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Suppose that we want to estimate the expectation of a function of two arguments under the stationary

distribution of two successive observations of a reversible Markov chain. Then the usual empirical

estimator can be improved by symmetrizing. We show that the symmetrized estimator is ef®cient. We

point out applications to discretely observed continuous-time processes. The proof is based on a result

for general Markov chain models which can be used to characterize ef®cient estimators in any model

de®ned by restrictions on the stationary distribution of a single or two successive observations.
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1. Introduction

Suppose that we observe X 0, . . . , X n from an ergodic Markov chain with unknown transition

distribution Q(x, dy) and invariant distribution ð(dx). We want to estimate the expectation of a

function f (x, y) under the joint stationary distribution (ð
 Q)(dx, dy) � ð(dx)Q(x, dy) of two

successive observations. Greenwood and Wefelmeyer (1995) show that the empirical estimator

En f � 1

n

Xn

i�1

f (X iÿ1, X i)

is asymptotically ef®cient.

Suppose now that we know the chain to be reversible:

ð(dx)Q(x, dy) � ð(dy)Q(y, dx):

This means that the joint stationary distribution of two successive observations is symmetric

in the two components. Hence the empirical estimator can be improved by symmetrizing. The

symmetrized empirical estimator is

Es
n f � 1

2n

Xn

i�1

f f (X iÿ1, X i)� f (X i, X iÿ1)g:

We show that this estimator is asymptotically ef®cient.
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For a function f (x) of one argument, the symmetrized empirical estimator is

asymptotically equivalent to the ordinary estimator (1=n)
Pn

i�1 f (X i). Hence our result

implies that reversibility carries no information on the expectation of such a function.

The proof is based on a characterization of ef®cient estimators in any model de®ned by a

restriction on the stationary distribution of a single or two successive observations. Existing

ef®ciency results for ergodic Markov chains have been for two types of model: fully

nonparametric models, and models in which the transition distribution is parametrized.

Penev (1991) and Bickel (1993) consider estimating ð f and Greenwood and Wefelmeyer

(1995) consider estimating ð
 Q f for models of the ®rst type, when nothing is known

about Q. The main examples of the second type are autoregressive processes, which can be

described by parametric or semiparametric models for their transition distributions. For

ef®cient estimation see, for example, Kreiss (1987), Jeganathan (1995), Koul and Schick

(1997) and Drost and Klaassen (1996). Autoregressive processes with non-independent

innovations have been treated by Wefelmeyer (1996). The techniques for the type of model

considered here, where the restriction is on the stationary law, are different.

An application of our result is to discretely observed diffusions. Suppose that we have a

nonparametric model for a diffusion process:

dX t � a(X t) dt � ó (X t) dW t:

If we observed the process at evenly spaced discrete time points, then the observations form a

homogeneous Markov chain. The transition distribution is usually dif®cult to calculate, and

we may be interested in ®nding the best estimator that does not require this calculation. If a

and/or ó vary freely, the corresponding class of invariant distributions includes all

distributions with (smooth) positive densities. Since such diffusion processes are reversible,

so are the corresponding discretely observed diffusions, and our model consists of reversible

Markov chains. A recent review of continuous-time Markov processes has been given by

Hansen and Scheinkman (1995). Estimators for parametric models of discretely observed

diffusions have been studied by Bibby and Sùrensen (1995) and Pedersen (1995), and for

nonparametric models of discretely observed diffusions by AõÈt-Sahalia (1996).

In Section 2 we recall a characterization of ef®cient estimators for the full nonparametric

Markov chain model and arbitrary submodels. In Section 3, Theorem 1, we specialize the

characterization to submodels de®ned by restrictions on the stationary distribution of a single or

two successive observations. We also describe brie¯y an application to models de®ned by

restricting the stationary distribution of a single observation to a parametric family. Such models

arise when a diffusion is discretely observed and the diffusion model is parametric. Details will be

given in a forthcoming paper by Kessler, Schick and Wefelmeyer (1997). In Section 4, Theorem 2,

we prove the ef®ciency of the symmetrized empirical estimator by applying Theorem 1 to the

submodel given by all reversible Markov chains. Section 5 contains the proofs of the lemmas.

