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The block bootstrap for time series consists in randomly resampling blocks of consecutive values of the

given data and aligning these blocks into a bootstrap sample. Here we suggest improving the

performance of this method by aligning with higher likelihood those blocks which match at their ends.

This is achieved by resampling the blocks according to a Markov chain whose transitions depend on the

data. The matching algorithms that we propose take some of the dependence structure of the data into

account. They are based on a kernel estimate of the conditional lag one distribution or on a ®tted

autoregression of small order. Numerical and theoretical analyses in the case of estimating the variance

of the sample mean show that matching reduces bias and, perhaps unexpectedly, has relatively little

effect on variance. Our theory extends to the case of smooth functions of a vector mean.
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1. Introduction

In their classical form, as ®rst proposed by Efron (1979), bootstrap methods are designed for

application to samples of independent data. Under that assumption they implicitly produce an

adaptive model for the marginal sampling distribution. During the last decade these

approaches have been modi®ed to suit the case of dependent data. Indeed, block bootstrap

methods in that setting were introduced by Hall (1985), Carlstein (1986), KuÈnsch (1989) and

Liu and Singh (1992). They involve implicitly computing empirical models for the general

multivariate distribution of a stationary time series, or even a more general data sequence,

under particularly mild assumptions on the process generating the data. The models are of

course highly adaptive, or nonparametric, in the spirit of bootstrap methods. Since the

introduction of the blockwise bootstrap, the method has been investigated in quite some

detail. Shao and Yu (1993), Naik-Nimbalkar and Rajarshi (1994), BuÈhlmann (1994, 1995),

Radulovic (1995, 1996a, b), Politis and Romano (1992) and BuÈhlmann and KuÈnsch (1995)
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established consistency for a large number of statistics and processes generating the data.

Distribution estimation by the block bootstrap has been studied by Lahiri (1991, 1996) and

GoÈtze and KuÈnsch (1996), showing that the block bootstrap can produce second-order correct

estimators, and by Davison and Hall (1993), pointing out the need to select carefully the

variance estimator when using a percentile-t version of the block bootstrap. Hall and Jing

(1996), Hall et al. (1995), and BuÈhlmann and KuÈnsch (1994) have addressed the issue of

block choice and related matters. Politis and Romano (1994, 1995) studied modi®cations of

the basic procedure.

The block bootstrap relies on producing a compromise between preserving the

dependence structure of the original data and corrupting it by supposing that the data are

independent. Blocks of data are resampled randomly with replacement from the original

time series, and then a simulated version of the original process is assembled by joining the

blocks together in random order. Although blocks of data are dependent in the original time

series, they are independent in the bootstrap version. This causes bias in the bootstrap

variance which can be large if the dependence in the data is strong. It is to be hoped that

performance could be improved by matching the blocks in some way, i.e. by using a block

joining rule which in some sense favoured blocks that were a priori more likely to be close

to one another. In the present paper we analyse this procedure both numerically and

theoretically. We show that in an important class of situations it does indeed produce

improved performance.

There is a variety of ways in which matching can be effected. In Section 2 we present a

number of matching rules which adapt to some extent to the nature of the data, e.g. by

assuming a Markovian dependence or an autoregressive model. However, since the analysis

of the matched-blocks bootstrap is extremely dif®cult, we investigate mainly the case where

blocks with similar values at the ends are paired. This is particularly appropriate when the

data are generated by a continuous time process which is densely sampled so that the

variance of the arithmetic mean decays at a slower rate than O(nÿ1): Our results show that,

in this context, simple matching rules produce variance estimators that are less biased than,

and have virtually the same variability as, those based on the ordinary unmatched-block

bootstrap. In the case of a Markov process the bias reduction is an order of magnitude, but

in general the bias is reduced by a constant factor. The result on the variability is somewhat

unexpected; one might have predicted that variance increases as a result of block matching,

since it effectively introduces additional terms to the formula for the estimator. However, it

turns out that the in¯uence of those terms on variability is of second order.

Section 2 introduces a variety of matched-block bootstrap methods. Their asymptotic

properties are sketched in Section 3. These results are supported by simulation experiments

in Section 4 and by rigorous arguments in Section 5. This leads to the main conclusion of

this paper, namely that the matched-block bootstrap enhances performance by reducing the

effect of bias, with relatively little in¯uence on variance.

We should mention here other methods which also reduce the bias. KuÈnsch (1989)

proposed a blockwise jackknife with smooth transition between observations left out and

observations with full weight and similarly a weighted bootstrap. Politis and Romano (1995)

suggested variance estimators that are essentially linear combinations of two block bootstrap

estimators based on different block sizes.
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2. Methodology for matching blocks

Given data X � fX i, 1 < i < ng from a stationary time series, prepare blocks B 1, . . . , B b

where B i � fX i1, . . . , X ilg is of length l. For overlapping blocks, b � nÿ l � 1 and

X ij � X i� jÿ1: In the case of non-overlapping blocks we take b to be the integer part of n=l

and X ij � X (iÿ1) l� j:
The matched-block bootstrap constructs a Markov chain on the blocks with transition

probabilities depending on the data X . Speci®cally, if B i1 , . . . , B i j
are the ®rst j blocks,

then the probability that the ( j� 1)th block is B i j�1
equals p(i j, i j�1): The ®rst block is

chosen according to the stationary distribution of the chain. As we shall see below, for our

choices of the transition probabilities the stationary distribution is close to the uniform. So

we can start the chain also with the uniform distribution. The blocks obtained in this way

are then put into a string B i1 , B i2 , . . . : The ®rst n values of this string constitute the

bootstrap resample X �. If T is a function of n variables (representing the data) and

è̂ � T (X ) is an estimator of an unknown parameter è, then generally è̂� � T (X �) is its

bootstrap version. The percentile form of the bootstrap estimates var(è̂ ) by var9(è̂�) and

P(è̂ ÿ è < t) by P9(è̂� ÿ è̂ < t) where the prime denotes conditioning on the data X .

Centrings other than è̂ are possible. For example, if X denotes the sample mean, then

E9(X
�

) 6� X because the stationary distribution of the Markov chain will generally not be

exactly uniform on the blocks, and not all observations appear in an equal number of

blocks. However, the latter effect is only a boundary one, and the stationary distribution is

in general quite close to being uniform.

Construction of the transition probabilities p(i1, i2) is the essential part of our algorithm.

