:

Devroye (1981), Cheng (1983), Greblicki et al. (1984), Cheng and Zhao (1985), Zhao and Fang

(1985), Stute (1986) and Mukerjee (1989). Our main result towards the universal SLLNCE is

given in Theorem 1, where, under weak regularity assumptions on the marginal distribution of

X, we prove an SLLNCE for r̂n(x). Example 1 suggests that Theorem 1 cannot be essentially

improved. Let us note that, as in proofs of the classical SLLNCE, to avoid assumptions of

higher moments in Theorem 1, we consider truncated random variables. Our proof of the

equivalence of the estimators based on the truncated and non-truncated random variables

requires, however, Assumption k (see Section 2) on the distribution of X to be met.

The existence of slightly higher moments than the ®rst moment makes it possible to

avoid the truncation step (cf. Theorem 2) so that at the cost of some moment conditions

one can achieve a universal strong consistency of the NW estimator. Alternatively, one can

consider just estimators based on the truncated random variables. Estimators of this type

were ®rst considered in Schuster (1968, pp. 45 and 59), where, under additional conditions,

their uniform and strong convergence was proved, and next in Cheng (1983), where their

strong and universal consistency was obtained. By skipping the truncation step in the proof

of Theorem 1 we obtain in Theorem 3 a strong and universal consistency of a version of

these estimators. The proof of Theorem 3 and the truncation used therein differ from those

in Schuster (1968) and Cheng (1983).

Hence we have the following three options available.

· If `logarithmic' moments (2.12) are ®nite then the universal and strong convergence of

the NW estimator holds true (cf. Theorem 2).
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· If the marginal distribution of X meets Assumption k then the SLLNCE is valid (cf.

Theorem 1). In Example 1 and Remark 5 we show that Assumption k may not be

ful®lled by some atomless Lebesgue singular probability measures.

· In the case of the NW estimator based on truncated random variables, the universal

strong consistency obtains (cf. Theorem 3).

Let us note that the moment conditions required in Theorem 2 are weaker than those in

Greblicki et al. (1984), Zhao and Fang (1985) and Stute (1986). Assumption k, used in

Theorem 1, is in turn much weaker than the requirement of a differentiable probability

density function of X in Mukerjee (1989). Our method of proof also avoids other restrictive

technical assumptions in Mukerjee (1989).

The paper is organized in the following way. In Section 2 we present the main results of

the paper. Section 3 contains the proofs of the theorems. In the Appendix (Section 4) we

collect some known technical results and extend them to the form needed in the paper.

2. The main results

Let IS (x) stand for the indicator function of set S and K(x) for the kernel equal to the

indicator function of B(0, 1), the unit ball in Rd centred at 0 2 Rd . The expected number of

Xis in an hn-vicinity of x is given by

ãx(n) � n . ìx(hn), (2:1)

where hn � C . nÿä, ìx(r) is the ì-measure of the ball of radius r centred at x 2 Rd ,

0 , ä, dÿ1, and ì is a probability distribution of X. Since the argument x of the NW

estimator will be considered ®xed we shall suppress x whenever it does not lead to any

confusion. Hence we shall write ã(n) for ãx(n). We shall see that a truncated NW estimator

(2.15) is equal w.p. 1 for all but ®nitely many ns to the original NW estimator (1.2) provided

there exist constants c1 � c1(x), c2 � c2(x), and k � k(x) 2 [1ÿ dä, 1] such that

c1 < lim inf
n!1

ã(n)

nk < lim sup
n!1

ã(n)

nk < c2: (2:2)

Let us note that by Corollary 2 of Lemma 4 in the Appendix there exists a ì a.e. positive

function c(x) such that c(x)n1ÿdä < ã(n) < n. It is clear that (2.2) is met with k � 1 for

every atom x of ì. Moreover, by the Lebesgue theorem (Theorem 10.49 in Wheeden and

Zygmund 1977) condition (2.2) is met with k � 1ÿ dä on the set on which ì is Lebesgue

absolutely continuous.

Assumption kk. We shall assume that there is a countable collection of ki 2 [1ÿ dä, 1] such

that for ì a.e. x there exists a corresponding ki such that (2.2) holds true for k � ki.

Not every probability measure on Rd meets Assumption k which requires, in effect, a

constant rate of decrease for the ì-measure of an hn-ball when hn ! 0. It is met in the

case of the Lebesgue absolutely continuous densities, discrete distributions, recti®able

Strong law of large numbers for conditional expectations 145



measures (which correspond to a smooth transport of a Lebesgue absolutely continuous

measure onto lower than d-dimensional manifolds; cf. Preiss 1987), and also in the case of

a range of Lebesgue singular measures including the Cantor measure (i.e. a `uniform'

measure on the Cantor set; see Example 1 below for more details). It is also met by

probability distributions ì which can be represented as countable sums of components,

each component being a ®nite measure of one of the listed types. Example 1 below shows,

however, that there exists a probability measure (which we will call for convenience a

Cantor±Preiss measure) which does not meet Assumption k for ì-almost every x. Our

main result on the SLLNCE requires Assumption k and can be formulated in the following

way.

Theorem 1. Let the kernel K(x) � IB(0,1)(x) and the window width hn � C . nÿä for some

ä 2 (0, 1=d). If (X1, Y1), . . . , (X n, Yn) are i.i.d. rvs in Rd 3 R, EjY j,1, and Assumption k
is met then for ì a.e. x 2 Rd and with probability 1

lim
n!1 r̂n(x) � r(x),

where r̂n(x) is the NW estimator given by (1.2).