2. Full model and submodel

In this section we recall a characterization of ef®cient estimators for arbitrary smooth

functionals of the transition distribution in general Markov chain models. The characteriza-
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tion is based on a nonparametric version of HaÂjek's (1970) convolution theorem. It requires

the model to be locally asymptotically normal.

We begin with the full nonparametric model, in which no restrictions are made on the

transition distribution. Let X0, . . . , X n be observations from a Markov chain with values in

some measurable space. We shall introduce a local parameter space at a ®xed transition

distribution Q(x, dy) such that the chain satis®es the two assumptions below.

Assumption 1. The chain is positive Harris recurrent.

Let ð(dx) denote the invariant distribution. For a suitably integrable function f 1(x) of one

argument write

(Q f1)(x) �
�

Q(x, dy) f1(y), ð f 1 �
�
ð(dx) f1(x):

For a function f (x, y) of two arguments we shall write

(Q f )(x) �
�

Q(x, dy) f (x, y), Q j f � Q jÿ1Q f , ð
 Q f �
��

ð(dx)Q(x, dy) f (x, y):

Assumption 2. The chain has the ergodicity property

supfð(Q j f 1 ÿ ð f 1)2: ð f 2
1 < 1g ! 0 for j!1:

The space

H � fh 2 L2(ð
 Q): Qh � 0g
is a local parameter space in the sense that for each h 2 H we can choose a sequence Qnh

which is Hellinger differentiable with derivative h:�
Q(x, dy)

dQnh

dQ
(x, y)1=2 ÿ 1ÿ nÿ1=21

2
h(x, y)

� �2

< nÿ1 rn(x), (2:1)

with rn decreasing to 0 pointwise and ð integrable for large n. This version of

differentiability is due to HoÈpfner et al. (1990).

Remark. In the full model we can take

Qnh(x, dy) � Q(x, dy)f1� nÿ1=2 hn(x, y)g, (2:2)

with

hn � hn ÿ Qhn and hn � h1(jhj<n1=8): (2:3)

Write Pn and Pnh for the joint distribution of X0, . . . , X n under Q and Qnh,

respectively. As in HoÈpfner (1993) we have a nonparametric version of local asymptotic

normality:
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log
dPnh

dPn

� �
� nÿ1=2

Xn

i�1

h(X iÿ1, X i)ÿ 1
2
ð
 Qh2 � oPn

(1)

and

nÿ1=2
Xn

i�1

h(X iÿ1, X i)) Nh,

where Nh is normal with mean 0 and variance ð
 Qh2. Local asymptotic normality induces

an inner product ð
 Qhh9 on H. Ef®cient estimators for a function t(Q) are characterized in

terms of the gradient of the functional with respect to this inner product. A functional t(Q) of

the transition distribution is differentiable, with gradient g 2 H , if

n1=2ft(Qnh)ÿ t(Q)g ! ð
 Qhg for h 2 H : (2:4)

The gradient is uniquely determined.

We can now characterize regular and ef®cient estimators of t(Q). An estimator T n is

called regular for t(Q) in the full model, with limit L, if

n1=2fTn ÿ t(Qnh)g ) L under Pnh for h 2 H : (2:5)

A nonparametric version of HaÂjek's (1970) convolution theorem says that

L � N g � M ,

where M is independent of N g and N g is normal with mean 0 and variance ð
 Qg2. This

justi®es calling Tn ef®cient if L � N g. It is a well-known consequence of the convolution

theorem that an estimator Tn is regular and ef®cient for t(Q) if and only if

n1=2fTn ÿ t(Q)g � nÿ1=2
Xn

i�1

g(X iÿ1, X i)� oPn
(1): (2:6)

We now characterize ef®cient estimators for a submodel of the full nonparameteric model

above. Fix a transition distribution Q(x, dy) which ful®ls Assumptions 1 and 2. The local

parameter space of the submodel is a subset H0 of H which we take to be closed and

linear. A functional t(Q) is differentiable on the submodel, with gradient g 2 H , if (2.4)

holds for h 2 H0. Now the gradient is not uniquely determined. A special role is played by

the canonical gradient, the projection of an arbitrary gradient into H0.

