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Quadratic regression functionals are important for bandwidth selection of nonparametric regression

techniques and for nonparametric goodness-of-®t tests. Based on local polynomial regression, we

propose estimators for weighted integrals of squared derivatives of regression functions. The rates of

convergence in mean square error are calculated under various degrees of smoothness and appropriate

values of the smoothing parameter. Asymptotic distributions of the proposed quadratic estimators are

considered with the Gaussian noise assumption. It is shown that when the estimators are pseudo-

quadratic (linear components dominate quadratic components), asymptotic normality with rate nÿ1=2

can be achieved.
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1. Introduction

Let (X 1, Y1), . . . , (X n, Yn) be independent and identically distributed observations with

conditional mean E(yjx) � m(x) and variance var(yjx) � ó 2. Consider the problem of

estimating functionals of the form

è�í �
�

[m(í)(x)]2w(x) dx, í � 0, 1, . . . , (1:1)

where w(x) is a prescribed non-negative weight function. These functionals appear in

expressions for the asymptotically optimal bandwidth for nonparametric function estimates;

see, for example, Ruppert and Wand (1994) and Fan and Gijbels (1996). Doksum and

Samarov (1995) consider particularly the applications of è�0 in measuring the explanatory

power of covariates in regression. Another area of application is to examine the goodness of

®t of a (íÿ 1)th-degree polynomial model by testing H0 : è�í � 0, í � 1, 2, . . . : When w(�)
is the indicator function of an interval, H0 tests the polynomial model at that given interval.

Problems similar to the estimation of è�í are considered in a number of papers. Hall and

Marron (1987; 1991), Bickel and Ritov (1988) and Jones and Sheather (1991) discuss

estimation of
�

[ f (í)(x)]2 dx based on kernel density estimators, where f (�) is a probability

density function. BirgeÂ and Massart (1995) expand the study to the estimation of integrals of

smoothed functionals of a density. Adaptive estimation of quadratic functionals can be found
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in Efromovich and Low (1996). Laurent (1996; 1997) uses the orthonormal series method to

estimate density functionals of the form
�

f (í)(x) f (í9)(x)w(x) dx and deal with this more

general integral form via Taylor expansions. Optimality results of estimating
�

[m(í)(x)]2 dx

under the Gaussian white noise model are obtained in Donoho and Nussbaum (1990) and

Fan (1991). In the context of nonparametric regression, the corresponding problem is much

less understood. Doksum and Samarov (1995) give estimators of
�

m2(x) f (x)w(x) dx ( f (�) is

the design density function) by local constant approximation, that is, the Nadaraya±Watson

estimator. Here we develop estimates of è�í based on local polynomial regression estimators.

Ruppert et al. (1995) consider functionals similar to è�í with weight w(x) � f (x). However,

no results as general as shown in this paper have been established, and our estimators for è�í
are different from those of Doksum and Samarov (1995) and Ruppert et al. (1995).

Technically, è�í s are nonlinear functionals of m(�). While most theory focuses on

estimation of linear functionals, it is also of theoretical interest to explore the dif®culty of

estimating nonlinear functionals. In the density estimation setting, the nÿ1=2-consistency of

estimating
�

[ f (í)(x)]2 dx is established in Hall and Marron (1987; 1991), Bickel and Ritov

(1988) and BirgeÂ and Massart (1995). Laurent (1996; 1997) shows that similar results hold

for estimated weighted integrals as well. Now a natural question is whether nÿ1=2-consistent

estimators can be constructed for regression functionals è�í . Note that the results for

estimating density integral functionals are based on `diagonal-out' type estimators. However,

we do not have a `diagonal-out' estimator for è�í . A similar `bias-corrected' estimator (see

(3.5) below) can be constructed for regression functionals è�í , but it requires s . 2í� 1=2

to achieve the nÿ1=2 rate (see Theorem 4.4).