Example 1. Let ì be a probability distribution of a random variable X � 2
P1

i�1Ui=3i, where

Ui are independent {0, 1} random variables such that pi � Pr (Ui � 1) � 1=(ôi � 1). If we set

ôi � 1 and ìC � ì we call ìC a uniform Cantor measure. In the case of ôi � i we put

ìCP � ì and shall call ìCP a Cantor±Preiss measure. In Lemma 3 we shall prove that the

uniform Cantor measure meets Assumption k with k � 1ÿ (ln 2=ln 3) . ä, while the Cantor±

Preiss measure does not. In the latter case for ìCP a:e: x inequality (2.2) obtains only either

with c1 � 0 or with c2 � 1. Note that in the case of the ìC-measure, ln 2=ln 3 is the

Hausdorff±Besicovitch dimension of the Cantor set. (Probability measure ìCP and some of

its pathological properties (e.g. lim suph!0(ìCP(âh)=ìCP(h)) � 1, ìCP a.e. and, 8â. 1) have

been communicated to us by Professor David Preiss in a private letter in 1993 to one of the

authors.)

The existence of slightly higher moments than the ®rst moment implies the universal

convergence for the NW estimator without referring to Assumption k and without laborious

truncation of variables in the proof of the theorem. To this end, we shall consider a class of

convex functions which have properties similar to the square function and which contains

functions increasing to in®nity slower than any (1� E)-power function. The symbol C will

be used in several different settings to indicate a non-negative constant.

Let K consist of all symmetric convex functions Ö(t) with the following properties:

ö(2t) , Cö(t), where ö(t) � Ö9(t), t > 0, (2:3)

Ö(0) � 0, (2:4)

Ö(
p

t) is subadditive. (2:5)
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It is easy to see that if Ö 2K , then for every a . 0 there exist positive constants C1(a) and

C2(a) such that for every t

C1(a)Ö(t) < Ö(at) < C2(a)Ö(t): (2:6)

Let us recall that by convexity of Ö the function ö(t) is non-decreasing. Moreover,

functions on R� with a non-increasing positive derivative are subadditive. Hence, whenever

ö(t)=t is non-increasing, Ö(
p

t) is subadditive, i.e. condition (2.5) is satis®ed. It is easy to

see that the following functions belong to class K :

Ör(t) � jtjr, r 2 (1, 2],

Ö(k,r)(t) � jtj(C(k,r) � lon(k,r)(t)),

where k > 1, r . 1, C(k,r) is a suf®ciently large constant and lon(k,r)(t) is given by

lon(1)(t) � ln (1� t), t . 0,

lon(k)(t) � lon(1)(lon(kÿ1)(t)), k . 1, t . 0,

lon(k,r)(t) � lon(1)(t)lon(2)(t) . . . lon(kÿ1)(t)(lon(k)(t))r (2:7)

for integer k > 1, r . 1 and t . 0.

The importance of the class K follows from the Burkholder±Gundy inequality (cf.

Burkholder and Gundy 1970, Corollary 5.4, p. 283),

EÖ
Xn

i�1

Zi

 !
< CEÖ

Xn

i�1

Z2
i

 !1=2
0@ 1A,

valid for independent random variables Zi, each with expectation zero, and for Ö symmetric,

convex, and satisfying (2.3) and (2.4). The Burkholder±Gundy inequality and (2.5) imply

immediately that if Z1, Z2, . . . , Zn are independent centred random variables, and Ö 2K ,

then there exists a constant C such that

EÖ
Xn

i�1

Zi

 !
< C

Xn

i�1

EÖ(Zi): (2:8)

Let us note that a class of functions similar to K is often used in the classical proofs of

the strong convergence of weighted sums of independent rvs using Kolmogorov's three

series theorem (cf., e.g., Petrov 1975). In the present case we shall apply Kolmogorov's

maximal inequality on the level of conditional probability distributions; the three series

theorem technique does not seem easily applicable here.

Theorem 2. Let the kernel K(x) � IB(0,1)(x), the window width hn & 0, Ö 2K , and

ø(t) � Ö(t)=jtj: (2:9)
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If (X 1, Y1), . . . , (X n, Yn) are i.i.d. rvs in Rd 3 R,

EÖ(jY j) ,1, (2:10)

and

X1
n�1

1

�
(nø(nhd

n)) ,1, (2:11)

then for ì a.e. x 2 Rd and with probability 1

lim
n!1 r̂n(x) � r(x),

where r̂n(x) is the NW estimator given by (1.2).

Theorem 2 implies readily the following particular case showing the extent to which the

requirement of ®nite moments can be weakened in the case of universal convergence. Let

us note that assumption (2.12) is weaker than the condition EjY js ,1 for s . 1, used in

Zhao and Fang (1985) and in Stute (1986).

Corollary 1. Let the kernel K(x) � IB(0,1)(x) and the window width hn � C . nÿä for some

ä 2 (0, 1=d). If (X 1, Y1), . . . , (X n, Yn) are i.i.d. rvs in Rd 3 R and

EjY jlon(k,r) (jY j) ,1 (2:12)

for some k > 1 and r . 1, then for ì a.e. x 2 Rd and with probability 1

lim
n!1 r̂n(x) � r(x):

Remark 1. Condition (2.11) provides a link between the moments (2.10) and the window

width allowed for the convergence. The higher the moments of Y that are ®nite the narrower

the window widths hn that are allowed. Let us note that if for some positive E EjY j1�E ,1,

then condition (2.11) is met with

hn � (log n)2=E

n

� �1=d

: (2:13)

This is a weaker requirement than the corresponding conditions inf n.0fnE=2 . hd
n . 0g in Zhao

and Fang (1985, Theorem 1) and
P

n>1 exp(ÿrnhd
n) ,1 for all r. 0 in Stute (1985,

Theorem 1). Zhao and Fang (1985, Theorem 2) require the exponential moments

E exp (tjY jë) ,1 to allow window width (2.13).
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Remark 2. Etemadi (1981) presented the beautiful idea of using monotonicity arguments to

simplify Kolmogorov's proof of the strong law of large numbers. This was in fact a

starting point for the present paper. However, elementary arguments can be used along

these lines to prove consistency of the Nadaraya±Watson estimate only under the

generalized moment assumption, like in our Theorem 2, as well as assuming that the X-

variable has a Lebesgue density. Our efforts to get around this obstacle resulted in the

present version of the paper.