Ideally we would do it in such a way that the bootstrap samples have properties similar to

those of the original sample. On the other hand, there should be suf®cient variability to

produce a rich class of simulations, rather than simply reproducing the original sample. Our

proposals achieve this by matching the blocks only through their values near the beginnings

or ends of blocks. The simplest proposal is kernel matching, where (for non-overlapping

blocks)

p(i1, i2) /

K
X i1, l ÿ X i2ÿ1, l

h

� �
if i2 6� 1,

K
X i1�1,1 ÿ X 11

h

� �
if i2 � 1, i1 l , n,

0 if i2 � 1, i1 l � n:

8>>>>>><>>>>>>:
(2:1)

Here, K is a symmetric probability density and h is a bandwidth. The proportionality

constant for each i1 is determined by the requirement that, for all i1,
P

i2 p(i1, i2) � 1:
Note that we match the last observation in B i1 with the last observation in the block

preceding B i2 in the original sample. Implicit in the matching rule is an assumption that

the dependence is mainly of Markovian character, since we use only the last observation in

the block B i1 to determine where B i2 should start. In other words, the matching rule (2.1)

corresponds to choosing the ®rst element of B i2 , conditional on the last element of B i1 ,

according to the conditional distribution of X i given X iÿ1.
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Alternatively, we can replace the observations X i by their ranks. We call this rank

matching. Our basic rank-matching method produces a stationary distribution which is

exactly uniform. We let R
(end)
i be the rank of X il among X1 l, . . . , X bl, and R

(start)
i be the

rank of X il among X 0 l, . . . , X (bÿ1) l, with X 0 l � X1 l and ties broken arbitrarily. Now letting

1A denote the indicator function of a set A, we set p( j1, j2) � q(R
(end)
j1

, R
(start)
j2ÿ1 ), where

q(i, j) � (2m� 1)ÿ1(1fjiÿ jj<mg � 1fi� j<m�1g � 1fi� j>2b�1ÿmg):

This de®nes a doubly stochastic matrix, i.e. one where all row and column sums are equal to

one. We also considered a modi®ed rank-matching procedure that is roughly equivalent to

kernel matching with actual values replaced by normal scores, but implemented by a method

that requires time O(1) rather than O(b) for computing each transition.

Obviously we can also extend kernel and rank matching to the case where more than one

observation (at the end of block i1 and the block preceding i2) is used for the matching, in

particular by taking products of kernels. This very quickly becomes impractical, however,

because of the curse of dimensionality; either p(i1, i2) is almost constant (if the bandwidth

is large) or p(i1, i1 � 1) dominates (if the bandwidth is small). An alternative procedure,

autoregressive matching, takes into account p , l observations at the ends of blocks. It is

based on a ®tted AR( p) model, with coef®cients ö̂1, . . . , ö̂ p and distribution of the

innovations given by F̂E. By iterating the de®ning equation of the model we produce

matrices A(ö̂) and B(ö̂) such that

Ui� p � A(ö̂)Ui � B(ö̂)(Ei� p, . . . , Ei�1)9,

where Ui � (X i, . . . , X iÿ p�1)9: This suggests the following algorithm. If the current block is

B i1 , generate E�1 , . . . , E�p by sampling independently from F̂E, and take the next block to be

B i2 , where i2 minimizes the L1 norm of

(E�p, . . . , E�1 )9ÿ B(ö̂)ÿ1fU( jÿ1) l� p ÿ A(ö̂)Ui1 lg
over j. This amounts to choosing the ®rst p values of the next block according to the ®tted

model, up to a discretization error. Autoregressive matching is thus a compromise between

the AR bootstrap (Efron and Tibshirani 1993) and the independent block bootstrap. Further

details are given in the fourth paragraph of Section 3. Other ways to match are possible; we

could for instance match that linear combination of values at the end of the blocks which

predicts the average of future values best. For statistics other than mean, and for multivariate

time series, we could match based on block ends or on linear combinations of values of a

univariate time series obtained by replacing the (multivariate) observations with a measure of

the in¯uence of individual observations, such as jackknife values. These topics are left open

for future research.

Empirical choice of block length may be achieved by modifying methods suggested by

Hall and Jing (1996). We outline the argument here. Observe ®rst that the variance of a

block bootstrap estimator of variance, with or without block matching, is generally

asymptotic to a constant multiple of l=n3, and that the squared bias is asymptotic to a

constant multiple of (nl)ÿ2: (When there is no matching this result is due to Hall (1985),

Carlstein (1986) and KuÈnsch (1989). With matching, and in the non-Markovian case, it is
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derived in Section 5; see for example Remark 1.) Therefore, the asymptotically optimal

block length is ln � Cn1=3, where C . 0 depends on characteristics of the time series and

the blocking method. Essentially, the problem of block choice is one of estimating C.

Suppose that we have an estimator l̂m of lm, for m , n: Then l̂ n � (m=n)1=3̂lm is an

estimator of l n: We may construct l̂m as follows. There are k � nÿ m� 1 subseries of

length m that may be obtained from the full time series of length n. Let è̂ n denote the

statistic of interest computed for the full series, let è̂mi (for 1 < i < k) be the statistics

based on the subseries, and put ó 2
m � var (è̂mi): An estimator of ó 2

m is ó̂ 2
m �

kÿ1
P

i(è̂mi ÿ è̂ n)2: Let ~ó 2
mi(l) be the estimator of ó 2

m computed using a given block

bootstrap method applied to the ith subseries and employing block length l. An estimator of

the mean squared error sm(l) � Ef~ó 2
mi(l)ÿ ó 2

mg2 is

Sm(l) � kÿ1
Xk

i�1

f~ó 2
mi(l)ÿ ó̂ 2

mg2:

We may choose l̂m to minimize Sm(l), and put l̂ n � (m=n)1=3̂lm:
It is straightforward to prove that l̂ n is consistent for ln, in the sense that l̂ n=ln ! 1 in

probability, if m � o(n3=16): (Note that Sm(l) � sm(l)� O p(nÿ1=2), sm(l) is of size mÿ8=3 if

l is of the optimal size n1=3, and mÿ8=3 is of larger order than nÿ1=2 if m � o(n3=16).) A

longer argument shows that substantially larger orders of m also produce consistent results.

In practice we shall have to choose m in advance, but the effect of this is of second order

and thus less crucial than that of choosing l which is of ®rst order. Establishing the

numerical performance of empirical choice of block size is beyond the scope of this paper,

however.

3. Overview of large-sample properties

We consider ®rst the problem of estimating the variance of the sample mean using non-

overlapping blocks, and then discuss more general statistics and overlapping blocks. For

independent non-overlapping blocks we have

Efvar9(X
�

)g ÿ var (X ) � ÿâ1 � ÿ2(nl)ÿ1
X1
j�1

j cov (X 0, X j) (3:1)

and

var fvar9(X
�

)g � 2nÿ3 l var (X )2: (3:2)

We argue that, for a wide range of matching rules, (3.2) remains the same, but

Efvar9(X
�

)g ÿ var (X ) � ÿâ1 � â2, (3:3)

where â2 is generally of the same sign as â1 (for a non-repulsive process). In other words,

block matching changes (and often reduces) the bias but has relatively little effect on

variance.