An estimator Tn is called regular for t(Q) in the submodel, with limit L, if (2.5) holds

for h 2 H0. The convolution theorem then says that L � N g0
� M , where M and N g0

are

independent. Hence Tn is regular and ef®cient for t(Q) in the submodel if and only if (2.6)

holds with g replaced by the canonical gradient g0.

Call an estimator asymptotically linear for t(Q) with in¯uence function k 2 H if

n1=2fTn ÿ t(Q)g � nÿ1=2
Xn

i�1

k(X iÿ1, X i)� oPn
(1): (2:7)

In these terms, an estimator is regular and ef®cient in the submodel if and only if it is

asymptotically linear with in¯uence function equal to the canonical gradient:
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n1=2fTn ÿ t(Q)g � nÿ1=2
Xn

i�1

g0(X iÿ1, X i)� oPn
(1): (2:8)

Moreover, an asymptotically linear estimator is regular if and only if its in¯uence function is

a gradient. A convenient reference for the convolution theorem and the characterizations of

regular and ef®cient estimators is Greenwood and Wefelmeyer (1990).

3. Restricting the invariant law

In this section we consider a submodel described by a restriction on ð
 Q. We have recalled

in Section 2 that a regular and ef®cient estimator for the functional t(Q) is characterized as

an asymptotically linear estimator with in¯uence function equal to the canonical gradient of

t(Q). We calculate the canonical gradient in two steps. First we describe the local parameter

space H0 in terms of the restriction on ð
 Q. Then we calculate the projection of an

arbitrary gradient into H0.

Consider a submodel as in Section 2. Fix a transition distribution Q(x, dy) in the

submodel which ful®ls Assumptions 1 and 2. Let H0 denote a local parameter space at Q.

Suppose that the submodel is described by a restriction on ð
 Q. How can H0 be

described in terms of this restriction? To answer this, we perturb ð
 Q and interpret the

restriction on the perturbation as a restriction on H. For smooth models it will be possible

to choose, for each h 2 H0, a sequence Qnh in the submodel which is Hellinger

differentiable in the sense of (2.1) and has the following two additional properties. Each

Qnh has an invariant distribution ðnh, and ðnh 
 Qnh admits a perturbation expansion. For

f 2 L2(ð
 Q),

n1=2(ðnh 
 Qnh f ÿ ð
 Q f )! ð
 Qh Af for h 2 H0: (3:1)

See Remark below. Here the operator A is a kernel on L2(ð
 Q):

A � I2 ÿ ð
 Q� (Rÿ L)V , (3:2)

where I2 is the identity on the space L2(ð
 Q) of functions of two arguments, R and L map

a function v 2 L2(ð) of one argument into functions of two arguments according to

(Rv)(x, y) � v(y), (Lv)(x, y) � v(x),

and V is the kernel given by

V �
X1
j�1

(Q j ÿ ð
 Q):

Writing

(Af )(x, y) � f (x, y)ÿ (Q f )(x)�
X1
j�1

f(Q j f )(y)ÿ (Q j�1 f )(x)g,

we see that A maps L2(ð
 Q) into the local parameter space H. Let L2,0(ð
 Q) denote the
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functions in L2(ð
 Q) with expectation 0 under ð
 Q. Since A is the identity on H, it maps

L2,0(ð
 Q) onto H. Note that V is similar to the potential
P1

j�0QJ and has the similar

property:

(I � V )Q � ð
 Q� V : (3:3)

Remark. In the full nonparametric model, Qnh has the additional properties described above

if it is de®ned as in (2.2) and (2.3). Then

ð(Qnh f ÿ Q f )2 � nÿ1ð(Qhn f )2 < 2nÿ3=4ð f 2:

Hence Assumption 2 holds and Qnh has an invariant distribution ðnh. Further, the

perturbation expansion (3.1) follows from Lemma 2 of Greenwood and Wefelmeyer (1997),

which is based on a version of a perturbation expansion of ðnh f of Kartashov (1985a,b).

Let B denote the adjoint of A. Then (3.1) reads

n1=2(ðnh 
 Qnh f ÿ ð
 Q f )! ð
 Q Bh f for h 2 H0: (3:4)

This means that the ð
 Q density of ðnh 
 Qnh is approximately 1� nÿ1=2 Bh. Now we see

how to translate a restriction on ðnh 
 Qnh into a restriction on h through a condition on Bh.