Finally, we shall consider an estimator based on truncated random variables where the

truncation depends on the sample size. Let k( p) � 2 p for non-negative integers p. For each

positive integer n there is a unique integer p � p(n) such that n 2 (k( pÿ 1), k( p)], so that

without any confusion we can omit the argument n at p(n). Let C1 be a constant

independent of n and

~Yi,n � Yi if jYij < C1
. q

p
0 , i < n, and n 2 (k( pÿ 1), k( p)]

0 otherwise,

�
(2:14)

where q0 � 21ÿdä and ä is a parameter of the window width.

Theorem 3. Let the kernel K(x) � IB(0,1)(x), and the window width hn � C . nÿä for some

ä 2 (0, 1=d). If (X 1, Y1), . . . , (X n, Yn) are i.i.d. rvs in Rd 3 R and

r̂n(x) �
Pn

i�1
~Yi,n K

xÿ X i

hn

� �
Pn

i�1 K
xÿ Xi

hn

� � , (2:15)

where ~Yi,n is given by (2.14), then for ì a.e. x 2 Rd and with probability 1

lim
n!1 r̂n(x) � r(x): (2:16)

Remark 3. Theorem 3 does not require moments of Y to be ®nite or any assumption on the

distribution of X, and hence it may be called a universal consistency of the estimator given by

(2.15). However, because of truncation (2.14), it cannot be called a law of large numbers. In a

sense it is similar in structure to robust estimators and suggests that robust estimators may be

strongly universally consistent without the rather strong technical assumptions required for

related results obtained elsewhere (cf. HaÈrdle et al. 1988; Hall and Jones 1990). Consistency

of the robust modi®cations of the NW estimator is, however, beyond the scope of the present

paper.

3. Proofs of the theorems

To simplify presentation, we introduce notation which lets us avoid overloading symbols with

numerous parameters. Let us recall that for integer p we write k( p) � 2 p and that for every

integer n there is a unique p � p(n) such that
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k( pÿ 1) , n < k( p): (3:1)

So, without any confusion, we can write p instead of p(n). For most of the proof the

argument x of the NW estimator will be considered ®xed and, when there is no confusion, we

shall suppress x altogether. Hence, with the sequence of window widths hn given, we shall

write

Ki,m � Km(X i) � K
xÿ Xi

hm

� �
, Kk( pÿ1) � (K1,k( pÿ1), . . . , K k( p),k( pÿ1)), (3:2)

ì(m) � ìx(hm) � EKm(X 1), (3:3)

and

w(í, m) �
Xí
i�1

K
xÿ X i

hm

� �
: (3:4)

Given Ki,m � K((xÿ Xi)=hm) for i � 1, . . . , N, we use this to de®ne an ordering of the

random variables X 1, . . . , X N and an induced ordering of the matching Y1, . . . , YN , and of

their centred counterparts of a truncated version de®ned in (3.19). This ordering assigns

lower ranks to variables for which the matching Ki,m variables have value 1, higher ranks to

variables for which the matching Ki,m variables have value 0, and in each of these two

groups the ranks are assigned in chronological order (i.e. in the order in which they

originally appeared in the sample). We shall consider two particular rankings corresponding

to different pairs (m, N ): (n)-ranking corresponding to m � n and N � n; and ( p)-ranking

corresponding to m � k( pÿ 1) and N � k( p).

Clearly, in general (n)- and ( p)-rankings are different. We shall write Ní for the ( p)-rank

of the element having rank í in the (n)-ranking. Moreover, let ( j)n and ( j) p stand for the

indices i and k of the Yi and Yk for which in the (n)-ranking rank(n) (Yi) � j and in the ( p)-

ranking rank( p) (Yk) � j, respectively.

Since Ki,n < Ki,k( pÿ1), we obtain that for í < w(n, n)

í < Ní � w((í)n, k( pÿ 1)):

Let us note that the following relation holds true for í 2 f1, . . . , w(n, n)g:
Xí
j�1

Y( j)n
�
XNí

j�1

Y( j) p
ÿ
XNí

j�1

Y( j) p
. Q( j) p,n, (3:5)

where

Q( j) p,n � K( j) p,k( pÿ1) ÿ K( j) p,n � K
xÿ X ( j) p

hk( pÿ1)

 !
ÿ K

xÿ X ( j) p

hn

� �
:

Clearly, relation (3.5) is also valid for the truncated random variables given by (3.19).
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Proof of Theorem 1. Let us note that Bernstein's inequality implies easily (cf. Devroye

1981, Theorem 4.2; or Greblicki et al. 1984, Theorem 2) that almost surely and for ì
a.e. x

lim
n!1

Pn
i�1 Kn(X i)

n . ì(n)
� 1: (3:6)

Hence, to prove Theorem 1 it is enough to prove the ì a.s. convergence of ~rn(x) given

by

~rn(x) �
Pn

i�1YiKn(X i)

n . ì(n)
: (3:7)

(Notice that (3.7) implies (3.6); however, we shall need (3.6) in the proof of (3.7).)

We shall consider truncated random variables and the truncation will depend both on p

and x, the point at which we are estimating r(x).