These properties will be derived rigorously in Section 5, for a slightly simpli®ed
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procedure and a speci®c class of matching rules. We give here a simple recipe for

calculating â2 for general matching rules. Then we apply it to the rules introduced in

Section 2.

The ®rst step is to simplify the formula for the transition probabilities p(i1, i2). We

suppose that, to a ®rst approximation,

p(i1, i2) � bÿ1ö(Ui1 , Vi2ÿ1), (3:4)

where Ui and Vi are functions of (X ij) for j close to l. This re¯ects the fact that matching

occurs mainly through the values near the ends of the blocks. The property
P

i2 p(i1, i2) � 1

translates to

Efö(u, Vi)g � 1: (3:5)

For (3.2) to hold we need the stationary distribution of the chain to be approximately

uniform. This means that

Efö(Ui, v)g � 1: (3:6)

Finally, the formula for â2 is

â2 � 2(nl)ÿ1
X0

i�ÿ1

X1
k�1

EfE(X i ÿ ìjU0)E(X 9k ÿ ìjV 90)ö(U0, V 90)g, (3:7)

where ì � E(X i) and fX 9ig is an independent copy of fX ig (and V 9i is de®ned in terms of

X 9j). In Section 5 it will become clear why this formula is to be expected.

Let us compute (3.4) and (3.7) for the matching rules of Section 2. For kernel matching

we assume that X i has density f. The law of large numbers suggests that the proportionality

constant in (2.1) is

b

�
K

X i1 l ÿ y

h

� �
f (y) dy:

Letting the bandwidth h tend to zero we obtain formally (3.4), with Ui � Vi � X il and

ö(u, v) � f (u)ÿ1ä(uÿ v), where ä denotes the Dirac delta function. Note that (3.5) and (3.6)

are satis®ed. Moreover,

â2 � 2(nl)ÿ1
X0

i�ÿ1

X1
k�1

EfE(X i ÿ ìjX 0)E(X k ÿ ìjX0)g: (3:8)

For Gaussian processes, (3.8) can be expressed with the covariance function. Moreover, if

fX ig is a Markov process, then fX i, i , 0g and fX k , k . 0g are conditionally independent,

given X 0: Thus,

EfE(X i ÿ ìjX 0)E(X k ÿ ìjX 0)g � E[Ef(X i ÿ ì)(X k ÿ ì)jX0g] � cov (X i, X k),

whence

â2 � 2(nl)ÿ1
X0

i�ÿ1

X1
k�1

cov (X i, X k) � 2(nl)ÿ1
X1
j�1

j cov (X 0, X j) � â1:
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This result and (3.3) show that, for Markov processes, kernel matching reduces the bias of the

bootstrap variance by an order of magnitude. That is understandable, since kernel matching

relies on a Markovian assumption.

With rank matching the results are the same as for kernel matching. So we turn to

autoregressive matching. There we assume that the process fX ig is AR( p), that the

innovations Ei have a density g1, and that the estimators ö̂ j and F̂E are consistent. Set

Ui � (X il, . . . , X i, lÿ p�1)9, Vi � (X i�1, p, . . . , X i�1,1)9 and

g p(x1, . . . , x p) �
Yp

i�1

g1(xi):

Denote the density of Ui by f. Then we expect (3.4) to hold with

ö(u, v) � f (v)ÿ1 g p[B(ö)ÿ1fvÿ A(ö)ug]:
Because f (u)g p[B(ö)ÿ1fvÿ A(ö)ug] is the joint density of (Ui, Vi) then (3.5) and (3.6) are

satis®ed, and (3.7) becomes

â2 � 2(nl)ÿ1
X0

i�ÿ1

X1
k�1

EfE(X i ÿ ìjU0)E(X k ÿ ìjV0)g:

An AR( p) process is Markovian of order p; so we obtain by the same argument as before

that again â2 � â1. Therefore, autoregressive matching also reduces bias by an order of

magnitude, provided that the model behind the matching rule is correct.

The case of a nonlinear statistic, è̂ , is in principle similar, yielding the same results. That

is, variance is unaffected to ®rst order by block matching (for non-overlapping blocks), but

bias can be reduced by a constant factor, or by an order of magnitude if the time series is

Markovian. Theoretical arguments are as follows, in outline.

Assume that è̂ can be written as a smooth function of a vector of means of functions of

the time series data values. Taylor-expand this quantity about the expected values of the

means, producing terms T0 (constant), T1 (linear), T2 (quadratic), and so on: è̂ � T0 �
T1 � T2 � . . . . It may be proved that var (è̂ ) � var (T1)� O(nÿ2). The block bootstrap

approximation to variance, with or without matching, may be decomposed in the same way.

Since its error in (implicitly) approximating var (T1) is of strictly larger size than nÿ2

(compare for example (3.2)), then the implicit bootstrap approximation to the linear

component dominates. As a result, the same properties are exhibited by the full

approximation, to ®rst order.

It is not dif®cult to see that the bias reduction property holds also for the more complex

overlapping-blocks method, although the variance reduction result is more dif®cult to verify

rigorously. In our detailed theoretical analysis (Section 5) we shall con®ne attention to non-

overlapping blocks, but our numerical work (Section 4) will con®rm that block matching

improves overall performance for both overlapping and non-overlapping blocks. The

improvement provided by matching non-overlapping blocks is signi®cantly greater than that

offered by allowing non-overlapping blocks to overlap, although blocks that are both

matched and overlapping perform best of all.

We do not have a satisfactory theoretical account of the matched-block bootstrap for
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distribution estimation and so do not examine it in the present paper. It is possible to argue

that the matched-block bootstrap is consistent in the sense that P9[n1=2(X
� ÿ X ) < x]

converges almost surely to the correct asymptotic normal probability, but the real issue is

whether it improves over the normal approximation as is the case for the unmatched block

bootstrap (Lahiri 1991, 1996, GoÈtze and KuÈnsch 1996). It is likely that similar results hold

also for the matched-block bootstrap.

4. Numerical results

Our simulation study focused on the estimated variance of the sample mean. We measured

the accuracy using the mean squared error (MSE) of the logarithm of the variance (using the

MSE for the variance would favour estimates which are biased downwards owing to a

shrinkage effect). We employed two models.

Model 1 ( ®rst-order autoregressive processes) is de®ned by X t�1 � rX t � (1ÿ r2)1=2E t�1

for r � 0:95 and r � 0:80. The independent innovations E t were normal N (0, 1).

Model 2 (exponentially decaying covariance) has X as stationary Gaussian processes with

covariance function ã(t) � cov (X s, X s� t) � exp (ÿcjtjá), where c � 0:000 15 and á � 1:5
or 1.95. (Model 1 addresses the case á � 1.) We simulated these processes using the

algorithm developed by Wood and Chan (1994).