Our estimators are based on local polynomial regression estimators. Section 4 describes

the asymptotic behaviour of the estimators, which are quadratic functionals of weighted

regression estimates. Appropriate values of the smoothing parameter and smoothness

conditions of m(�) are given for mean square rates of convergence. To study the asymptotic

distributions of the proposed estimators, functionals of the form
Pn

i�1

Pn
j�1ai, jYiYj are

considered in Section 5, where Y1, . . . , Yn are independent response variables. As a

consequence, we provide further insights into the dif®culty of estimating quadratic

functionals: the nÿ1=2 rate for estimating è�í can be achieved when estimators are pseudo-

quadratic (linear component dominates). For genuinely quadratic estimators (quadratic

component dominates), the nÿ1=2 rate is not attainable.

This paper is organized as follows. Section 2 provides the background of local

polynomial regression. The proposed estimators of è�í are given in Section 3. Section 4

contains rate-of-convergence results in mean square error, from both a theoretical and a

practical point of view. Asymptotic distributions of the proposed estimators are studied in

Sections 5 and 6. Proofs of lemmas and theorems are postponed to Section 7.

2. Local polynomial regression

Suppose that (X i, Yi), i � 1, . . . , n, have been collected from the model

Yi � m(Xi)� åi, E(åi) � 0, var(åi) � ó 2, (2:1)
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where m(�) is an unknown regression function, the åis are independent and identically

distributed error terms, and Xis are independent of åis. The function of interest could be the

regression curve m(�) or its derivatives.

The idea of local polynomial regression is to ®t locally a low-order polynomial at grid

points of interest, with observations receiving different weights. Assume that the ( p� 1)th

derivative of m(�) exists, with p a non-negative integer. For a ®xed point x, the regression

function m(�) can be locally approximated by

m(z) � m(x)� m9(x)(zÿ x) � � � � � m( p)(x)(zÿ x) p=p!,

for z in a neighbourhood of x. This leads to the following least-squares problem:

min
â

Xn

i�1

Yi ÿ
Xp

í�0

âí(Xi ÿ x)í

 !2

K
X i ÿ x

h

� �
, (2:2)

where âí � m(í)(x)=í!, â � (â0, â1, . . . , â p)T, and the dependence of âí on x is suppressed.

The neighbourhood is controlled by a bandwidth h, and the weights are assigned via a kernel

function K, a continuous, bounded and symmetric real function which integrates to one. Let

â̂ � (â̂0, â̂1, . . . , â̂ p) be the solution to the minimization problem (2.2). Then í!â̂í is an

estimator for m(í)(x), obtained by ®tting a pth-degree weighted polynomial in a

neighbourhood of x. See Fan and Gijbels (1996) for further details.

For convenience, some matrix notation is introduced here. Let

X �
1 (X 1 ÿ x) . . . (X 1 ÿ x) p

..

. ..
. . .

. ..
.

1 (X n ÿ x) . . . (X n ÿ x) p

0BB@
1CCA, (2:3)

W � diag K
Xi ÿ x

h

� �� �
n3n

�

K
X 1 ÿ x

h

� �
. .

.

K
X n ÿ x

h

� �

0BBBBBB@

1CCCCCCA, (2:4)

Y � (Y1, . . . , Yn)T, and m � (m(X 1), . . . , m(X n))T. By the standard least-squares theory, the

estimator â̂ can be written as

â̂ � (X TWX )ÿ1 X TWY : (2:5)

We further investigate â̂í, í � 0, . . . , p, individually. Let eí, í � 0, . . . , p, denote ( p� 1)

3 1 unit vectors having 1 as the (í� 1)th component, 0 otherwise. Simple algebra shows

that

â̂í(x) � eT
í â̂ �

Xn

i�1

W n
í

X i ÿ x

h

� �
Yi, (2:6)

where
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W n
í (t) � eT

í (X TWX )ÿ1 1, ht, . . . , h p t p� �T K(t), í � 0, . . . , p: (2:7)

The weight functions W n
í (�), í � 0, . . . , p, depend on both x and the design points fX 1,

. . . , X ng, and satisfyXn

i�1

(X i ÿ x)k W n
í

Xi ÿ x

h

� �
� 1 if k � í,

0 otherwise,

�
for 0 < í, k < p: (2:8)

The dependence of W n
í (�) on x and the design points fX 1, . . . , X ng is the key to design

adaptation and superior boundary behaviour of the local polynomial regression.