Let

�Y p � Y if jY j < qp,

0 otherwise,

�
(3:8)

and

�Yi, p � Yi if jY ij < qp and i < k( p),

0 otherwise,

�
(3:9)

where q � 2k j and k j depends on x (cf. Assumption k). For simplicity we shall, however,

consider the case when one k meets Assumption k for ì a.e. x. To obtain the general case

one can apply the argument that follows for every k j separately.

Consider r̂( p)
n (x) corresponding to ~rn(x) but built up of the truncated random variables

and given by

r̂( p)
n (x) �

Pn
i�1

�Yi, p Kn(X i)

n . ì(n)
: (3:10)

For n 2 (k( pÿ 1), k( p)] we have

r̂( p)
n (x) 6� ~rn(x)) 9 i 2 (1, k( p)]: Yi

. Ki,n 6� �Yi, p
. Ki,n, (3:11)

and hence

Pr (9 n 2 (k( pÿ 1), k( p)]: r̂( p)
n (x) 6� ~rn(x)) < k( p) . Pr (jY j. qp, K1,k( pÿ1) � 1): (3:12)

Let us note thatX1
p�1

k( p) . Pr (jY j. qp, K1,k( pÿ1) � 1) �
X1
p�1

ã(k( p)) .
Pr (jY j. qp, K1,k( pÿ1) � 1)

ì(k( p))
: (3:13)
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By (2.2) and Lemma 7 applied to each component of the series we obtain, with M2 as in

Lemma 5,�X1
p�1

ã(k( p)) .
Pr (jY j. qp, K1,k( pÿ1) � 1)

ì(k( p))
ì(dx) < c2

. M2

X1
p�1

qp Pr (jY j. qp)

< c2
.

q

qÿ 1
. M2EjY j,1: (3:14)

Hence, by the Borel-Cantelli lemma it is enough to show that w.p. 1 and for ì a.e. x,

lim
n!1 r̂( p)

n (x) � r(x): (3:15)

Let us note that for i � 1, . . . , k( p) we have

E(�Yi, pjKi,n) � E(�Yi, pjK1,n, . . . , K n,n) �

�
�Y p

. K1,n dP�
K1,n dP

if Ki,n � 1,

�
�Y p

. (1ÿ K1,n) dP�
(1ÿ K1,n) dP

if Ki,n � 0:

8>>>>>>>>>>><>>>>>>>>>>>:
(3:16)

Putting

rk( pÿ1)(x) �
�

�Y p
. K1,k( pÿ1) dP

��
K1,k( pÿ1) dP (3:17)

we obtain

r̂( p)
n (x)ÿ r(x) �

Pn
i�1(�Yi, p ÿ rk( pÿ1)(x))Kn(X i)

n . ì(n)
�
Pn

i�1 Kn(Xi)

n . ì(n)
. rk( pÿ1)(x)ÿ r(x)

� I (1)
n (x)� I (2)

n (x): (3:18)

Convergence of I (1)
n (x). Let n 2 (k( pÿ 1), k( p)]. For j � 1, . . . , k( p) let

�Z j, p � �Y j, p ÿ E(�Y j, pjK j,k( pÿ1)); (3:19)

for j � 1, . . . , w(n, n) let

�Z( j)n
� �Y( j)n, p ÿ rk( pÿ1); (3:20)

and for j � 1, . . . , w(k( p), k( pÿ 1)) let

�Z( j) p
� �Y( j) p, p ÿ rk( pÿ1): (3:21)
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By (3.5) we obtain for í � 1, . . . , w(n, n)

Xí
j�1

�Z( j)n
�
XNí

j�1

�Z( j) p
ÿ
XNí

j�1

�Z( j) p
. Q( j) p,n: (3:22)

Let events An, B n and D p be given by

An � max
í�1,:::,w(n,n)

����Xí
j�1

�Z( j)n

����. 4E . k( pÿ 1) . ì(k( p))

( )
(3:23)

B n � max
í�1,:::,w(k( p),k( pÿ1))

����Xí
j�1

�Z( j) p
. Q( j) p,n

���� < E . k( p) . ì(k( p))

( )
(3:24)

D p � max
í�1,:::,w(k( p),k( pÿ1))

����Xí
j�1

�Z( j) p

����. E . k( p) . ì(k( p))

( )
: (3:25)

By (3.22) we have An \B n � D p. Moreover,

fjI (1)
n (x)j. 4Eg �

����Xn

i�1

�Zi, p Kn(X i)

����. 4E . n . ì(n)

( )

� max
í�1,:::,w(n,n)

����Xí
j�1

�Z( j)n

����. 4E . n . ì(n)

( )
�An: (3:26)

We will prove in Lemma 1 that
P1

p�1 Pr (D p) ,1 and in Lemma 2 that

limn!1 Pr (B n) � 1. Since events An and B n are independent, we obtain by the events

lemma (LoeÁve 1977, Section 18.1.c, p. 258) that

0 � Pr (lim sup p D p) > Pr (lim supn AnB n) > 1
2

Pr (lim supn An), (3:27)

which implies the convergence of I (1)
n (x). Hence, it remains to prove Lemmas 1 and 2.

Lemma 1.
P1

p�1 Pr (D p) ,1.

