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1. Introduction

In Nualart and Tindel (1995) we proved the existence and uniqueness of the solution to a

quasilinear stochastic elliptic equation with re¯ection of the type

ÿÄu(x)� f (u(x)) � _W (x)� ç, x 2 D,

with Dirichlet-type boundary conditions, where D is a bounded open domain of Rk ,

k � 1, 2, 3, f is a continuous non-decreasing function and f _W (x); x 2 Dg is a white noise

on D. The solution is a pair (u, ç) where u is a non-negative continuous random ®eld on D

and ç is a random measure satisfying
�

Du dç � 0. In this paper, we shall prove that the

solution u(x) has a density on (0, 1) for any x 2 D, using the approximating sequence uE

introduced by Nualart and Tindel (1995), and the classical tools of Malliavin's calculus.

Note that a similar problem has been treated by LeÂpingle et al. (1989) for the one-

dimensional case. As far as the existence and uniqueness are concerned, the parabolic case

has also been studied by Nualart and Pardoux (1992) when the diffusion coef®cient is

constant, and by Donati-Martin and Pardoux (1993) in the case of a general diffusion

coef®cient. Donati-Martin and Pardoux (1995) showed a density result for the solution of

the general parabolic problem with re¯ection. In this case, one of the main technical

dif®culties is due to the diffusion coef®cient, which has to be removed in a certain way.

However, the elliptic case is simpler, since we can only deal with an additive white noise

(there is no existence and uniqueness result for a general diffusion coef®cient), and we shall

be able to prove the positivity of the norms of the derivatives iDuE i H much more easily

than was done by Donati-Martin and Pardoux (1995).
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This paper is organized as follows: Section 2 is dedicated to preliminary results on

Malliavin's calculus, ordinary partial differential equations (PDEs) and stochastic partial

differential equations (SPDEs) that we shall need later. Then, in Section 3, we shall prove

the differentiability of the solution, and the existence of a density for the law of the solution

on (0, 1).

2. Preliminaries

2.1. General notation

Let D be an open bounded subset of Rk , with k 2 f1, 2, 3g. We shall consider a Gaussian

family of random variables fW � W (B), B 2 B (D)g, de®ned in a complete probability

space (Ù, F , P) such that E(W (B)) � 0 and

E(W (A)W (B)) � jA \ Bj,
where jA \ Bj denotes the Lebesgue measure of the set A \ B.

We shall call H the space L2(D). The symbol Ä denotes the Laplace operator in H and

C 1
k (D) denotes the set of in®nitely differentiable functions on D with compact support

included in D. We shall denote by (´, ´) the scalar product in H, and by i:i1 the supremum

norm on D. We shall also denote by M(D) the set of bounded measures on D, and by

W
p,q
0 (D) the ( p, q) Sobolev space on D with Dirichlet boundary conditions, i.e.,

W
p,q
0 (D) � f f 2 C (D); Di1:::im f 2 Lq(D) 8m < p, f j@D � 0g:

Let GD be the fundamental solution of the Poisson equation with Dirichlet boundary

conditions. That is, for any h 2 H,

g(x) �
�

D

GD(x, y)h(y) dy

is the unique solution of

ÿÄg(x) � h(x), x 2 D,

gj@D � 0:

Let us recall that, by Donati-Martin (1992),

sup
x2D

iGD(x, :)i H � M <1: (1)

2.2. Malliavin's calculus associated to the white noise in D

With the notation given above, for any h 2 H we shall call W (h) the Wiener integral on h on

D, i.e.,
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W (h) �
�

D

h(x)W dx:

Let us consider the space

B � fù 2 C (D); ùj@D � 0g,
the function

i: H ! B,

h 7! i(h)(x) �
�

D

GD(x, y)h(y) dy

and u0 the process with paths in B de®ned by

u0(x) �
�

D

GD(x, y)W dy � W (GD(x, :)):

Then, if ì is the law of u0, it has been shown by Donati-Martin (1992) that (B, H , ì) is an

abstract Wiener space.