Sample sizes ranged from 200 to 5000. We did not consider each possible combination

of parameters, statistics, models and block matching and devoted greatest attention to

Model 1, which is the case on which we report below. However, broadly similar results

were obtained in all cases.

For Model 1 and in the context of non-overlapping blocks, we considered six different

matching methods:

(1) unmatched: block bootstrap with no matching;

(2) uniform kernel: the method suggested by (2.1), with initial probabilities taken to be

uniform on blocks;

(3) stationary kernel: as for the uniform kernel, but in the stationary distribution;

(4) modi®ed kernel: as for the uniform kernel, but with each column of the transition

matrix multiplied by a constant so that the stationary distribution is indeed uniform;

(5) rank: the basic rank method suggested in Section 2;

(6) modi®ed rank: the modi®ed rank method suggested in Section 2.

For overlapping blocks we considered only the unmatched, rank and modi®ed rank

methods. Kernel methods could be used for overlapping blocks, but rank methods are

preferable. In the case of overlapping blocks a penalty needs to be imposed on kernel rules,

to counteract a strong tendency to match only neighbours or near neighbours.

We used the standard normal kernel for methods (2)±(4). (In the `̀ uniform kernel''

method, the quali®er `̀ uniform'' refers to the initial distribution of block probabilities, not

to the type of kernel.) The bandwidth was chosen as h � cbÿ1=5ó̂ , where ó̂ was the

sample standard deviation of the simulated sequence, and c � 1
2
, 1 or 2. In the case c � 1,

and except for the fact that the constant is 1 rather than 1.06, this is the `̀ equivalent
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normal density'' prescription for bandwidth selection (Silverman 1986, p. 45). For

methods (5) and (6) we used h � cbÿ1=5=[1� (cbÿ1=5)2]1=2, and for method (5) we took

m � 0:84bh.

Our main conclusions are as follows.

(a) Block matching can substantially reduce the MSE, and in fact the MSE is

consistently smaller using any one of the matching rules, relative to not using it. Since the

main effect of matching is bias reduction, and not reduction of variance, optimal

performance for matched-block rules is obtained using relatively small blocks. As predicted

by our theory, the variance component of the MSE changes little as a result of matching.

(b) The unmatched and rank methods were very fast to implement. At the other extreme,

the modi®ed kernel method was very slow, since it required each transition matrix to be

stored and iteratively modi®ed to be doubly stochastic. The kernel methods require time

O(b) for computing each transition. (This may be reduced by using a kernel with ®nite

support, or by storing transition matrices.) The unmatched and rank methods need O(1)

time for each transition, the modi®ed rank method being slower because it requires more

¯oating-point operations. These computational issues would be particularly signi®cant if

resampling methods, such as those suggested in Section 2, were used to choose block

length.

(c) Among the different matching methods, and for either overlapping blocks or non-

overlapping blocks, the rank method generally gives least MSE, although the two rank

methods are not far apart. Performance at the optimum for overlapping blocks matched

using the rank method is generally superior to that of non-overlapping blocks using the rank

method.

(d) The stationary kernel method gives the worst performance among the matching

methods but is still better at the optimum (often a great deal better) than the unmatched

method at its optimum. Among the kernel methods, the modi®ed kernel approach usually

produces the smallest MSE, and the uniform kernel method is second.

(e) The preferred choice overall, on grounds of both MSE performance and

computational ease, is the unmodi®ed rank method. It might be improved by replacing

the single uniform random number U that drives each transition with, for example,

(U1 � U2 � U3 � U4)=2, in effect replacing a uniform kernel with a more traditional

symmetric unimodal kernel.

We economize on space by illustrating here only two parameter settings: r � 0:8 and

r � 0:95 in Model 1, both for n � 200 and b � 1 (in the de®nition of bandwidth), for

estimating the logarithm of the variance of the sample mean, and for unmatched, uniform

kernel and rank methods respectively. In the cases of unmatched and rank methods, root

mean squared error (RMSE) for both overlapping and non-overlapping blocks are illustrated,

but only non-overlapping blocks are depicted in the case of the uniform kernel method (see

Figure 1 (r � 0:8) and Figure 2 (r � 0:95)). These results show that, for the speci®c

parameter settings illustrated, the methods at their optimal settings perform in the following

order (from best to worst, in terms of MSE): rank matching with overlapping blocks, rank

with non-overlapping, uniform kernel with non-overlapping, unmatched with overlapping,

and unmatched with non-overlapping.
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Fig. 1. RMSE in the case of relatively short-range dependence. RMSE (vertical axis) for estimating

the logarithm of the variance of the sample mean, is plotted as a function of block length l (horizontal

axis), for different block bootstrap estimators ((ÐÐÐ), unmatched; (sÐÐs), unmatched with

overlap; (Ð ± Ð), uniform kernel; (± ± ± ±), rank; (s± ± ±s), rank with overlap), in the case of

Model 1 with r � 0:8 and n � 200.
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Fig. 2. RMSE in the case of relatively long-range dependence. Same as Figure 2, but with r � 0:95:
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We conclude by summarizing numerical results that are not explicitly illustrated here. For

optimal choice of block length, block matching substantially reduces bias in all cases

considered, and use of overlapping blocks consistently reduces variance. However, the

reduction in bias using block matching is greater, in proportionate terms, than that in

variance using overlapping blocks. Hence, the improvement in overall performance using

overlapping blocks is relatively small, when a good matching rule is employed. This is

particularly true in the case of longer-range dependence (e.g. r � 0:95 in Model 1).

Also under longer-range dependence, the MSE depends relatively little on the block

length; the MSE curve is shallower, and block lengths distant some way from the optimum

produce virtually optimal performance. This implies that empirical methods for selecting

block length would be likely to exhibit increased variability as the range of dependence

increases. The shortness of the blocks which give optimal performance for matched rules,

relative to those for unmatched rules, is substantially more pronounced in the case of

longer-range dependence.

The performance of the kernel methods at their optimum block lengths is generally

slightly improved by undersmoothing (i.e. multiplying the bandwidth by c � 1
2
), although at

relatively large suboptimal block lengths it is slightly improved by oversmoothing (i.e. using

c � 2). As expected, increasing the bandwidth tends to increase the bias component of MSE

and to decrease the variance component. Choice of a symmetric non-negative kernel has

substantially less effect on performance than does choice of bandwidth, provided that the

kernel is rescaled so that it represents a distribution with unit variance. (We experimented

with the Epanechnikov kernel.) There will be problems using high-order kernels, however,

since then the transition probabilities can be expected to take negative values with positive

probability.