Proof. Let â p denote the joint probability distribution Kk( pÿ1) given by (3.2) and notice that

by independence of Y1, . . . , Yk( p) we have that for each q1, . . . , qk( p) the conditional

probability distribution of (�Z(1) p
, . . . , �Z(k( p)) p

) given K1,k( pÿ1) � q1, . . . , K k( p),k( pÿ1) � qk( p)

is a product measure of its components, i.e., �Z(1) p
, . . . , �Z(k( p)) p

are conditionally

independent. By (3.16), (3.17) and (3.19)±(3.21) they are also centred at the conditional

expectation. Hence, by Lemma 9, we can apply Kolmogorov's maximal inequality to the

conditional distributions and to the particular permutation of �Z variables determined by the

( p)-ordering. We obtain
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Pr (D p) �
�

Pr max
í�1,:::,w(k( p),k( pÿ1))

����Xí
j�1

�Z( j) p

����. E . k( p) . ì(k( p))jKk( pÿ1)

 !
dâ p

�
�

Pr max
í�1,:::,k( p)

����Xí
j�1

�Z( j) p
. K( j) p,k( pÿ1)

����. E . k( p) . ì(k( p))jKk( pÿ1)

 !
dâ p

<

� Pk( p)
j�1 var (�Z( j) p

K( j) p,k( pÿ1)jKk( pÿ1))

(E . k( p) . ì(k( p)))2
dâ p (3:28)

<

� Pk( p)
j�1 E(�Y 2

( j) p
K( j) p,k( pÿ1)jKk( pÿ1))

(E . k( p) . ì(k( p)))2
dâ p

� k( p)E�Y 2
1, p K k( pÿ1)(X1)

(E . k( p) . ì(k( p)))2
: (3:29)

Hence, by (2.2) and for q � 2k we obtain that, for all but a ®nite number of p,

Pr (D p) <
E�Y 2

1, p K k( pÿ1)(X1)

E2c1qp . ì(k( p))
: (3:30)

Let dte stand for the smallest integer greater than or equal to t. Notice that

E�Y 2
1, p K k( pÿ1)(X 1) <

Xdq pe

j�1

j2 Pr ( jÿ 1 , jY j < j, K k( pÿ1)(X ) � 1)

< 2
Xdq pe

j�1

Xj

á�1

á Pr ( jÿ 1 , jY j < j, K k( pÿ1)(X ) � 1)

< 2
Xdq pe

á�1

Xdq pe

j�á
á Pr ( jÿ 1 , jY j < j, K k( pÿ1)(X ) � 1)

< 2
Xdq pe

á�1

áPr (áÿ 1 , jY j < dqpe, K k( pÿ1)(X ) � 1)

< 2
Xp

í�1

Xdqíe

á�dqíÿ1e�1

dqíe Pr (áÿ 1 , jY j < dqpe, K k( pÿ1)(X ) � 1)

� 2 Pr (0 , jY j < dq pe, K k( pÿ1)(X ) � 1) � 2(J1( p)� J2( p)):
(3:31)

Passing to summation over p, we have
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X1
p�1

Pr (D p) <
1

E2c2
1

.
X1
p�1

J1( p)

qp . ì(k( p))
�
X1
p�1

J2( p)

qp . ì(k( p))

 !
: (3:32)

Now, we shall prove that both series on the right-hand side of (3.32) are ®nite ì a.e. First, let

us change the order of summation:

X1
p�1

J1( p)

qp . ì(k( p))
�
X1
í�1

X1
p�í

Xdqíe

á�dqíÿ1e�1

dqíe Pr (áÿ 1 , jY j < dqpe, K k( pÿ1)(X ) � 1)

qp . ì(k( p))

�
X1
í�1

Xdqíe

á�dqíÿ1e�1

X1
p�í

dqíe Pr (áÿ 1 , jY j < dqpe, K k( pÿ1)(X ) � 1)

qp . ì(k( p))
:

(3:33)

Notice that by Lemma 7 we have�
Pr (áÿ 1 , jY j < dqpe, K k( pÿ1)(X ) � 1)

ì(k( p))
ì(dx) < M2 Pr (jY j.áÿ 1): (3:34)

Integrating both sides of (3.33) with respect to x and using (3.34), we obtain� X1
p�1

J1( p)

qp . ì(k( p))

 !
ì(dx) < M2

X1
í�1

Xdqíe

á�dqíÿ1e�1

X1
p�í

dqíe
qp

Pr (jY j.áÿ 1)

< 2M2

q

qÿ 1

X1
í�1

Pr (jY j. íÿ 1)

< 2M2

q

qÿ 1
EjY j,1: (3:35)

Hence, the integrand must be ®nite ì a.e. In a similar way (3.34) implies that the second

series at (3.32) is ®nite ì a.e., completing the proof that
P1

p�1 Pr (D p) ,1. u

Lemma 2. We have

lim
n!1 Pr (B n) � 1:

Proof. From the proof of Lemma 1 it is easy to see that for n 2 (k( pÿ 1), k( p)] the

probability Pr (B c
n) is bounded by (3.28) and (3.29). Since (3.29) sums up over p to a ®nite

number, Pr (B c
n) must converge to 0. This completes the proof of convergence of I (1)

n (x). u

Convergence of I (2)
n (x). By (3.6) it is enough to prove that

lim
p!1 rk( pÿ1)(x) � r(x) ì a.e. (3:36)

We have
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rk( pÿ1)(x)ÿ r(x) �

�
�Y p

. K1,k( pÿ1) dP�
K1,k( pÿ1) dP

ÿ

�
Y . K1,k( pÿ1) dP�

K1,k( pÿ1) dP

�

�
Y . K1,k( pÿ1) dP�

K1,k( pÿ1) dP

ÿ r(x)

� G(1)
p � G(2)

p : (3:37)

By Theorem 10.49 in Wheeden and Zygmund (1977) G(2)
p converges to 0. Let

H l,m �
�
jY j . I(jY j. ql) . K1,k(m) dP

��
K1,k(m) dP: (3:38)

It is clear that jG(1)
p j < H p, pÿ1. Letting rl(x) � E(jY j . I(jY j. ql)jX � x), we obtain

H l,m �
�

rl(x1) . K1,k(m)ì(dx1)

��
K1,k(m)ì(dx1): (3:39)