The space S of smooth functionals on B will be the set of random variables of the form

F � l (W (h1), . . . , W (hn)),

where n 2 N, hi 2 H , l 2 C1b (Rn). For such a variable, we can de®ne a derivative DF as an

H-valued random variable, by

Dz F �
Xn

i�1

@ l

@xi

(W (h1), . . . W (hn))hi(z), z 2 D:

For p . 1, we shall denote by D1, p the closure of S with respect to the seminorm

i F i1, p � fE[jFj p]� E[i DF i p

H ]g1= p:

We shall use the two following rules to get our density result (see Nualart (1995) for the

demonstrations of this).

Theorem 2.1. Let fFn; n > 1g be a family of elements of D1,2 converging to F in L p(Ù) for

p . 1. Suppose that fDFn; n > 1g is a bounded family in L p(Ù; H). Then F 2 D1, p,

Fn 2 D1, p for every n > 1, and there exists a subsequence of fDFn; n > 1g converging to

DF in the weak topology of L p(Ù; H).

Theorem 2.2. Let F be a real random variable de®ned on Ù. Suppose that F 2 D1,2 and that

there exists A 2 F such that i DF i H . 0 a.s. on A. Then the measure (1A P)Fÿ1 is

absolutely continuous with respect to the Lebesgue measure.

The following rule, due to (Sugita 1985), will ensure the differentiability of the solution

to an elliptic SPDE.
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Theorem 2.3. Let F 2 L2(Ù). Then F 2 D1,2 if and only if the two following conditions are

veri®ed.

(1) For all h 2 H, there exists a version F~h of F such that, for all ù 2 Ù, the mapping

t 7! F~h[ù� ti(h)] is absolutely continuous.

(2) There exists ç 2 L2(Ù; H) such that, for all h 2 H,

Pÿ lim
t!0

1

t
fF[ù� ti(h)]ÿ F(ù)g � (ç(ù), h):

2.3. Ordinary elliptic partial differential equations

We shall recall here some results given by Boccardo and GalloueÈt (1992). Consider the

domain D and the equation

ÿÄu(x)� g(x, u(x)) � ë(x), x 2 D,

uj@D � 0,
(2)

where g is a measureable function from D 3 R to R, and ë 2M(D). We say that u is a

weak solution to (2) if u 2 W 1,1
0 (D), Äu 2 L1

loc(D), g(u) 2 L1
loc(D), and for any ø 2 C 1

k (D),

ÿ(u, Äø)� (g(u), ø) �
�

D

ø(x)ë dx,

where g(u)(x) stands for g(x, u(x)). Then the following result (which is a very particular case

of those of Boccardo and GalloueÈt) holds.

Theorem 2.4. If g: D 3 R! R is a measurable function such that

(1) s 7! g(x, s) is continuous a.e. in x 2 D,

(2) g(x, s)s > 0 for every s 2 R, a.e. in x 2 D,

(3) sup fjg(x, s)j; jsj < t, x 2 Dg < M(t) ,1 for every t 2 R and

(4) there exist b1, b2 . 0 such that jg(x, s)j < b1 � b2jsj for any s 2 R, for almost any

x 2 D,

then there exists a solution u to (2) for any ë 2M(D).

Remark 1. In order to prove the existence part of the result, Boccardo and GalloueÈt use a

sequence fl n; n > 1g of functions of Wÿ1,2 \ L1(D) converging to ë in the distribution

sense. They call u n the solution of

ÿÄu n(x)� g(u n)(x) � l n(x), x 2 D,

uj@D � 0:

Then they prove that
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lim
n!1u n(x) � u(x) a:e: in x 2 D,

W
1,q
0 ÿ lim

n!1 u n � u,

for every 1 < q < k=(k ÿ 1), i.e., q ,1 if k � 1, q , 2 if k � 2 and q , 3
2

if k � 3.