All these characteristics become more marked as sample size increases. However, the

differences between the different modi®cations of rules (the three different kernel rules, and

the two different rank rules) decrease, in relative terms, as n increases. This is particularly

true at the optimum for these rules, where for n � 1000 the performances of the three

kernel rules are virtually indistinguishable (for non-overlapping blocks), as too are those of

the two rank rules (for either overlapping or non-overlapping blocks).

5. Theoretical results

We now turn to rigorous derivation of results (3.2) and (3.3). The technical details of theory

for block matching are particularly arduous. To keep them in manageable succinct form we

treat a somewhat abstract version of the procedure that we discussed earlier in Sections 2±4.

For simplicity we assume that n � bl for integers b (the number of blocks) and l (the length

of each block). We consider the case where time series data fX ig are derived by sampling a

continuous process with a sampling frequency which may increase with n. So, let

fY (t), t 2 (0, 1)g denote a stationary stochastic process in continuous time, implying that

ì � EfY (t)g does not depend on t, and ã(t) � cov fY (s), Y (s� t)g does not depend on s.

Let ë � ë(n) represent a sequence of positive constants possibly diverging to in®nity as n

increases, and put X i � Y (i=ë). The strength of dependence of the process fX ig increases
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with increasing ë. Indeed, the variance of the sample mean is of order O(ë=n) (see below),

and so long-range dependence might be considered to be characterized by the case where ë
increases with sample size.

Our assumptions on the process Y are as follows.

Condition (C1A). Y is t0 dependent for some t0 . 0, meaning that the sigma-®elds F (0, s)

and F (s� t0, 1) generated by fY (u), u 2 (0, s)g and fY (u), u 2 (s� t0, 1)g, respec-

tively, are independent for each s . 0.

Condition (C1B). EjY (t)já ,1 for some á. 8, to be determined later.

Condition (C1A) simpli®es our arguments, but modi®ed versions of our results hold in the

case where Y is mixing with geometrically decreasing mixing rate.

Next we set down our assumptions on the block-matching algorithm. Remember that

p( j1, j2) for 1 < j1, j2 < b is the data-dependent probability that the next block is B j2 ,

given that the current block is B j1 . Put Vi � (X i1, . . . , X ir) and Ui � (X i, lÿr�1, . . . , X il),

the ®rst r and the last r values in block i respectively. We impose the following conditions.

Condition (C2A). For all j1, j2,

p( j1, j2) � ø(U j1 , V j2 ; V j, j 6� j2),

where ø is non-negative and symmetric in the last bÿ 1 arguments, and r � O(ë).

Condition (C2B). For all j1, Xb

j2�1

p( j1, j2) � 1:

Condition (C2C). For some E. 0,

sup
j

Efp( j, j� 1)g � O(bÿE):

Condition (C2D). For any j1, j2, j3, j4 with j3 6� j2, j4 6� j2, there exists p9( j1, j2, j3,

j4) 2 [0, 1] which depends only on U j1 and V j, j 6� j3, j4 such that for some E. 0 and all

1 < q ,1,

sup
j1, j2, j3, j4

i p( j1, j2)ÿ p9( j1, j2, j3, j4)iq � O(bÿ1ÿE),

where i:iq denotes the Lq norm.

Condition (C2E). For some E. 0,

ess sup j2 6� j1�1 Efp( j1, j2)jV j1 ; B j, j 6� j1, j1 � 1g � O(bÿE):
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For example, we might de®ne

p1( j1, j2) �
Yrÿ1

k�0

K
X j1, lÿk ÿ X j2,rÿk

h

� �
,

p( j1, j2) � p1( j1, j2)

� Xb

j�1

p1( j1, j)

0@ 1A,

(5:1)

where K > 0 denotes a bounded and compactly supported kernel function and h is a

bandwidth satisfying h � O(bÿE) and b1ÿEh!1 for some E. 0; and 1 < r � r(n) � o(ë).

In the event that the denominator in the de®nition of p( j1, j2) vanishes, de®ne p( j1, j2) to

equal bÿ1 for each value of j2. Conditions (C2) may be veri®ed in this setting, for a wide

variety of processes including polynomial functions of Gaussian processes whose covariance

ã satis®es Condition (C1A). In this setting the approximating probability p9( j1, j2, j3, j4) in

Condition (C2D) may be constructed by removing from the denominator in the de®nition of

p( j1, j2) a ®nite number of terms p1( j1, j), so as to achieve the desired independence.

Furthermore, Condition (C2E) is an immediate consequence of the compact support of K and

of the conditions imposed on h. Note that by way of contrast to rule (2.1), rule (5.1) now

assumes strong positive dependence for neighbouring values, which is natural in the context

of dense sampling of a continuous process.

Of course, many alternative prescriptions of p are possible, still satisfying Conditions

(C2). In particular, there is considerable latitude for varying the block representatives that

are compared via the kernel function in the de®nition of p1 at (5.1).

Let X and X
�

denote sample means of the data X and resampled X �, respectively, and

let

ó 2 � ó 2(n) � var (X ) � nÿ1 ã(0)� 2
Xnÿ1

j�1

(1ÿ nÿ1 j)ã
j

ë

� �8<:
9=;

represent the variance of the sample mean. The matched-block bootstrap estimator of ó 2 is

given by ó̂ 2 � var9 (X
�

), where the prime denotes conditioning on X . To appreciate the size

of the quantity that we are estimating, note that, if ë! L as n!1, where 0 , L <1, then

ó 2 �
nÿ1 ã(0)� 2

X1
j�0

ã
j

L

� �( )
if L ,1,

2
ë

n

�1
0

ã(t) dt if L � 1:

8>>>><>>>>:
Therefore, ó 2 is of size ë=n:

Let the stationary distribution on the block indices (1, . . . , b) be ð1, . . . , ðb. Assume

that the blocks B i j
are produced with the chain in this stationary state, and put X 9 �P

ði X i, X i � lÿ1
P

j X ij. Then E9(X
�

) � X 9 and ó̂ 2 � bÿ2(S1 � 2S2), where
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S1 � b
Xb

i�1

ði(X i ÿ X 9)2,

S2 �
Xbÿ1

j�1

Xbÿ j

i�1

E9f(X
�
j ÿ X 9)(X

�
i� j ÿ X 9)g

�
Xbÿ1

i�1

(bÿ i)E9f(X
�
1 ÿ X 9)(X

�
i�1 ÿ X 9)g

�
Xbÿ1

i�1

(bÿ i)
Xb

j1�1

Xb

j2�1

ð j1 p(i; j1, j2)(X j1 ÿ X 9)(X j2 ÿ X 9)

and p(i; j1, j2) denotes the i-step transition probability in the Markov chain of blocks

( p(1; j1, j2) � p( j1, j2)).