Again by Theorem 10.49 in Wheeden and Zygmund (1977), we have for every l

lim
m!1 H l,m(x) � rl(x) ì a.e. (3:40)

Choose x such that (3.40) holds true for all l � 1, 2, . . . , rl(x) > rs(x) for s . l, and that

rl(x) converges to zero. The set of such xs has ì-measure 1. Choose L such that rl(x) , E for

all l > L. Next, take M > L such that jH L,m ÿ rL(x)j, E for m > M. Since H l,m is

decreasing in l we conclude that for p . M we have

jG(1)
p j, H( p, pÿ 1) , H(L, pÿ 1) < jH(L, pÿ 1)ÿ rL(x)j � rL(x) < 2E:

This proves that G(1)
p is converging to 0 and completes the proof of Theorem 1. u

Remark 4. An alternative but more technical way of proving Lemmas 1 and 2 consists in

proving a version of Lemma 1 in the case of an arbitrary ranking dependent on random

variables X 1, . . . , X N only, and then drawing conclusions for the particular cases of (n)- and

( p)-rankings de®ned at the beginning of this section.

Proof of Theorem 2. By (3.6) it is enough to prove convergence of ~rn(x) de®ned in (3.7). For

i � 1, . . . , n we have

E(YijKi,n) � E(r(X i)jKi,n) � E(YijK1,n, . . . , K n,n) �

�
Y . K1,n dP�

K1,n dP

if Ki,n � 1

�
Y . (1ÿ K1,n) dP�

(1ÿ K1,n) dP

if Ki,n � 0:

8>>>>>>>>>>><>>>>>>>>>>>:
(3:41)
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Putting

rk( pÿ1)(x) �
�

Y . K1,k( pÿ1) dP

��
K1,k( pÿ1) dP, (3:42)

we obtain

~rn(x)ÿ r(x) �
Pn

i�1(Yi ÿ rk( pÿ1)(x))Kn(X i)

n . ì(n)
�
Pn

i�1 Kn(X i)

n . ì(n)
. rk( pÿ1)(x)ÿ r(x)

� I (1)
n (x)� I (2)

n (x): (3:43)

Convergence of I (2)
n (x) follows easily from the Lebesgue theorem (cf. Theorem 10.49 in

Wheeden and Zygmund 1977) and from (3.6). It remains to prove a.s. convergence to zero of

I (1)
n (x).

Let n 2 (k( pÿ 1), k( p)]. For j � 1, . . . , k( p) let

Z j, p � Yj ÿ E(YjjK j,k( pÿ1)); (3:44)

for j � 1, . . . , w(n, n) let

Z( j)n
� Y( j)n

ÿ rk( pÿ1); (3:45)

and for j � 1, . . . , w(k( p), k( pÿ 1)) let

Z( j) p
� Y( j) p

ÿ rk( pÿ1): (3:46)

By (3.5) we obtain for í � 1, . . . , w(n, n)

Xí
j�1

Z( j)n
�
XNí

j�1

Z( j) p
ÿ
XNí

j�1

Z( j) p
. Q( j) p,n: (3:47)

Let events An, B n, and D p be given by (3.23)±(3.25) but with �Zs replaced by Zs

given by (3.44)±(3.46). By (3.47) we have An \B n � D p and

fjI (1)
n (x)j. 4Eg �

����Xn

i�1

Zi, p Kn(X i)

����. 4E . n . ì(n)

( )

� max
í�1,:::,w(n,n)

����Xí
j�1

Z( j)n

����. 4E . n . ì(n)

( )
�An: (3:48)

We will prove below (much more brie¯y than in Lemma 1 but using moment assumption

(2.10)) that
P1

p�1 Pr (D p) ,1 and that limn!1 Pr (B n) � 1. Hence as events An and B n

are independent, we obtain inequalities (3.27), thereby concluding the proof.
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So, it remains to prove that
P1

p�1 Pr (D p) ,1 and that limn!1 Pr (B n) � 1. Let ø(t)

be given by (2.9). By Lemma 8 and applying inequalities (2.6) and (2.8) we obtain

Pr (D p) �
�

Pr max
í�1,:::,w(k( p),k( pÿ1))

����Xí
j�1

Z( j) p

����. E . k( p) . ì(k( p))jKk( pÿ1)

 !
dâ p

�
�

Pr max
í�1,:::,k( p)

����Xí
j�1

Z( j) p
. K( j) p,k( pÿ1)

����. E . k( p) . ì(k( p))jKk( pÿ1)

 !
dâ p

<

� E Ö
Pk( p)

j�1 Z( j) p
K( j) p,k( pÿ1)

� �
jKk( pÿ1)

� �
Ö(E . k( p) . ì(k( p)))

dâ p (3:49)

< C0EÖ
Xk( p)

j�1

(Zj K k( pÿ1)(Xj))

0@ 1A�Ö(k( p) . ì(k( p)))

< C0

Xk( p)

j�1

EÖ(Zj K k( pÿ1)(X j))=Ö(k( p) . ì(k( p)))

� C0
. k( p) . EÖ(Z1 K k( pÿ1)(X1))=Ö(k( p) . ì(k( p)))

� C0(1=ø(k( p) . ì(k( p))))(EÖ(jZ1jK k( pÿ1)(Xj))=ì(k( p))): (3:50)

Hence, by Lemma 7, by (2.11) and by the Cauchy condensation theorem (cf. Knopp 1948, p.