Remark 2. Boccardo and GalloueÈt do not show the uniqueness of the solution to (2) in their

general case. However, we shall apply the result of Theorem 2.4 when g is an increasing

function and, in this case, if u and v verify uj@D � vj@D � 0 and

ÿÄu(x)� g(u(x)) � ë(x),

ÿÄv(x)� g(v(x)) � ë(x),

then the difference uÿ v veri®es

(ÿÄ(uÿ v), uÿ v) � ÿ(g(u)ÿ g(v), uÿ v),

i=(uÿ v)i2

H � ÿ(g(u)ÿ g(v), uÿ v):

By positivity of [g(u)ÿ g(v)](uÿ v), the right-hand term of the above equality is negative,

and thus u � v a.e. on D, which proves the uniqueness of the solution.

2.4. Elliptic stochastic partial differential equations

Let D be an open bounded subset of Rk , with k 2 f1, 2, 3g. We shall recall some results on

a nonlinear stochastic elliptic equation with Dirichlet boundary condition of the type

ÿÄu(x)� f (u(x)) � _W (x), x 2 D,

uj@D � 0,
(3)

where _W (x) is the formal derivative of W with respect to the Lebesgue measure, and

f : R! R is a measurable function. We shall call Eq( f ) such an equation, and assume from

now the following hypothesis on f.

(H1) The function f is a C 1 function such that f 9 . 0.

The precise de®nition of the solution to (3) is given as follows.

De®nition 2.1. A process u is said to be a solution to (3) if

(1) fu(x), x 2 Dg is a continuous stochastic process on D, with uj@D � 0 a.s. and

(2) for all ö 2 C 1
k (D) we have

ÿ(u, Äö)� ( f (u), ö) �
�

D

ö(x)W dx:
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With the general notation introduced in Section 2.1, we can de®ne the Gaussian random

®eld

u0(x) �
�

D

GD(x, y)W dy:

It has been shown by Buckdahn and Pardoux (1990) that u0 has a version which is á-HoÈlder

continuous on D (á, 3
8

if k � 3, á, 1 if k � 2 and á � 1 if k � 1). Moreover, u0 satis®es

the stochastic elliptic equation

ÿÄu0(x) � _W (x), x 2 D,

u0j@D � 0,

in the distribution sense. This means that, for every ö 2 C 1
k (D),

ÿ(u0, Äö) �
�

D

ö(x)W dx a.s.

Then (3) is equivalent to its integral form

u(x)�
�

D

GD(x, y) f (u(y)) dy �
�

D

GD(x, y)W dy: (4)

In order to have a functional form of (4), we can introduce the map

T : B! B

ù 7! T (ù) � ù� i( f (ù)):

Then (4) can be written

T (u) � u0:

It has been shown by Donati-Martin (1992) that, if f veri®es (H1), then T is bijective, which

proves that (3) has a unique solution. Moreover, the transformation

T (ù) � ù� i( f (ù))

veri®es the hypothesis given in Theorem 6.2 of Kusuoka (1982, p. 583) in (B, H , ì). In

particular, for every x 2 D, the law of u(x) has a density, and f (ù): B! H is a H ÿ C 1

function. We also have the following differentiation rule.

Theorem 2.5. If f veri®es (H1), the solution u to (3) is such that u(x) 2 D1,2. The process

fDzu(x); z 2 Dg veri®es

Dzu(x)�
�

D

GD(x, y)Dzu(y) f 9(u(y)) dy � GD(x, z): (5)

Proof. We shall divide the proof into two steps.
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Step 1 Differentiability of Tÿ1. We proved in Tindel (1996) that Tÿ1 is a continuous

function from B to B. Let us prove now that T is a differentiable function such that Lv, the

differential of T in v is a non-degenerate linear function from B to B, for any v 2 B. Indeed,

if f veri®es (H1), T is a differentiable function of v and for any w 2 B, Lvw is de®ned by

Lvw(x) � w(x)�
�

D

GD(x, y) f 9(v(y))w(y) dy, x 2 D:

Then it is easily seen that Lv is non-degenerate; if Lvw � 0, we have, in the non-integral

form

ÿÄw� f 9(v(x))w(x) � 0, x 2 D,

wj@D � 0:

Since f 9 is continuous and positive, this equation veri®es the hypothesis of Thereom 2.4, and

thus has a unique solution (cf. Remark 2 of that theorem), which is the null function.