To understand the estimates â̂í, í � 0, . . . , p, more intuitively, de®ne

K�í (t) � eT
í Sÿ1 1, t, . . . , t p� �T K(t), í � 0, . . . , p, (2:9)

where S � ìi� jÿ2)( p�1)3( p�1)� with ìk �
�

t k K(t)dt. It is easy to see that the functions

K�í (�), í � 0, . . . , p, are independent of x and fX1, . . . , Xng and satisfy�
t k K�í (t)dt � 1 if k � í,

0 otherwise,

�
for 0 < í, k < p: (2:10)

The theoretical connection between K�í (�) and W n
í (�) is shown in the following lemma, which

extends the equivalent kernel results of Ruppert and Wand (1994).

Lemma 2.1. If the marginal density of X , denoted by f (�), is HoÈlder continuous on an

interval [a, b] and minx2[a,b] f (x) . 0, then

sup
t2[ÿ1,1]

sup
x2[a,b]

jnhí�1W n
í (t)ÿ K�í (t)= f (x)j!a:s: 0,

provided that K has a bounded support [ÿ1, 1] and h � h(n)! 0, nh!1.

From (2.6) and Lemma 2.1, the local polynomial estimator of âí(x) � m(í)(x)=í! has the

asymptotic expansion

â̂í(x) � (1� oP(1))

nhí�1 f (x)

Xn

i�1

K�í
X i ÿ x

h

� �
Yi: (2:11)

Indeed, (2.11) provides a simple technical device for studying the asymptotic behaviour of â̂.

3. Estimators

By the de®nition of è�í in (1.1), a natural approach is to substitute an estimate m̂(í)(x) for

m(í)(x). One candidate is (í!)2
�
â̂2
í(x)w(x) dx, where â̂í(x) is obtained via ®tting a local pth-

degree polynomial, p > í, as in (2.6). Since (í!)2 is a constant for any ®xed í, an estimator

è̂í �
�
â̂2
í(x)w(x) dx

is considered. Correspondingly, denote
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èí �
�
â2
í(x)w(x) dx � 1

(í!)2

�
[m(í)(x)]2w(x) dx:

We shall study the asymptotic properties of è̂í later, but ®rst an intuitive discussion may be

helpful. In addition to the model assumption in (2.1), we further assume that E(å3
i ) � 0 and

E(å4
i ) ,1, i � 1, . . . , n.

From (2.6),

è̂í �
Xn

i�1

Xn

j�1

ai, j(í)YiYj, (3:1)

where

ai, j(í) �
�

W n
í

X i ÿ x

h

� �
W n

í

X j ÿ x

h

� �
w(x) dx: (3:2)

Clearly è̂í is a quadratic form in the Yis and can be written as

è̂í � Y T AíY ,

with Aí � ai, j(í)� �n3n
. The conditional mean and variance of è̂í follow at once from (3.1):

Efè̂íjX1, . . . , X ng � mT Aím� ó 2tr(Aí), (3:3)

varfè̂íjX1, . . . , X ng � 4ó 2mT A2
ím� 2ó 4tr(A2

í)� (E(å4
1)ÿ 3ó 4)

Xn

i�1

a2
i,i(í), (3:4)

where tr(Aí) denotes the trace of Aí. Note that the second term on the right-hand side of

(3.3) may be thought of as extra bias in the estimation. This motivates a `bias-corrected'

estimate:

�èí �
Xn

i�1

Xn

j�1

ai, j(í)YiYj ÿ ó̂ 2tr(Aí), (3:5)

where ó̂ 2 is an estimator of ó 2. The non-negativity of �èí is no longer guaranteed. This can

be easily modi®ed by taking the estimator �è�í � max(�èí, 0), whose performance is at least as

good as �èí.

4. Rates of convergence

Asymptotic expressions for the conditional bias and variance of è̂í and �èí will be derived in

this section. We shall use these to study how the mean square errors behave. It is convenient

at this point to introduce some conditions.
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Conditions A.

(A1) The kernel K(�) is a continuous, bounded and symmetric probability density

function, having a support on [ÿ1, 1].

(A2) The design density function f (�) is positive and continuous for x 2 [ÿ1, 1], and f (�)
has derivatives of order max(í, ( pÿ í� 1)=2) on [ÿ1, 1].