If the stationary distribution of the block-matching rule is approximately uniform and is

reached after two steps, then to a good approximation, S j � T j where

T1 �
Xb

i�1

(X i ÿ X )2, T2 �
Xb

j1�1

Xb

j2�1

p( j1, j2)(X j1 ÿ X )(X j2 ÿ X ):

This suggests an alternative variance estimator,

~ó 2 � bÿ2(T1 � 2T2):

We shall describe the theory for this quantity. We believe that ~ó 2 contains the essential

features of ó̂ 2, for the following reasons. We showed earlier that the stationary distribution is

uniform for a version of rank matching, and that it is approximately uniform in other cases

since (3.6) is satis®ed. That the stationary distribution is reached after two steps is plausible

because V j2 and U j2 are independent if l is large. Hence, the two terms p( j1, j2) and

p( j2, j3) are essentially independent.

As the theorem below shows, the leading term in an expansion of bias is of size

(nl)ÿ1ë2, and equals ÿâ1 � â2 � o(ë2=nl) where

â1 � 2(nl)ÿ1
X1
i�1

iã
i

ë

� �
� ë2

nl
c1 � o

ë2

nl

� �
,

c1 � 2

�1
0

tã(t) dt,

â2 � 2Efp(1, 3)(X1 ÿ ì)(X 3 ÿ ì)g:
We shall also show that â2 is typically of the same order as â1.

Theorem 1. Assume Conditions (C1) on the process Y, and Conditions (C2) on the matching

rule, with á. max (8, 4=E), ë � o(l) and l � o(n). Then
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E(~ó 2) � ó 2 ÿ â1 � â2 � O(ënÿ2 l)� o
ë2

nl

� �
, (5:2)

var (~ó 2) � 2nÿ1 ló 4 � ofë2 nÿ3 l � ë4(nl)ÿ2g: (5:3)

Since either â2
1 or nÿ1 ló 4 dominates each remainder term then it is always true that

Ef(~ó 2 ÿ ó 2)2g � (â1 ÿ â2)2 � 2nÿ1 ló 4:

If in addition l � of(në)1=2g and në2 � O(l3) then

E(~ó 2)ÿ ó 2 � ÿâ1 � â2, var (~ó 2) � 2nÿ1 ló 4: (5:4)

The last result represents an analogue of (3.2) and (3.3).

In order to compute the exact order of â2 and its leading term, we need stronger assumptions

on the matching rules. A class of different rules is covered by the following theorem.

Theorem 2. Assume in addition to the conditions of the previous theorem that for some E1,

E2 . 0, and all 1 , q ,1,

ibp(1, 3)ÿ I(jX 1 l ÿ X 31j < bÿE1 )fP(jX1 l ÿ X31j < bÿE1 jX1 l)gÿ1 iq � O(bÿE2 ):

Suppose too that ë!1, Y is an almost surely continuous process and that Y (t) has a

continuous density with respect to Lebesgue measure. Then

â2 � ã2ë2

nl
� o

ë2

nl

� �
, (5:5)

where

ã2 �
X0

i�ÿ l�1

Xlÿ1

k�0

E E Y
i

ë

� �
ÿ ì

� �����Y (0)

" #
E Y

k

ë

� �
ÿ ì

� �����Y (0)

" #8<:
9=;ëÿ2:

If in addition the process Y is Gaussian, with ã(t)ÿ ã(0) � O(jtjE) for some E. 0, then

ã2 � c2 � 2ã(0)ÿ1

�1
0

ã(t) dt

� �2

: (5:6)

Remark 1. Observe that the ®rst-order contributions to squared bias and variance are of sizes

ë4(nl)ÿ2 and ë2 nÿ3 l, respectively. Therefore the optimal block length is of size (në2)1=3.

Result (5.4) holds for such values of l.

Remark 2. As in Section 3, ã2 � c1 if Y is a Markov process.

Remark 3. For a general stationary distribution ði,

var (S1) � 2
X

ð2
i ó

4,

Matched-block bootstrap 319



so for (5.3) it seems necessary to have
P

ð2
i � bÿ1. This implies, via the Cauchy±Schwarz

inequality, that the stationary distribution is approximately uniform.

Remark 4. Without Condition (C1A) we should replace the indices 1 and 3 in â2 by two

indices j1, j2 with j j1 ÿ j2j tending to in®nity. Since then B j1 and B j2 become independent,

we obtain (3.7) from (3.4).

The effect of block matching on the bias may be studied most easily for Gaussian

processes. Figure 3 depicts the asymptotic value of the ratio of the biases for matched and

non-matched blocks, 1ÿ c2=c1, for the covariance functions ã(t) � exp (ÿcjtjá) (In this

example we do not adhere to Condition (C1A)). Here 0 ,á < 2, and, the larger á, the

smoother the process is. This example shows that the reduction in bias can be substantial.

To appreciate that block matching in terms of nearness of block ends is counter-

productive for a time series with a considerable amount of repulsion, note that, because c2

is always positive, block matching by nearness of block ends exacerbates the bias problem

when c1 , 0. To be speci®c, consider the case

ã(t) � (1ÿ jtj) cos (ùt) if jtj < 1,

0 otherwise,

�
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0.0 0.5 1.0 1.5 2.0
α

Fig. 3. Ratio of the bias of the matched to the bias of the non-matched block bootstrap. The ®gure

depicts values of the ratio 1ÿ c2=c1 for Gaussian processes with ã(t) � exp (ÿcjtjá), where

0 ,á < 2; the ratio is independent of c.
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where ù is a parameter of the process. The value of c1 for this covariance function is

4ùÿ3 sinùÿ 2ùÿ2(1� cosù), which is negative for many choices of ù. For ù � ð the bias

of the matched block estimator is substantially larger than the bias of the non-matched block

bootstrap (Figure 4). Similar behaviour is observed with other covariance functions that have

negative parts.

Appendix: Proofs of theorems

A.1. Preliminaries

Assume that E(Y ) � 0, and de®ne

T3 �
Xb

j�1

X
2

j , T4 �
Xb

j1�1

Xb

j2�1

p( j1, j2)X j1 X j2 , T5 �
Xb

j1�1

Xb

j2�1

p( j1, j2)X j2 :

Since
P

j2 p( j1, j2) � 1, then T2 � T4 ÿ X T5. Therefore,

~ó 2 � bÿ2(T3 � 2T4)ÿ bÿ1 X 2 ÿ 2bÿ2 X T5:

20.3

20.1

0.0

0.1

B
ia

s

0 5 10 15
ω

Fig. 4. Leading terms of the bias of the non-matched (ÐÐÐ) and matched (± ± ± ±) block

bootstrap. The ®gure depicts values of ÿc1 and of (ÿc1 � c2) for the case ã(t) �
(1ÿ jtj) cos (ùt)1fj tj,1g. This covariance kernel exhibits repulsion if ù is suf®ciently large, so that

the non-matched block bootstrap can have positive bias.
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It is straightforward to prove that