Moreover (Friedman 1975, p. 145), if w is HoÈlder continuous, Lv can be inverted as

[Lÿ1
v w](x) � ~Ex

�ô
0

w(î(t)) exp ÿ
� t

0

f 9(v(î(s))) ds

� �
dt

� �
,

where î is an Rk-valued Brownian motion on a complete probability space ( ~Ù, ~F , ~P ), ô its

exit time from D, and where ~Ex denotes the mathematical expectation with respect to ~P with

initial condition x for î. In particular, if we set

R � sup
x2D

~Ex[ô],

we get i Lÿ1
v i < R for every v 2 B, by extension to a general continuous function w.

Step 2 Differentiability of u(x). We shall apply Theorem 2.3 to F(ù) � u(x, ù) for a ®xed

x 2 D. From Step 1, we have almost surely

iui1 � iTÿ1u0 i1 < Riu0 i1,

which proves that u(x) 2 L2(Ù) for all x 2 D, since u0 is a Gaussian process. Let us denote

by GD h the function

GD h(x) �
�

D

GD(x, y)h(y) dy:

With the same type of argument, for any h 2 H,

F[ù� ti(h)] � fTÿ1[u0(ù)� tGD h]g(x)

is an absolutely continuous function of t. We have also that, almost surely, Lu0
is non-

degenerate and iLÿ1
u0

i < R. Thus, almost surely,

lim
t!0

1

t
fF[ù� ti(h)]ÿ F(ù)ÿ Lÿ1

u0
GD hg � 0:

Finally, by (1),
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i Lÿ1
u0

GD hi1 < iLÿ1
u0

i iGD hi1 < RM i hi H ,

which proves that, for a random variable ç 2 L2(Ù; H),

Lÿ1
u0

GD h � (ç, h): u

The last result that we shall need on elliptic SPDEs will be a comparison theorem given

by Buckdahn and Pardoux (1990).

Theorem 2.6. Let f , g: R! R be locally bounded continuous and non-decreasing functions

such that f < g. Let u be the solution of Eq ( f ) and v the solution of Eq (g). Then u > v a:s:

2.5. Elliptic stochastic partial differential equations with re¯ection

Keeping the general notation of Section 2.1, let us consider the nonlinear stochastic elliptic

equation with re¯ection and Dirichlet boundary condition of the type

ÿÄu(x)� f (u(x)) � _W (x)� ç, x 2 D,

uj@D � 0,
(6)

where the function f is measurable. We shall call Eqr( f ) such an equation. A precise

de®nition of the solution will be the following.

De®nition 2.2. A pair (u, ç) is said to be a solution to (6) if

(1) fu(x), x 2 Dg is a non-negative continuous stochastic process on D, with uj@D � 0

a.s.,

(2) ç dx is a random measure on D such that ç(K) ,1 for all compact subset K � D,

(3) for all ö 2 C 1
k (D) we have

ÿ(u, Äö)� ( f (u), ö) �
�

D

ö(x)W dx�
�

D

ö(x)ç dx

and

(4)
�

Du(x)ç dx � 0.

The main result of Nualart and Tindel (1995) is as follows.

Theorem 2.7. Assume that f is locally bounded, continuous and non-decreasing. Then there

exists a unique solution (u, ç) to Eqr( f ).

3. Existence of a density

We shall still suppose here that f veri®es (H1). In order to differentiate (in the sense of

Malliavin's calculus) the approximating solution of uE of u, we have to get a smoother
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approximation than that constructed by Nualart and Tindel (1995). We shall use here the

same method as Donati-Martin and Pardoux (1995), let h be a C 1 non-increasing function

with bounded derivative such that

h(x) � 0, x > 0,

0 , h(x) , xÿ, x , 0,

and set f E � f ÿ h=E for every 0 , E < 1. We shall also call uE the unique solution to

Eq( f E).

Lemma 3.1. Let u be the solution to Eqr( f ). Then almost surely, uE(x) increases as E
decreases to 0 for every x 2 D, and limE!0 uE(x) � u(x). Moreover, for any x 2 D, p . 1, we

have L p(Ù)ÿ limE!0 uE(x) � u(x), and iui1 2 L p(Ù).