In the examples we have in mind, and in particular in Section 4,

H0 � fh 2 H : Bh 2 Fg (3:5)

for some closed linear subspace F of L2(ð
 Q).

Once we have described the local parameter space H0, we must calculate the canonical

gradient of the functional t(Q) that we want to estimate. According to Section 2, the

canonical gradient g0 is the projection of an arbitrary gradient g 2 H into H0. It is

therefore characterized by the properties that g0 2 H0 and g ÿ g0 is orthogonal to H0. The

operator A maps L2,0(ð
 Q) onto H; so we can write g � Af and g0 � Af 0 for some

f , f 0 2 L2,0(ð
 Q). Hence the canonical gradient is characterized as the function Af 0 with

f0 2 L2,0(ð
 Q) such that Af 0 2 H0 and Af ÿ Af 0 is orthogonal to H0. The condition

Af 0 2 H0 can, in turn, according to (3.5), be written as BAf 0 2 F.

To describe the canonical gradient more usefully, it remains to calculate B and BA. The

adjoint B will be written in terms of the reversed chain, with transition distribution

Q(y, dx) de®ned by

ð(dx)Q(x, dy) � ð(dy)Q(y, dx): (3:6)

One checks that the transition distribution Q also has invariant distribution ð.

For a function f (x, y) of two arguments we shall follow the convention that the trans-

ition distribution of the reversed chain acts on f from right to left, i.e. on the ®rst argument

of f :

(Q f )(y) �
�

Q(y, dx) f (x, y):
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Similarly,

ð
 Q f �
��

ð(dy)Q(y, dx) f (x, y):

The kernel corresponding to V for the reversed chain is

V �
X1
j�1

(Q j ÿ ð
 Q):

From (3.6) we obtain

ð(dx)Q j(x, dy) � ð(dy)Q j(y, dx) for j � 1, 2, . . . (3:7)

and therefore

ð(dx)V (x, dy) � ð(dy)V (y, dx): (3:8)

The property corresponding to (3.3) is

(I � V )Q � ð
 Q� V : (3:9)

Let B denote the kernel on L2(ð
 Q),

B � I2 ÿ ð
 Q� L(I � V )(Qÿ Q):

By (3.9), on H this kernel reduces to

B � I2 � L(I � V )Q � I2 � LV : (3:10)

Lemma 1. The adjoint of A on L2(ð
 Q) is B.

Lemma 2. We have BA � I2 ÿ ð
 Q� RV � LV on L2(ð
 Q).

Lemmas 1 and 2 are proved in Section 5. We arrive at our description of the canonical

gradient.

Theorem 1. Suppose that the local parameter space is of the form H0 � fh 2 H : Bh 2 Fg
for some closed linear subspace F of L2(ð
 Q). Let t(Q) be differentiable, and let g � Af

be a gradient of t(Q), with f 2 L2,0(ð
 Q).

Then the canonical gradient g0 is characterized as the function of the form g0 � Af 0

with f 0 2 L2,0(ð
 Q) ful®lling

(BAf 0 �) f 0 ÿ ð
 Q f 0 � RVf 0 � LV f 0 2 F

and

ð
 QA( f ÿ f0) h � 0 for h 2 H0:

Example. An application of Theorem 1 is to the submodel of all Markov chains with

invariant distribution in some parametric family ðW, W 2 È. Such a model arises when a
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diffusion is discretely observed and the diffusion model is parametric. For simplicitly, let È
be an open subset of the real line. Fix a transition distribution Q(x, dy) with invariant

distribution ðW. Let H0 denote the local parameter space at Q. The perturbation expansion

(3.1) of ðnh 
 Qnh implies a perturbation expansion of ðnh. For f 1 2 L2(ðW),

n1=2(ðnh f 1 ÿ ðW f 1)! ðWh ARf 1 � ðWBhRf 1 for h 2 H0:

On the other hand, ðnh is in the parametric family and therefore approximately of the form

ðW�nÿ1=2 u for some u. Under a suitable smoothness assumption on the family, a Taylor

expansion gives, for f 1 2 L2(ðW),

n1=2(ðW�nÿ1=2 u f 1 ÿ ðW f 1)! uðWl 9W f1 � uðW 
 QRl 9WRf 1,

where l 9W � (@=@ô)(dðô=dðW)jô�W. Hence

H0 � fh 2 H : Bh � uRl 9W for some ug:
We can now apply Theorem 1 with F � fuRl 9W: u 2 Rg. For details see Kessler and

Wefelmeyer (1997).