120) we obtain�X1
p�1

Pr (D p)ì(dx) < C0
. M2

. EÖ(jZ1j)
X1
p�1

1

�
ø(k( p) . ì(k( p)))

< C0
. M2

. EÖ(Z1)
X1
p�1

1

�
ø(k( p) . hd

k( p)) ,1:

Thus, with probability 1 events D p may occur only ®nitely many times. As in the proof

of Lemma 2 let us note that Pr (B c
n) is bounded by (3.49). This completes the proof of

Theorem 2. u

Proof of Theorem 3. By (3.6), and since Yi,n � �Yi, p for n 2 (k( pÿ 1), k( p)] (cf. (2.14) and

(3.9)), the convergence of r̂n(x) given by (2.15) is implied by the convergence of r̂( p)
n (x)

given by (3.10). However, in contrast with Theorem 1, we do not need to prove that the limits

of (2.15) and of (1.2) are equal ì a.e. Hence, we can use just the left-hand side of inequality

(2.2) (cf. (3.29)) with k � 1ÿ dä. By Lemma 4 it is the lowest possible k for any probability

measure ì. The right-hand side of inequality (2.2) was used in (3.14), which is not required

in the present case of the truncated estimator (2.15). In this way, and since the convergence of

r̂( p)
n (x) was proved while proving Theorem 1, we infer Theorem 3. u
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We now prove the properties of the Cantor and Cantor±Preiss measures referred to in

Example 1.

Lemma 3. Let X � 2 .
P1

i�0Ui=3i, where Ui are independent f0, 1g random variables, and

let ìC and ìCP be the Cantor and Cantor±Preiss measures, respectively, de®ned in

Example 1. Let hn � Cnÿä for n � 1, 2, . . . , ä 2 (0, 1), and let ãC(n) and ãCP(n) be

functions ã de®ned by (2.2) and corresponding to the Cantor and Cantor±Preiss measures,

respectively. Then

(a) for kC � 1ÿ (ln 2=ln 3)ä we have

1

2
<

ãC(hn)

nkC
< 2 ìC a:e:, (3:51)

(b) for the probability distribution ìCP,

lim sup
n!1

ãCP(hn)

nkCP
� 1 if kCP 2 [1ÿ dä, 1)

0 if kCP � 1

�
(3:52)

ìCP a.e.

Proof. Let C be the Cantor set and x0 2 C , i.e., x0 � 2
P1

i�1u0i=3i and u0i 2 f0, 1g. For

simplicity, let hn � nÿä and let kn be positive integers such that

3ÿk n < nÿä , 3ÿ(k nÿ1):

Let

Ak � Ak(x0) � x 2 C : x � 2
X1
i�0

ui

�
3i, ui 2 f0, 1g, and ui � u0i, for i � 1, 2, . . . , k

( )
:

Hence

ì(Ak n
) < ì(hn) < ì(Ak nÿ1) (3:53)

and

ì(Ak) �
Yk

i�1

pu0i

i (1ÿ pi)
1ÿu0i ,

where pi � 1
2

for ì � ìC or pi � 1=(i� 1) for ì � ìCP. In the case of the Cantor measure we

have

ìC(Ak) � 2ÿk � eÿk ln 2,

and hence by (3.53) we obtain

1
2
nÿä(ln 2=ln 3) < ìC(hn) < 2nÿä(ln 2=ln 3):

Strong law of large numbers for conditional expectations 159



Setting k � 1ÿ ä(ln 2=ln 3), we have

1

2
<

nìC(hn)

nk < 2,

i.e., ìC meets Assumption k with k � 1ÿ ä(ln 2=ln 3).

In the case of the Cantor±Preiss measure we consider a random index X0 of the sets Ak ,

where X 0 � 2
P1

i�1U0i=3i is distributed according to the Cantor±Preiss distribution with

U0i independent f0, 1g rvs and pi � Pr (U0i � 1) � 1=(i� 1). We have

ìCP(Ak n
) �

Yk n

i�1

i(1ÿU0i)

i� 1
� 1

kn � 1
exp ÿ

Xk n

i�1

Yi

 !
,

where Yi � U0i ln i. Let

an � (ln n)(3�ä)=2

and note that by the strong law of large numbers (cf. Petrov 1975, ch. 9, Theorem 14, p. 272),

1

an

Xn

i�1

(Yi ÿ EYi)! 0 a:s:

Thus

lim
n!1 (ln kn)ÿ(3�ä)=2

Xk n

i�1

Yi ÿ
Xk n

i�1

ln i

i� 1

 !
! 0 ìCP a.e.

Now, by the Euler summation formula (cf. Knopp 1948, p. 523) we obtain

Xk n

i�1

Yi �
Xk n

i�1

ln i

i� 1
� o((ln kn)(3�ä)=2)

� 1

2
(ln kn)2 � o((ln kn)(3�ä)=2):

We can now evaluate ìCP(Ak n
):

ln (ìCP(Ak n
)) � ÿ1

2
(ln kn)2 � o((ln kn)(3�ä)=2),

and similarly

ln (ìCP(Ak nÿ1)) � ÿ1
2
(ln kn)2 � o((ln kn)(3�ä)=2):

Hence

ln (ìCP(hn)) � ÿ1
2
(ln kn)2 � o((ln kn)(3�ä)=2),

which implies easily that for ìCP a.e. x0
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lim sup
n!1

n . ìCP(hn)

nk � �1 if k, 1,

0 if k � 1:

�
Hence Assumption k is not met for any k 2 [1ÿ dä, 1]. u

Remark 5. Let us note that it is straightforward to extend Example 1 and Lemma 3 and

consider a class of probability distributions on the Cantor set C . To this end it is enough to

allow pi to be arbitrary functions of i with values in [0, 1]. One can show that if

lim
i!1

pi � p and p 2 (0, 1)

then the corresponding probability distribution on C meets Assumption k. If one allows pi to

¯uctuate between two different values, say pÿ and p�, both in (0, 1), then one can construct

a probability distribution for which there exist distinct k1 and k2 with

0 , c1 < lim inf
n!1

ã(n)

nk1
< lim inf

n!1
ã(n)

nk2
< c2 ,1:

4. Appendix

Lemma 4 (Wheeden and Zygmund 1977, Lemma 10.50). For any complete probability

measure ì on the Borel subsets of Rd there exist a ®nite, non-negative, ì-measurable

function ö(x), and a set A such that ì(A) � 1 and

hd

ìx(h)
< ö(x) for every h . 0 and x 2A,

where ìx(h) stands for a probability measure ì of a ball in Rd centred at x and of radius h.