Proof. The sequence uE is increasing by the comparison with Theorem 2.6, and we can prove,

as in Nualart and Tindel (1995), that uE converges to u almost surely. To get the L p(Ù)

convergence, we only have to prove that iuEi1 is bounded in L p(Ù), for any p . 1: set

zE � uE ÿ u0, and ẑE the solution to the deterministic equation

ÿÄẑE(x)� f (ẑE(x)) � 1

E
h(ẑE(x)), x 2 D,

ẑEj@D � 0:

The process zE veri®es

ÿÄzE(x)� f (zE(x)� u0(x)) � 1

E
h(zE(x)), x 2 D,

zEj@D � 0:

Hence, as in Nualart and Tindel (1995), we have

izE ÿ ẑE i1 < iu0 i1,

and thus

iuE i1 � iuE ÿ u0 � u0 i1

< izE i1 � iu0 i1

� izE ÿ ẑE � ẑE i1 � iu0 i1

< i ẑE i1 � izE ÿ ẑE i1 � iu0 i1

< i ẑE i1 � 2iu0 i1,

which implies that, for a constant k p . 0,
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E[iuE ip
1] < k p(E[i ẑE ip

1]� E[iu0 ip
1])

� k p(i ẑE ip
1 � E[iu0 ip

1]),

since ẑE is a deterministic function. Moreover, the sequence ẑE is increasing towards the

unique solution ẑ 2 C (D) of the elliptic ordinary equation with re¯ection (Bensoussan and

Lions 1978)

ÿÄẑ(x)� f (ẑ(x)) � ç dx, x 2 D,

ẑj@D � 0,

which proves that, if 0 , E < 1, then i ẑE i1 < (i ẑ1 i1 _ i ẑi1), and that there exists a constant

K such that

sup
0,E<1

i ẑE i1 < K:

Finally, (B, H , ì) is an abstract Wiener space, and by Fernique's lemma (see, for example,

Kuo (1976)), there exists a constant á. 0 such that

E[exp (áiu0 i2

1)] ,1:
In particular, iu0 i1 has moments of any order, which ends the proof. u

Using this approximating sequence, we shall be able to prove that u(x) is an element of

D1,1 � T p<1D1, p.

Lemma 3.2. For every x 2 D, p . 1, u(x) 2 D1, p, and there exists a subsequence of DuE(x)

converging to Du(x) in L p(Ù; H).

Proof. For every x 2 D, p . 1, by Lemma 3.1, we know that

L p(Ù; H)ÿ lim
E!0

uE(x) � u(x):

In order to apply the rule of Theorem 2.1, we have to verify that uE(x) 2 D1, p and

fDuE(x); 0 , E < 1g is bounded in L p(Ù; H). Recall that, for any 0 , E < 1, uE(x) 2 D1,2

and that DuE(x) veri®es (see (5)), for any z 2 D,

DzuE(x)�
�

D

GD(x, y) f 9ÿ h9

E

� �
[uE(y)]DzuE(y) dy � GD(x, z): (7)

We have chosen f and h such that f 9 > 0, h9 < 0. Hence f 9ÿ h9=E > 0 and is non-

decreasing as E& 0. Set

DzuE(x) � Y E
z(x), f 9ÿ h9

E

� �
[uE(x)] � ó E(x):

Then (7) can be written
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Y E
z(x)�

�
D

GD(x, y)ó E(y)Y E
z(y) dy � GD(x, z),

or, in its non-integral form,

ÿÄY E
z(x)� ó E(x)Y E

z(x) � äz(x), x 2 D,

Y E
zj@D � 0,

where äz denotes the Dirac measure in z. We shall prove that 0 < Y E
z(x) < GD(x, z) a.s.