The following observations will be applied in Section 4. Since Q and Q have invariant

distribution ð, so has

Qs � 1
2
(Q� Q):

We have

ð(dx)Q(x, dy) � ð(dy)Q(y, dx) � ð(dx)Q(x, dy):

Hence Q � Q, and

ð(dx)fQ(x, dy)� Q(x, dy)g � ð(dy)fQ(y, dx)� Q(y, dx)g

� ð(dy)fQ(y, dx)� Q(y, dx)g:
This means that Qs is reversible. The transition distribution Qs is called the additive

reversibilization of Q by Fill (1991) who uses reversibilizations to obtain bounds on the rate

of convergence of Markov chains to stationarity.

4. Reversible Markov chains

Suppose that X 0, . . . , X n come from a reversible Markov chain. This means that

ð(dx)Q(x, dy) � ð(dy)Q(y, dx) (4:1)

and therefore Q � Q, and ð
 Q is symmetric in the two components. We must keep in mind

that Q still acts differently from Q on functions of two arguments:

(Q f )(x) �
�

Q(x, dy) f (y, x) � (Q f )(x),

116 P.E. Greenwood and W. Wefelmeyer



where f (x, y) � f (y, x).

Fix a reversible transition distribution Q(x, dy) which ful®ls Assumptions 1 and 2. We

have (3.4):

n1=2(ðnh 
 Qnh f ÿ ð
 Qf )! ð
 Q Bh f for h 2 H : (4:2)

If Qnh as well as Q are reversible, then ðnh 
 Qnh and ð
 Q are symmetric. Therefore, Bh

must also be symmetric. This suggests that the local parameter space for the model of

reversible Markov chains is

H0 � fh 2 H : Bh symmetricg:
Indeed, if h 2 H0, then ðnh 
 Qnh is symmetric up to o(nÿ1=2) by (4.2). It remains to check

that for each h 2 H0 we can ®nd a Hellinger differentiable sequence Qs
nh such that (4.2)

holds and ðnh 
 Qs
nh is exactly symmetric, so that Qs

nh is exactly reversible. This is the

content of Lemma 3.

Lemma 3. For each h 2 H0 there exists a sequence of transition distributions Qs
nh with

invariant distribution ðnh such that Qs
nh is reversible (4.1) and Hellinger differentiable (2.1)

with derivative h, and such that the perturbation expansion (3.1) holds for ðnh 
 Qs
nh .

The proof is in Section 5.

Recall that the empirical estimator for ð
 Q f given by

En f � 1

n

Xn

i�1

f (X iÿ1, X i)

is ef®cient in the full nonparametric model. To prove ef®ciency of the symmetrized empirical

estimator Es
n f � En f s with f s � 1

2
( f � f ) and f (x, y) � f (y, x) in the model given by all

reversible Markov chains, we apply Theorem 1.

Theorem 2. For f 2 L2(ð
 Q), the estimator

En f s � 1

2n

Xn

i�1

f f (X iÿ1, X i)� f (X i, X iÿ1)g

is regular and ef®cient for ð
 Q f in the model given by all reversible Markov chains.

Proof. By Lemma 3 we have H0 � fh 2 H : Bh symmetricg. Hence the assumption on H0 of

Theorem 1 holds with

F � f f 2 L2(ð
 Q): f symmetricg:
We want to show that Af s is the canonical gradient of the functional t(Q) � ð
 Q f . By the

perturbation expansion (3.1), g � Af is a gradient of ð
 Q f . It suf®ces to check that the

two conditions on f 0 in Theorem 1 hold for f 0 � f s. For the ®rst condition, we observe that

RVf s � LV f s is symmetric since f s is symmetric. The second condition holds since by

Lemma 1 we have, for all h 2 H0,
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ð
 Q(Af ÿ Af s)h � 1
2
ð
 Q A( f ÿ f ) h � 1

2
ð
 Q( f ÿ f ) Bh � 0:

The last equality holds because Bh is symmetric for h 2 H0 and ð
 Q is symmetric, and

therefore

ð
 Q f Bh � ð
 Q f Bh:

Hence Af s is the canonical gradient, and the characterization (2.8) says that an estimator for

ð
 Q f is regular and ef®cient if it is asymptotically linear with in¯uence function Af s.