(A3) The weight w(�) is a bounded and non-negative function on the interval [ÿ1, 1].

Further, w(�) has bounded derivatives of order max(í, ( pÿ í� 1)=2) and w(i)(1) �
w(i)(ÿ1) � 0, i � 0, . . . , max(í, ( pÿ í� 1)=2).

Condition A1 is assumed for simplicity of proofs, and Condition A2 is imposed in order

to apply integration by parts in deriving the results (see (7.9) and (7.15)). With Condition

A2, some smoothness condition on m is required. Condition A3 is mainly for eliminating

the `boundary effects' so that deeper and cleaner results can be obtained. Without loss of

generality, the interval [ÿ1, 1] is used in Conditions A. The results will hold for any

bounded intervals [a1, b1], [a2, b2] and [a2, b2] in Conditions A1, A2 and A3, respectively.

The regression function m(�) will be said to have smoothness of order s if there is a

constant M . 0 such that, for all x and y in [ÿ1, 1],

jm( l)(x)ÿ m( l)(y)j < M jxÿ yjá, where 0 ,á < 1: (4:1)

Let s � l � á, and let [s] denote the largest integer strictly less than s. Throughout we will

use s to denote the smoothness of the regression function m(�) and p to denote the degree of

local polynomial ®tting. Note that p and s are two independent indices with p > í and s . í.

When estimating the íth derivative of m(�), it is argued in Ruppert and Wand (1994) and Fan

and Gijbels (1996) that odd integers ( pÿ í) should be used. Thus, pÿ í is assumed to be

odd in this section so that p� í� 1 is a multiple of 2. For simplicity of notation, it is

understood that all expectations in this section are conditioned on fX1, . . . , Xng. Finally, let

(ö1 � ö2)(u) � � ö1(t)ö2(uÿ t)dt denote the convolution of two real-valued functions ö1 and

ö2.

The asymptotic bias and variance of è̂í are described in the following theorem. The proof

is given in Section 7.

Theorem 4.1. Assume that as n!1, h � h(n)! 0, nh2í�1 !1, and nh2(sÿ[s])�1 !1.

Then under Conditions A,

(a) the asymptotic bias is

E(è̂í)ÿ èí � Bn,í

�
OP(hs�[s]ÿ2í)� (C2 � oP(1))nÿ1 hÿ2íÿ1 if s < ( p� í� 1)=2,

(C1 � oP(1))h p�1ÿí � (C2 � oP(1))nÿ1 hÿ2íÿ1 if s . ( p� í� 1)=2,

(

(4:2)

where
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C1 � 2

�
t p�1 K�í (t)dt

� � �
â p�1(x)âí(x)w(x) dx

� �
,

C2 � ó 2

�
[K�í (t)]2 dt

� � �
f (x)ÿ1w(x) dx

� �
; (4:3)

(b) the asymptotic variance is

var(è̂í) � Vn,í

�
(D1 � oP(1))nÿ2 hÿ4íÿ1 � OP(nÿ1 hÿ2í�s) if s < 2í,

(D1 � oP(1))nÿ2 hÿ4íÿ1 � (D2 � oP(1))nÿ1 if s . 2í,

(
(4:4)

where

D1 � 2ó 2 ó 2

�
[(K�í � K�í )(z)]2 dz

� � �
f (x)ÿ2w2(x) dx

� ��

� 2

��
m2(x) f ÿ1(x) f ÿ1(y)w(x)w(y) dx dy

�
,

D2 � 4ó 2

(í!)2

�
[G(í)

í (y)]2 f (y)dy,

with Gí(y) � âí(y)w(y) f ÿ1(y).

Remark 1. Note that in Theorem 4.1(a), when s < p� 1, the integral
�
â p�1(x)âí(x)w(x) dx,

which involves m( p�1)(x), is to be understood as�
â p�í�1

2
(x)

dr

dx r
(âí(x)w(x)) dx with r � ( pÿ í� 1)=2,

via integration by parts.

The asymptotic minimum mean square error of è̂í can be obtained from Theorem 4.1.

We state the results in two versions. The theoretical version (part (a)) on the best possible

rate obtained by choosing a suf®ciently large P when the degree of smoothness is given.