Corollary 2. If hn � Cnÿä, 0 , ä, dÿ1, and ã(n) is given by (2.1), then there exists a

function c(x) . 0 such that

c(x) . nk0 < ã(n) < n,

where k0 � 1ÿ dä.

The following lemma extends Lemma 1 in Devroye and Wagner (1980).

Lemma 5. Let

1 <
R

r
< r,1

and let Mr be the minimal number of balls of radius 1=(2r) necessary to cover the unit ball

B � B (0,1) centred at 0 2 Rd and of radius 1. Then for every z 2 Rd and every measurable

set A
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�
A

K
zÿ x

R

� �
�

K
yÿ x

r

� �
ì(dy)

ì(dx) < Mr:

Proof. Let fA1, . . . , AMrg be the cover of B by balls of radius 1=(2r). Since

zÿ RB � zÿ R [ Ai we have

K
zÿ x

R

� �
<
XMr

i�1

I zÿRAi
(x):

Let x, w 2 zÿ RAi. Then ixÿ wi < 2R=(2r) < r, where ixi stands for the Euclidean

norm of vector x 2 Rd. Thus the following implication holds true:

if x 2 zÿ RAi then w 2 zÿ RAi implies w 2 x� rB ,

and, moreover, for x 2 zÿ RAi we have�
K

yÿ x

r

� �
ì(dy) � ì(x� rB ) > ì(zÿ RAi):

Hence

�
A

K
zÿ x

R

� �
�

K
yÿ x

r

� �
ì(dy)

ì(dx) <

� K
zÿ x

R

� �
�

K
yÿ x

r

� �
ì(dy)

ì(dx) <
XMr

i�1

ì(zÿ RAi)

ì(zÿ RAi)
� Mr,

and the proof is complete. u

Lemma 5 easily implies the following lemma.

Lemma 6. Let V (z) be a non-negative function and let�
V (z)ì(dz) � V ,1:

If the ratio H=h 2 [1, r) then

� �V (z)K
zÿ x

H

� �
ì(dz)�

K
yÿ x

h

� �
ì(dy)

ì(dx) < Mr . V

and the bound does not depend on the particular choice of H or h.

Applying Lemma 6 to the conditional distribution of Z given X � x, we obtain:
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Lemma 7. Let (Z, X ) be a random vector in R 3 Rd and let ì be the probability

distribution of X. If the ratio H=h 2 [1, r) then for any Borel set A we have

� Pr Z 2A, K
xÿ X

H

� �
� 1

� �
EK

xÿ X

h

� � ì(dx) < Mr . Pr (Z 2A)

and the bound does not depend on the particular choice of H, h or ì.

Lemma 8. Let Y1, . . . , Yn be independent rvs centred at expectations, i1, . . . , in a ®xed

permutation of 1, . . . , n, and Ö a symmetric, convex function. Then

Pr max
í�1,:::,n

����Xí
j�1

Yi j

����. E

 !
<

EÖ
Pn

j�1Yj

� �
Ö(E)

:

Proof. The extension of the Kolmogorov maximal inequality to the case of convex functions

follows easily by virtually the same argument as in Problems 2 and 3 in LoeÁve (1977, p.

275). The only change required is a replacement of the power function with the general

convex function, but by the Jensen inequality this does not present any dif®culty. The

classical Kolmogorov inequality is usually stated in the case of the identity permutation

1, . . . , n. However, the proof goes through without change in the case of any deterministic

permutation i1, . . . , in of 1, . . . , n. u

Lemma 9. Let (X 1, Y1), . . . , (Xn, Yn) be independent, identically distributed rvs with

EjY j,1 and Ö a symmetric, convex function. Then for every permutation fYi j
g of

Y1, . . . , Yn depending only on X � (X 1, . . . , X n), the conditional maximal inequality

Pr max
í�1,:::,n

����Xí
j�1

Yi j
ÿ E(Y jX)

����. EjX
 !

<

E Ö
Pn

j�1Yj

� �����X
 !

Ö(E)

holds true.

Proof. Let us note that the a.e. existence of the regular conditional probability is implied by

Theorem 8.1 of Parthasarathy (1967, p. 147). The conditional independence of the Yi is

implied easily by independence of (X1, Y1), . . . , (X n, Yn) (cf. Lemma 1 in Cheng 1984).

Hence, and since the relevant permutations are functions of the conditional variables,

Lemma 8 can be applied to the conditional probability distributions. So, the maximal

inequality holds conditionally. u

Remark 6. It is clear that the permutation in Lemma 8 cannot depend on rvs Y1, . . . , Yn. In

particular, it can easily be shown that Kolmogorov's maximal inequality does not hold true

for partial sums of Y(1), . . . , Y(n), where Y(1) < Y(2) < . . . , Y(n) are the increasing order
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statistics. However, the case of permutations corresponding to the random variables ordered

according to their increasing values is not excluded from the class of admissible permutations

considered in Mukerjee (1989, Section 2, p. 19) and in papers on monotonic regression

quoted by Mukerjee (1989). Hence Theorem 2.1 in Mukerjee (1989), the proof of which is

based on the Kolmogorov maximal inequality, does not seem to be valid for all his admissible

permutations.
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