Step 1 Y E
z(x) > 0. Let Y (x) be the solution of the ordinary elliptic PDE

ÿÄY (x)� ó (x)Y (x) � äz(x), x 2 D,

Yj@D � 0,

with z 2 D, ó 2 C (D) (and thus bounded), ó > 0. Note that Y E
z(x) veri®es these conditions

with ó (x) � ó E(x). As in Theorem 2.4, Remark 1, take a sequence f f n; n > 1g of Lipschitz

functions converging to äz in the distribution sense. By positivity of the Dirac measure, we

can also suppose that f n > 0 for every n > 1. Let Y n be the solution of

ÿÄY n(x)� ó (x)Y n(x) � f n(x), z 2 D

Y n(x)j@D � 0:

The function g: D 3 R! R such that

g(x, r) � ó (x)r

veri®es the conditions of Theorem 2.4, and thus limn!1 Y n(x) � Y (x) for almost any x 2 D,

and

W
1,q
0 ÿ lim

n!1Y n � Y

where 1 < q < k=(k ÿ 1). Moreover, as in the proof of Theorem 2.5, Y n has the

representation

Y n(x) � ~Ex

�ô
0

f n(î(t)) exp ÿ
� t

0

ó (î(s)) ds

� �
dt

� �
, (8)

where î is a Rk-valued Brownian motion. From this expression, we get directly that

Y n(x) > 0, and by convergence of Y n(x), we obtain that Y (x) > 0 for almost every x 2 D. In

our random case, by continuity of x 7! Y E
z(x), we have that for a given (z, E), almost surely,

Y E
z(x) > 0 for every x 2 D.

Step 2 Y E
z(x) < GD(x, z). With the notation of Step 1, let Y E,n

z be the solution of

ÿÄY E,n
z (x)� ó E(x)Y E,n

z (x) � f n(x), x 2 D,

Y E,n
z jäD � 0,
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and Y 0,n
z the solution of

ÿÄY 0,n
z (x) � f n(x), x 2 D,

Y 0,n
z jäD � 0:

With the representation (8), we get

Y E,n
z (x) � ~Ex

�ô
0

f n(î(t)) exp ÿ
� t

0

ó E(î(s)) ds

� �
dt

� �
,

Y 0,n
z (x) � ~Ex

�ô
0

f n(î(t)) dt

� �
,

and by positivity of ó E, for every 0 , E < 1, z, x 2 D, we have Y E,n
z (x) < Y 0,n

z (x). Moreover,

for every x 2 D,

lim
n!1 Y E,n

z (x) � Y E
z(x),

lim
n!1Y 0,n

z (x) � GD(x, z),

which proves, by continuity of Y E
z(x), that a.s. Y E

z(x) < GD(x, z) for every x 2 D.

By Step 1 and Step 2, we get that almost surely, for any E 2 [0, 1] of the form E � 1=n,

with n > 1,

iDuE(x)i H < iGD(x, :)i H : (9)

Hence, by inequality (1), almost surely,

sup
0,E<1

sup
x2D

i DuE(x)i H < M

and DuE(x) 2 L1(Ù; H), which proves that u(x) 2 D1,1. u

We can now prove the main result of this paper.

Theorem 3.1. Let u be the solution of Eqr( f ), where f veri®es condition (H1). Then for every

x 2 D, the restriction of the law of u(x) to (0, 1) is absolutely continuous with respect to the

Lebesgue measure.

Proof: By the rule of Theorem 2.2, we have to show that, if x 2 D, a . 0, and if we set

Ùa � fù 2 Ù; u(x, ù) > 3ag, then iDu(x)i H . 0 a.s. in Ùa. Let us call ®rst Ù0 the set of

convergence of uE towards u in D, and set

Ùa,k � ù 2 Ù0; u(x, ù) > 3a, uE(x, ù) > 2a, 8E <
1

k

� �
:

We have Ùa �
S

k>1Ùa,k , and thus we only have to prove that i Du(x)i H . 0 almost surely

on Ùa,k .

For x 2 D, ®x ù 2 Ùa,k . Then we have u1=k(x) > 2a. Set then
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Ùa,k, j � ù 2 Ùa,k ; u(y) > a, 8y such that jyÿ xj < 1

j

� �
:

We have Ùa,k �
S

j>1Ùa,k, j, and we shall prove that iDu(x)i H . 0 almost surely on Ùa,k, j.