Practically (part (b)), given the order of local polynomial ®tting p, one wants to know what

the best rate is if m(�) is suf®ciently smooth.

Theorem 4.2. Under the assumptions of Theorem 4.1, the asymptotic minimum mean square

errors of è̂í are achieved as follows.

(a) Given the degree of smoothness s . í, taking h � O(nÿ1=(s�[s]�1)) and p >
(2sÿ íÿ 1), then

E(è̂í ÿ èí)2 � OP(nÿ2(s�[s]ÿ2í)=(s�[s]�1)) if s < 2í,

(D2 � oP(1))nÿ1 � OP(nÿ2(s�[s]ÿ2í)=(s�[s]�1)) if s . 2í:

(
In particular, when s . 2í� 1, E(è̂í ÿ èí)2 � D2 nÿ1 � oP(nÿ1).
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(b) Given the order of local polynomial ®t p > í, if s . ( p� í� 1)=2, then

E(è̂í ÿ èí)2 �

OP(nÿ(2 pÿ2í�3)=(p�í�2)) if C1 , 0 and s < 2í,

OP(nÿ2( pÿí�1)=(p�í�2)) if C1 . 0 and s < 2í,

(D2 � oP(1))nÿ1 � OP(nÿ(2 pÿ2í�3)=(p�í�2)) if C1 , 0 and s . 2í,

(D2 � oP(1))nÿ1 � OP(nÿ2( pÿí�1)=(p�í�2)) if C1 . 0 and s . 2í,

8>>><>>>:
(4:5)

by taking

hOPT �
C2

ÿC1 n

� �1=( p�í�2)

if C1 , 0,

C2(2í� 1)

C1( p� 1ÿ í)n

� �1=( p�í�2)

if C1 . 0:

8>>><>>>: (4:6)

In particular, E(è̂í ÿ èí)2 � D2 nÿ1 � oP(nÿ1), if p . 3íÿ 1 for the case of C1 , 0, and

p . 3í for C1 . 0.

Remark 2. The bandwidth hOPT in (4.6) minimizes the mean square error of è̂í. In particular,

when D2 nÿ1 is the leading term in (4.5), hOPT minimizes the second-order terms of the mean

square error of è̂í. In this case, any h satisfying

h � o(nÿ1=(2( p�1ÿí))) and nÿ1=(4í�2) � o(h)

can be the optimal smoothing parameter. Thus, the choice of bandwidth is not sensitive in

this case.

Bickel and Ritov (1988) and Laurent (1996; 1997) give the ef®cient information bound

for estimating respectively unweighted and weighted integrals of squared density derivatives.

For the current regression setting, we conjecture that D2 nÿ1 is the semi-parametric

information bound. In other words, è̂í is ef®cient when the degree of smoothness is

suf®ciently large. But the construction of the estimator è̂í is conceptually simpler than that

of Bickel and Ritov (1988).

Note that C2 nÿ1 hÿ2íÿ1 in the asymptotic bias (4.2) converges to zero more slowly than

the square root of D1 nÿ2 hÿ4íÿ1 in the variance expression (4.4). In kernel density

estimation, Jones and Sheather (1991) argue in favour of estimators of the type è̂í, since

one can choose an ideal bandwidth such that the leading bias terms (analogous to the

second expression in (4.2)) cancel altogether. However, this bias reduction technique is not

applicable here, since C1 in (4.3) is not necessarily negative and C2 is always positive. To

correct the extra bias term, we use the estimator �èí de®ned in (3.5).

Suppose that ó 2 can be estimated at rate O(En), that is, Ef(ó̂ 2 ÿ ó 2)2g � O(E2
n). It will

be seen in Theorem 4.4 that the rate En � o(h1=2) is fast enough for the purpose of bias

correction. The following theorem gives the asymptotic bias and variance of �èí.
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Theorem 4.3. Under the assumptions of Theorem 4.1,

(a) the asymptotic bias of �èí is

E(�èí)ÿ èí � bn,í

� OP(hs�[s]ÿ2í � En nÿ1 hÿ2íÿ1) if s < ( p� í� 1)=2,

(C1 � oP(1))h p�1ÿí � OP(En nÿ1 hÿ2íÿ1) if s . ( p� í� 1)=2;