E(X 4) � O(bÿ2 lÿ2ë2),

and we shall show in Section A.2 that, for some æ. 0,

E(X 2T2
5) � O b1ÿæ ë

l

� �2

� b2ÿæ ë

l

� �4
( )

: (A:1)

With similar but simpler arguments one can show that

E(X T5) � O ëlÿ1 � b1ÿæ ë

l

� �2
( )

:

In Section A.3 we show that

E(T4) � b2Efp(1, 3)X 1 X 3g � O
ë

l

� �
� O b1ÿæ ë

l

� �2
( )

: (A:2)

Using an argument similar to that in Section A.2 it may be proved that

var (T4) � o b4 ë

n

� �2

(bÿ1 � lÿ2ë2)

( )
:

From the bootstrap with independent blocks we know that

E(T3) � bó 2(l) � b2ó 2(n)ÿ b2â1 � O
ë

l

� �2
( )

,

var (T3) � 2b3ó 4(n) � O b
ë

l

� �2
( )

:

These results, together with the Cauchy±Schwarz inequality and the fact that b � n=l, imply

(5.2) and (5.3).

A.2. Proof of (A.1)

Observe that

E(X 2T2
5) � bÿ2

X
(6)Efp( j1, j2) p( j3, j4)X j2 X j4 X j5 X j6g � bÿ2 lÿ4S, (A:3)

where

S �
X

(10)Efp( j1, j2) p( j3, j4)X j2 k1
X j4 k2

X j5 k3
X j6 k4

g,

the sixfold sum
P

(6) is over vectors ( j1, . . . , j6) 2 f1, . . . , bg6, and the tenfold sum
P

(10) is

over those vectors and also over (k1, . . . , k4) 2 f1, . . . , lg4.
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We bound S by considering a number of different con®gurations of the vectors

( j1, . . . , j6) and (k1, . . . , k4). We call ki a boundary index if ki < r � t0ë or ki >
l ÿ r ÿ t0ë� 1, and an interior index otherwise. The cases identi®ed below cover all

distinct con®gurations up to isomorphisms. Since there is only a bounded number of the

latter then we do not treat them here.

Case I. k1, . . . , k4 are all interior indices. Here the term

Efp( j1, j2) p( j3, j4)X j2 k1
X j4 k2

X j5 k3
X j6 k4

g (A:4)

factorizes into the product of Efp( j1, j2) p( j3, j4)g and E(X j2 k1
X j4 k2

X j5 k3
X j6 k4

). The second

factor equals zero unless one of the following subcases holds, or one of the bounded number

of possibilities isomorphic to these obtains.

Subcase (a). j2 � j4 � j5 � j6.

Subcase (b). j2 � j5 6� j4 � j6.

Subcase (c). j2 � j4 6� j5 � j6.

In Subcase (a) the sum over k1 . . . , k4 contributes a term of order l2ë2, and the sum over

j1, j2 and j3 contributes another O(b2). (Note that the sum of p( j1, j2) over its second

index is identically 1.) Since the sums are in multiple, then these two contributions should

be multiplied together, and so the contribution to S obtained by summing the term in (A.4)

over indices corresponding to Subcase (a) is b2 l2ë2. The argument in Subcase (b) is similar,

with identical orders of magnitude arising from summation over k1, . . . , k4 and over

j1, . . . , j4. Therefore, the contribution to S that arises in Subcase (b) is again O(b2 l2ë2).

The contribution to S from Subcase (c) isX
j1

X
j2

X
j3

X
j5

Efp( j1, j2) p( j3, j2)gO(l2ë2): (A:5)

In bounding the expectation we may suppose that j2 6� j3 � 1, since the contrary case may be

treated more simply. (There, the number of sums in (A.5) is effectively only three, not four.)

Under this assumption we may de®ne p9( j1, j2, j3 � 1, j3 � 1) as in Condition (C2D). Then,

Efp( j1, j2) p( j3, j2)g < Efjp( j1, j2)ÿ p9( j1, j2, j3 � 1, j3 � 1)jp( j3, j2)g
� Efp9( j1, j2, j3 � 1, j3 � 1) p( j3, j2)g:

By the symmetry in Condition (C2A), Efp( j3, j2)g < 1=(bÿ 1). Using Condition (C2D) and

choosing any q . 1, the ®rst term on the right is seen to be bounded by

i p( j1, j2)ÿ p9( j1, j2, j3, j3)iqEfp( j3, j2)g1ÿ1=q � O(bÿ1ÿEbÿ1�1=q) � O(bÿ1ÿE):

Moreover, by Conditions (C2D) and (C2E), the second term on the right is bounded by

E[ p9( j1, j2, j3 � 1, j3 � 1)Efp( j3, j2)jV j3 ; B j, j 6� j3, j3 � 1g]
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< CbÿEEfp9( j1, j2, j3 � 1, j3 � 1)g
< CbÿEEfj p( j1, j2)ÿ p9( j1, j2, j3 � 1, j3 � 1)j � p( j1, j2)g

< C9bÿ1ÿE:

Therefore, the expectation in (A.5) equals O(bÿ1ÿE) , and so the quantity in (A.5) equals

O(b3ÿE l2ë2).

Combining the results from Subcases (a)±(c) we see that the contribution to S that arises

from Case I equals O(b3ÿæ l2ë2), for some æ. 0.

Case II. k1, . . . , k4 are all boundary indices. De®ning

ð � ð( j1, . . . , j4) � p( j1, j2) p( j3, j4),

the term in (A.4) becomes E(ðX j2 k1
X j4 k2

X j5 k3
X j6 k4

). We consider separately the following

subcases:

Subcase (a). j5 or j6 belongs to f j1 ÿ 1, j1, j2, j3 ÿ 1, j3, j4g:

Subcase (b). This covers all other situations.

In Subcase (a) we bound the term by

fE(ðá=(áÿ4))g(áÿ4)=á(EjX j2 k1
X j4 k2

X j5 k3
X j6 k4

já=4)4=á:

In Subcase (a) the number of values ( j5, j6) is O(b) uniformly in ( j1, . . . , j4), so summing

over j5 and j6 gives a contribution O(b). By HoÈlder's inequalityX
j1::: j4

iðiá=(áÿ4) <
X
j1::: j4

E(ðá=(áÿ4))

 !(áÿ4)=á X
j1::: j4

1

 !4=á

<
X
j1::: j4

E(ð)

 !(áÿ4)=á

b16=á

� b2�8=á:

Combining these results we see that the total contribution to S in Subcase (a) equals

O(b3�8=áë4). Taking á. 8 thus ensures that this contribution does not exceed

O(b4ÿæë4) (A:6)

for some æ. 0.