For ù 2 Ùa,k, j, we call Bj the ball of centre x and radius 1= j. By the increasing property of

uE, for any E, 1=k, we shall also have uE(y) > a, and hence h9(uE(y)) � 0 for any y 2 Bj.

Let us recall that Y E
z(y) � DzuE(y) is a positive process verifying the elliptic equation

ÿÄY E
z(y)� f 9ÿ h9

E

� �
[uE(y)]Y E

z(y) � äz(y), x 2 D,

Y E
zj@D � 0:

For E < 1=k, set

v � Y E
zjB j

, ö � Y E
zj@B j

:

Then ö > 0, ö is continuous on @Bj and v veri®es the equation

ÿÄv(y)� f 9(uE(y))v(y) � äz(y), y 2 Bj,

v(y) � ö(y), y 2 @Bj:

As in Lemma 3.2, we shall approximate äz by a sequence of positive Lipschitz functions f n,

and v by the function vn de®ned by

ÿÄvn(y)� f 9(uE(y))vn(y) � f n(y), y 2 Bj,

vn(y) � ö(y), y 2 @Bj:

Keeping the notation of Lemma 3.2, by the representation result given by Friedman (1975),

we get that

vn(y) � ~E y

�ô
0

f n(î(t)) exp ÿ
� t

0

f 9(uE(î(s))) ds

� �
dt

� �

� ~E y ö(î(ô)) exp ÿ
�ô

0

f 9(uE(î(s))) ds

� �� �
:

Furthermore, we have that

u1(x) < uE(x) < u(x) (10)

and, by continuity of f 9, u1 and u,

sup
0,E<1

sup
x2D

f 9(uE(x)) � L ,1:

Thus, since ö is a positive function, vn > vn, where vn is de®ned by

vn(y) � ~E y

�ô
0

f n(î(t)) exp(ÿLt) dt

� �
: (11)
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Passing to the limit in n, we get that v > v, where v is the solution to

ÿÄv(y)� Lv(y) � äz(y), y 2 Bj,

v(y) � 0, y 2 @Bj,

or in its integral form, for y 2 Bj,

v(y)� L

�
B j

GB j
(y, w)v(w) dw � GB j

(y, z),

where GB j
is the fundamental solution to the Poisson equation on Bj with Dirichlet boundary

conditions. In particular, for y � x,

v(x) � GB j
(x, z)ÿ L

�
B j

GB j
(x, w)v(w) dw:

Using (11), we can see that 0 < v(y) < GB j
(y, z) for any y 2 Bj. Thus,

v(x) > GB j
(x, z)ÿ L

�
B j

GB j
(x, w)GB j

(w, z) dw

> GB j
(x, z)ÿ LM2,

where M is de®ned by (1). The function GB j
is in®nite on the diagonal. Thus, for a

deterministic neighbourhood A of x such that A � Bj and jAj. 0, we get GB j
(x, z) . 2LM

for every z 2 A. Hence, if ù 2 Ùa,k, j, for any z 2 A, 0 , E < 1=k, we have DzuE(x) > LM .

Let us take now a subsequence of DuE(x), that we shall call again DuE(x), converging to

Du(x) in the weak topology of L2(Ù; H), and thus in the weak topology of L2(Ù; L2(A));

for any j 2 C 1
k (A), X 2 L2(Ù), we have

lim
E!0

E[X (DuE(x), j)] � E[X (Du(x), j)]:

For any positive square integrable random variable X, and any j 2 C 1
k (A), we have that,

almost surely on Ùa,k, j,

X (ù)(DuE(x)(ù), j2) > LM iji2

L2(A),

for any E < 1=k. Hence

E[1Ùa, k, j
X (Du(x), j2)] > E[1Ùa, k, j

LM iji2

L2(A)],

which means that, almost surely in Ùa,k, j, we have Dzu(x)(ù) > LM . 0 for almost any

z 2 A. Thus iDu(x)i H . 0 a.s. on Ùa,k, j. u
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