(
(4:7)

(b) the asymptotic variance of �èí is

var(�èí) � vn,í

�
(D1 � oP(1))nÿ2 hÿ4íÿ1 � OP(nÿ1 hÿ2í�s � E2

n nÿ2 hÿ4íÿ2) if s < 2í,

(D1 � oP(1))nÿ2 hÿ4íÿ1 � (D2 � oP(1))nÿ1 � OP(E2
n nÿ2 hÿ4íÿ2) if s . 2í:

(
We now summarize some results from Theorem 4.3. Again they are stated in both

theoretical (part (a)) and practical (part (b)) versions.

Theorem 4.4. Under the assumptions of Theorem 4.1, the asymptotic minimum mean square

errors of �èí are achieved as follows.

(a) Given s, taking h � O(nÿ2=(2s�2[s]�1)) and p > (2sÿ íÿ 1), if En � o(h1=2), then

E(�èí ÿ èí)
2 � OP(nÿ4(s�[s]ÿ2í)=(2s�2[s]�1)) if s < 2í,

(D2 � oP(1))nÿ1 � OP(nÿ4(s�[s]ÿ2í)=(2s�2[s]�1)) if s . 2í:

(
(4:8)

In particular, E(�èí ÿ èí)2 � D2 nÿ1 � oP(nÿ1) when s . 2í� 1
2
.

(b) Given p, if s . ( p� í� 1)=2 and En � o(h1=2), then

E(�èí ÿ èí)
2 � OP(nÿ4( p�1ÿí)=(2p�2í�3)) if s < 2í,

(D2 � oP(1))nÿ1 � OP(nÿ4( p�1ÿí)=(2p�2í�3)) if s . 2í,

(
(4:9)

by taking

hopt � D1(4í� 1)

2C2
1( p� 1ÿ í)

 !1=(2 p�2í�3)

nÿ2=(2 p�2í�3): (4:10)

In particular, E(�èí ÿ èí)2 � D2 nÿ1 � oP(nÿ1) when p . 3íÿ 1
2
.

Remark 3. As shown in Theorem 4.4, the nÿ1=2 rate is achievable and in this case the

smoothing parameter affects only the second-order terms of the mean square error. In fact,

when D2 nÿ1 is the dominant term in (4.9), the nÿ1=2 rate of convergence is attained for any

bandwidth satisfying

h � o(nÿ1=(2( p�1ÿí))) and nÿ1=(4í�1) � o(h):

Remark 4. Theorem 4.4(a) shows that if s . 2í� 1
2
, èí can be estimated at the nÿ1=2 rate.

This minimal smoothness condition is slightly stronger than s . 2í� 1
4

for estimating
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functionals of a density, as shown in Bickel and Ritov (1988), Laurent (1996; 1997) and

BirgeÂ and Massart (1995). One can possibly follow a similar idea to Laurent (1996) to

construct better bias-corrected estimators, at the expense of obtaining much more complex

estimators in our setting. We have not chosen this option because we are primarily interested

in understanding the performance of the intuitively natural estimators.

In practical implementation one should attempt to estimate ó 2 and hOPT or hopt. The

parameter ó 2 can be estimated at rate nÿ1=2 using the estimators of Rice (1984) and Hall et

al. (1990), for example. The problem of estimating the ideal bandwidth for è̂í or �èí is

beyond the scope of this paper, but (4.6) and (4.10) provide a guideline. A simple rule of

thumb is the following. Fit a global polynomial of order ( p� í� 5)=2 to obtain an

estimate for C1 (see Remark 1) by regarding the regression function as a polynomial

function; estimate f (x) and plug the resulting estimate into C2 or D1. Then an estimate of

hOPT or hopt is formed. This `plug-in rule' is expected to work reasonably well in many

situations, since è̂í and �èí are robust against the choice of bandwidth (see Remarks 2

and 3):
Ruppert et al., (1995) consider estimation of

èrs �
�

m(r)(x)m(s)(x) f (x) dx, r, s > 0 and r � s even: (4:11)

They propose an estimator

è̂rs � nÿ1
Xn

i�1

m̂r(X i, g)m̂s(X i, g),

where m̂r(�, g) and m̂s(�, g) are obtained via ®tting a pth-degree local polynomial with a

bandwidth g. Also pÿ r and pÿ s are both odd. Comparing with their estimator, our error

criterion (weighted mean integrated square error) is more general and the estimators è̂í and
�èí are different from è̂rs.