Next we treat Subcase (b). Let k3 and k4 be distant O(ë) from ( j5 ÿ 1)l � 1 and

( j6 ÿ 1)l � 1, respectively. De®ne

ð9 � ð9( j1, . . . , j6) � p9( j1, j2, j5, j6) p9( j3, j4, j5, j6):

Then we have, in view of the independence of X j5 k3
X j6 k4

and ð9X j2 k1
X j4 k2

,
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jE(ðX j2 k1
X j4 k2

X j5 k3
X j6 k4

)ÿ E(ðX j2 k1
X j4 k2

)E(X j5 k3
X j6 k4

)j
< jEf(ðÿ ð9)X j2 k1

X j4 k2
X j5 k3

X j6 k4
gj � E(X 2

1)jEf(ðÿ ð9)X j2 k1
X j4 k2

gj: (A:7)

By HoÈlder's inequality, the ®rst term on the right-hand side of (A.7) is bounded by

iðÿ ð9iá=(áÿ4) i X 1 i4

á. Since

ðÿ ð9 � p( j1, j2)fp( j3, j4)ÿ p9( j3, j4, j5, j6)g � p( j3, j4)fp( j1, j2)ÿ p9( j1, j2, j5, j6)g
ÿ fp( j1, j2)ÿ p9( j1, j2, j5, j6)gfp( j3, j4)ÿ p9( j3, j4, j5, j6)g,

then the triangle inequality, HoÈlder's inequality and Condition (C2D) imply that, for any î. 1,

iðÿ ð9iá=(áÿ4) � O(bÿ1ÿE)fi p( j1, j2)iîá=(áÿ4) � i p( j3, j4)iîá=(áÿ4)g � O(bÿ2(1�E)):

Similarly, the second term on the right-hand side of (A.7) is bounded by

iðÿ ð9iá=(áÿ2) iX 1 i2

á i X1 i2

2 � O(bÿ1ÿE)fi p( j1, j2)iîá=(áÿ2) � i p( j3, j4)iîá=(áÿ2)g

� O(bÿ2(1�E)):

If k3 is within distance O(ë) of j5 l, then we argue as above but with the de®nition of ð9
altered to p9( j1, j2, j5 � 1, j6) p9( j3, j4, j5 � 1, j6). Thus, the bounds just derived hold for

any of the terms arising in Subcase (b) of Case II. Moreover, E(X j5 k3
X j6 k4

) � 0 unless

j j5 ÿ j6j < 1. This, together with (A.7) and the bounds above, produce the following bound

for the contribution to S from Case II, Subcase (b):

O(bë4)
X

j1,:::, j4

ið( j1, j2, j3, j4)iá=(áÿ2) � O(b4ÿ(1�E)ë4)
X
j1, j2

i p( j1, j2)iîá=(áÿ4) � O(b6ÿ2(1�E)ë4):

Arguing as in the derivation of the bound at (A.6) we see that this equals

O(b3�4=áë4 � b5�4î=áÿEÿ1=îë4 � b4ÿ2Eë4),

which, since we made the assumption that á. 4=E, may be rendered of the order at (A.6) by

choosing î. 1 suf®ciently close to 1.

Adding the bounds from Subcases (a) and (b) we see that the total contribution to S from

terms considered under Case II is of the order in (A.6).

Case III. Three ki values are boundary indices and the other is interior. Here the

contribution to S is identically zero.

The methods used to derive the bounds in Cases IV±VII below are somewhat different

and are given only in barest outline here. Although the bounds are identical, none of the

cases is isomorphic to another.

Case IV. k1, k2 are boundary indices and k3, k4 are interior. The contribution is identically

zero unless j5 � j6, and there the contributions from the sums over

(k3, k4), (k1, k2), j5 and ( j1, j2, j3, j4)
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are O(lë), O(ë2), O(b) and O(b2(áÿ2)=áb4(2=á)), respectively. Multiplying them together we see

that the total contribution to S is o(b3�4=á lë3). Because á. 8 and the geometric mean is

bounded by the arithmetic mean, we have that b3�4=á lë3 � O(b3ÿæ l2ë2 � b4ÿæë4) for some

æ. 0.

Case V. k3, k4 are boundary indices and k1, k2 are interior. The contribution to S is

identically zero unless j2 � j4, and the contribution from the latter source is O(b4ÿæ lë3) for

some æ. 0, using an argument similar to that employed to treat Subcase (c) of Case I.

Case VI. k1, k3 are boundary indices and k2, k4 are interior indices. The contribution to S is

identically zero unless j4 � j6, and the contribution from the latter source is O(b3�4=á lë3).

Case VII. k4 is a boundary index and the others are all interior. The contribution to S is

identically zero unless j2 � j4 � j5, and the contribution from the latter source is O(b3�1=á lë3).

Case VIII. k2 is a boundary index and the others are all interior. The contribution to S is

identically zero unless j2 � j5 � j6, and the contribution from the latter source is O(b2�2=á lë3):

Now we add the bounds derived in each of the eight cases. Because á. 8 and the

geometric mean is bounded by the arithmetic mean, b3�4=á lë3 � O(b3ÿæ l2ë2 � b4ÿæë4) for

some æ. 0. Hence we obtain that, for some æ. 0,

S � O(b3ÿæ l2ë2 � b4ÿæë4):

Result (A.1) now follows from (A.3).

A.3. Calculation of E(T4)

Note that, by symmetry, Ef p( j1, j2)X j1 X j2g is the same for any j1 , b, j2 , b, j j2 ÿ j1j. 1.

By an argument similar to that in Section A.2 we may show that, for any j1, j2,

jEfp( j1, j2)X j1 X j2gj � O
ë

l

� �
Efp( j1, j1)gä j1, j2 � O

ë

l

� �2
( )

i p( j1, j2)iá=(áÿ2):

Since p( j1, j2) < 1, then

i p( j1, j2)iá=(áÿ2) < [Efp( j1, j2)g](áÿ2)=á:

Using the fact that Efp( j1, j2)g < 1=(bÿ 1) if j2 6� j1 � 1, and Condition (C2C) if j2 �
j1 � 1, we obtain, for á. 8,

E(T4)ÿ b2Efp(1, 3)X 1 X 3g � O
ë

l

� �
� O

ë

l

� �2

b1ÿ3E=4

( )
,

which is (A.2).
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A.4. Proof of (5.5) and (5.6)

Let Y, Y1, Y2 be independent processes with identical laws, and put

Z j �
Xl

i�0

Y j

i

ë

� �
:

It is easy to see that, under the conditions of Theorem 2,

â2 � bÿ1 lÿ2E[EfZ1 Z2jY1(0) � Y2(0)g]� o
ë2

bl2

� �
,

which is (5.5). Finally, for a Gaussian process, EfY (i=ë)jY (0)g � ã(i=ë)=ã(0)Y (0), which

gives (5.6).
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