We have

n1=2(En f s ÿ ð
 Q f ) � nÿ1=2
Xn

i�1

f f s(X iÿ1, X i)ÿ ð
 Q f g:

By the martingale approximation of Gordin and LifsÏic (1978) we have, for f 2 L2,0(ð
 Q),

nÿ1=2
Xn

i�1

f (X iÿ1, X i) � nÿ1=2
Xn

i�1

(Af )(X iÿ1, X i)� oPn
(1):

This approximation, applied to f � f s ÿ ð
 Q f , shows that En f s has the in¯uence function

Af s. u

5. Proofs of the lemmas

Proof of Lemma 1. We must prove that, for e, f 2 L2(ð
 Q),

ð
 Qe Af � ð
 Q Be f :

Clearly, I2 is its own adjoint. We prove that L(Qÿ Q) is the adjoint of (Rÿ L)(Qÿ ð
 Q)

and L(Q jÿ1 ÿ ð
 Q)(Qÿ Q) is the adjoint of (Rÿ L)(Q j ÿ ð
 Q) for j � 2, 3, . . . . We

can omit the centring by ð
 Q because (Rÿ L)ð
 Q � 0. We can omit the centring by

ð
 Q because also

ð
 Q(Qÿ Q)e �
�
ð(dx)Q(x, dy)

�
Q(y, dz)e(y, z)ÿ

�
Q(y, dz)e(y, z)

� �

�
�
ð(dy)

�
Q(y, dz)e(y, z)ÿ

�
Q(y, dz)e(y, z)

� �
� 0:

Now

ð
 Qe (Rÿ L)Q f �
��

ð(dx)Q(x, dy)e(x, y)

�
Q(y, dz) f (y, z)ÿ

�
Q(x, dz) f (x, z)

� �

�
�
ð(dy)

�
Q(y, dx)e(x, y)

�
Q(y, dx) f (y, z)
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ÿ
�
ð(dx)

�
Q(x, dy)e(x, y)

�
Q(x, dz) f (x, z)

�
��

ð(dx)Q(x, dy)(Qe)(x) f (x, y)

ÿ
��

ð(dx)Q(x, dy)(Qe)(x) f (x, y)

� ð
 QL(Qÿ Q)e f

and, for j � 2, 3, . . . ,

ð
 Qe (Rÿ L)Q j f �
��

ð(dx)Q(x, dy)e(x, y)

�
Q jÿ1(y, dz)

�
Q(z, dw) f (z, w)

�

ÿ
�

Q jÿ1(x, dz)

�
Q(z, dw) f (z, w)

�

�
�
ð(dy)

�
Q(y, dx)e(x, y)

�
Q jÿ1(y, dz)

�
Q(z, dw) f (z, w)

ÿ
�
ð(dz)

�
Q jÿ1(z, dx)

�
Q(x, dy)e(x, y)

�
Q(z, dw) f (z, w)

�
�
ð(dz)

�
Q jÿ1(z, dy)

�
Q(y, dx)e(x, y)

�
Q(z, dw) f (z, w)

ÿ
�
ð(dz)

�
Q jÿ1(z, dx)

�
Q(x, dy)e(x, y)

�
Q(z, dw) f (z, w)

� ð
 QLQ jÿ1(Qÿ Q)e f : u

Proof of Lemma 2. Note that QR � Q and QL � I1 on L2(ð), where I1 is the identity on

L2(ð). Hence Q j R � Q j and Q j L � Q jÿ1 on L2(ð) for j � 2, 3, . . . , and therefore

VL �
X1
j�1

(Q j Lÿ ð) � I1 ÿ ð� VR:

For V we have the corresponding relation

V R � I1 ÿ ð� V L:

Hence

V (Rÿ L) � I1 ÿ ð,
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so that

V A � V � V (Rÿ L)V � V � V

and, with (3.10),

BA � (I2 � LV )A

� I2 ÿ ð
 Q� (Rÿ L)V � LV � LV

� I2 ÿ ð
 Q� RV � LV : u

Proof of Lemma 3. Let Qnh be the sequence Q(x, dy)f1� nÿ1=2 hn(x, y)g de®ned in (2.2)

and (2.3). By the Remark in Section 3, each transition distribution Qnh has an invariant

distribution ðnh, and ðnh 
 Qnh admits the perturbation expansion (3.1). The transition

distribution Qnh of the reversed chain is de®ned by (3.6):

ðnh(dx)Qnh(x, dy) � ðnh(dy)Qnh(y, dx): (5:1)

Let Qs
nh � 1

2
(Qnh � Qnh) be the additive reversibilization of Qnh. We have seen at the end of

Section 3 that Qs
nh has invariant distribution ðnh and is reversible.

By (5.1), (3.1), Lemma 1, reversibility of Q and symmetry of Bh,��
ðnh(dx)Qnh(x, dy) f (x, y) � ðnh 
 Qnh f

� ð
 Q f � nÿ1=2ð
 Qh A f � o(nÿ1=2)

� ð
 Q f � nÿ1=2ð
 Q Bh f � o(nÿ1=2)

� ð
 Q f � nÿ1=2ð
 Qh Af � o(nÿ1=2):

Combining with (3.1), we obtain the perturbation expansion

n1=2(ðnh 
 Qs
nh f ÿ ð
 Q f )! ð
 Qh Af :

To prove that Qs
nh is Hellinger differentiable, we must show that ðnh has a ð density. On

L2(ð) we have

ðnh � ðfI ÿ (Qnh ÿ Q)Dgÿ1

with

D � I �
X1
j�1

(Q j ÿ ð)

(see Greenwood and Wefelmeyer (1997, Lemma 2)). Write Qnh ÿ Q � nÿ1=2Qh n
with

Qh(x, dy) � Q(x, dy)h(x, y). Then

ðnh f � ð f �
X1
k�1

nÿk=2ð(Qhn
D)k f :
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As in the proof of Lemma 1 we can show that

ðQhn
Df � ð
 Qhn RDf � ðV hn f :

By induction,

ð(Qh n
D)k f � ðW k hn f for k � 1, 2, . . . ,

with

Wh � V h, W k h � V (LW kÿ1 h h) for k � 2, 3, . . . :

By Assumption 2, the operator V is bounded on L2(ð). We obtain a representation for the ð
density of ðnh,

dðnh

dð
� 1�

X1
k�1

nÿk=2W k hn (5:2)

� 1� nÿ1=2(V hn � sn) (5:3)

with

sn �
X1
k�2

nÿ(kÿ1)=2W k hn:

It is straightforward to check that ðs2
n ! 0 and that V hn and sn are bounded by O(n1=8).

From (5.1) and (5.2)

ðnh(dx)Qnh(x, dy) � ðnh(dy)Qnh(y, dx)

� ð(dy)[1� nÿ1=2f(V hn)(y)� sn(y)g]Qnh(y, dx):

On the other hand, by de®nition (2.2) of Qnh,

ðnh(dx)Qnh(x, dy) � ð(dx)[1� nÿ1=2f(V hn)(x)� sn(x)g]Q(x, dy)f1� nÿ1=2 hn(x, y)g:
Use ð(dx)Q(x, dy) � ð(dy)Q(y, dx) and solve for Qnh to obtain that

Qnh(y, dx) � Q(y, dx)f1� nÿ1=2 hn(x, y)g

3 [1� nÿ1=2f(V hn)(x)� sn(x)g]

3 [1� nÿ1=2f(V hn)(y)� sn(y)g]ÿ1:

Hence Qnh is Hellinger differentiable (2.1) with derivative h� RV hÿ LV h. We note that

relation (3.10) implies that

Bh � h� LV h � h� RV h for h 2 H0:

Therefore, the derivative equals h. Hence Qs
nh is also Hellinger differentiable with derivative

h. u

Remark. The arguments in the proof of Lemma 3 could be used to obtain a general stability

Reversible Markov chains and optimality of symmetrized empirical estimates 121



result for Markov chains of the following type. If Q9 has a Q density and is close to Q, then

the invariant distribution ð9 of Q9 has a ð density, and the density of ð9 has a representation

in terms of the density of Q9.
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