5. Asymptotic distributions of quadratic functionals

The asymptotic distribution of

è̂ �
Xn

i�1

Xn

j�1

ai, jYiYj (5:1)

will be considered in this section. To make the technical arguments simple, we restrict our

attention to the Gaussian model,

Yi � m(X i)� åi, åi i:i:d: � N (0, ó 2), i � 1, . . . , n: (5:2)

This Gaussian noise assumption can be removed with additional work on proofs, for example

via applying the martingale central limit theorem. The ai, js in (5.1) possibly depend on n and

the design points fX 1, . . . , X ng. Let m be an n 3 1 column vector with entries m(X i),

i � 1, . . . , n, å � (å1, . . . , ån)T, and A � (ai, j)n3n. Then è̂ can be written as
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è̂ � Y T AY � mT Am� 2mT Aå� åT Aå: (5:3)

The mean and variance of è̂ can be calculated directly from (5.3):

Efè̂jX 1, . . . , X ng � mT Am� ó 2tr(A), (5:4)

varfè̂jX 1, . . . , X ng � 2ó 4tr(A2)� 4ó 2mT A2m: (5:5)

Conditioned on fX 1, . . . , X ng, 2mT Aå and åT Aå are the stochastic terms in (5.3). It is easy

to see that 2mT Aå is linear in åis and contributes 4ó 2mT A2m to the variance in (5.5), while

åT Aå is quadratic in åis with variance 2ó 4tr(A2).

The objective is to show that è̂ is asymptotically normally distributed under some

conditions. Two cases will be considered, depending on whether the linear term or the

quadratic term dominates (see (5.3) and (5.5)):

(i) tr(A2)=mT A2m!P 0 (mT Aå dominates),

(ii) tr(A2)=mT A2m!P 1 (åT Aå dominates).

If the linear term dominates (case (i)), that is, è̂ is `pseudo-quadratic', then the normality of è̂
follows directly under the Gaussian noise assumption. The distribution theory of quadratic

forms in normal variables will be used to prove the asymptotic normality for case (ii), where

è̂ is `genuinely quadratic'. As will be seen in Section 6, the separate treatments of these two

cases are natural, corresponding respectively to root-n and non-root-n rates of convergence.

There is a `boundary case' when tr(A2) and mT A2m are of the same order; this may be

handled with additional work. The general theory of quadratic functionals in Whittle (1964)

and Khatri (1980) is useful, but not directly applicable to the situation described here. We

provide the following result.

Theorem 5.1. Under the model assumption in (5.2), if è̂ is pseudo-quadratic (case (i)), then

the conditional distribution of è̂ given fX 1, . . . , X ng is asymptotically normal:

Y T AY!C N mT Am� ó 2tr(A), 2ó 4tr(A2)� 4ó 2mT A2m
ÿ �

, (5:6)

where the symbol !C denotes convergence conditioned on fX 1, . . . , X ng. Similarly, (5.6)

holds for case (ii) if

tr(A4)

(tr(A2))2
!P 0, as n!1:

More precisely, the conditional asymptotic normality in (5.6) means that

P
Y T AY ÿmT Amÿ ó 2tr(A)

(2ó 4tr(A2)� 4ó 2mT A2m)1=2
< tjX 1, . . . , X n

( )
!P Ö(t) for all t, (5:7)

where Ö(�) is the cumulative distribution function of the standard normal random variable.

Expression (5.7) also implies the unconditional asymptotic normality by the dominated

convergence theorem:
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P
Y T AY ÿmT Amÿ ó 2tr(A)

(2ó 4tr(A2)� 4ó 2mT A2m)1=2
< t

( )
! Ö(t) for all t:

6. Asymptotic normality

We now establish the asymptotic normality of è̂í and �èí. In addition to Conditions A, the

bandwidth is assumed to satisfy the following:

Condition B. h � h(n)! 0 and nh� log(h)!1 as n!1.

This requirement is minor in the sense that if a local smoothing neighbourhood contains at

least ( log n) data points (h . nÿ1( log n)k , k . 1), then Condition B is satis®ed. We need the

following lemmas to show the asymptotic normality of è̂í and �èí.

Lemma 6.1. Suppose Z n,1, Z n,2, . . . is a sequence of random variables having a multinomial

distribution (n; pn,1, pn,2, . . .) with parameters satisfying pn, j > 0, j � 1, 2, . . . , and

max j pn, j , ch, where c is a constant. Under Condition B,

P max
j

Z n, j . nhbn

n o! 0, as n!1,

for any sequence bn such that bn !1.

Lemma 6.2. Let ëmax(í) be the maximum eigenvalue of Aí � (ai, j(í))n3n, where ai, j(í) is

de®ned in (3.2). Under Conditions A and B,

ë2
max(í)

tr(A2
í)
!P 0: (6:1)

Since the design matrix X (see (2.3)) and the matrix Aí are the same for (X 1, ø(Y1)),

. . . , (X n, ø(Yn)) with ø(�) a known function, Lemmas 6.1 and 6.2 are applicable to the

case of estimating functionals of the form�
[m

(í)
ø (x)]2w(x) dx,

where mø(x) � E(ø(y)jx).

From Lemmas 6.1 and 6.2, the asymptotic normality of è̂í and �èí follows.

Theorem 6.1. Under the Gaussian model assumption in (5.2), if Conditions A and B are

satis®ed and nh2í�1 !1, nh2(sÿ[s])�1 !1, as n!1, then the conditional distributions of

è̂í and �èí are asymptotically normal:

(è̂í ÿ èí)!C N (Bn,í, Vn,í),

(�èí ÿ èí)!C N (bn,í, vn,í),
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where Bn,í, Vn,í, bn,í and vn,í are given in Theorems 4.1 and 4.3.

In particular, the nÿ1=2-consistency is achieved with appropriate smoothing parameters

(see Theorems 4.2 and 4.4):

(a) Given s . 2í� 1, taking h � O(nÿ1=(s�[s]�1)) and p > (2sÿ íÿ 1),���
n
p

(è̂í ÿ èí)!C N (0, D2):

(b) Given p such that

p . 3íÿ 1 if C1 , 0,

p . 3í if C1 . 0,

�
if s . ( p� í� 1)=2 and h � hOPT given in (4.6), then���

n
p

(è̂í ÿ èí)!C N (0, D2):

(c) Given s . 2í� 1
2
, taking h � O(nÿ2=(2s�2[s]�1)) and p > (2sÿ íÿ 1), if En � o(h1=2),

then ���
n
p

(�èí ÿ èí)!C N (0, D2):

(d) Given p . 3íÿ 1
2
, taking h � hopt in (4.10), if s . ( p� í� 1)=2 and En � o(h1=2),

then ���
n
p

(�èí ÿ èí)!C N (0, D2):

Note that the above nÿ1=2 rate of convergence is achieved when estimators are pseudo-

quadratic, since D2 nÿ1 is one of the terms in the asymptotic variance of 2mT Aíå.

Nonparametric estimation of èí has important implications for the choice of the

smoothing parameter for local regression. Based on the theory in this paper, Fan and Huang

(1996) show that the relative rate of convergence of the bandwidth selector proposed by Fan

and Gijbels (1995) for ®tting local linear regression is of order nÿ2=7 if local cubic ®tting is

used at the pilot stage, and the rate can be improved to nÿ2=5 when a local polynomial of

degree 5 is used in the pilot ®tting. The theoretical results appear to be new in the

nonparametric regression literature.

7. Proofs

Proof of Lemma 2.1. Stone (1980) shows that

sup
x2[c,d]

����nÿ1 hÿ1
Xn

i�1

(X i ÿ x) j hÿ j K
X i ÿ x

h

� �
ÿ f (x)ì j

����!a:s: 0, j � 0, . . . , 2 p:
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Substituting f (x)ì j, j � 0, . . . , 2 p, for the corresponding moments in the matrix (X TWX ),

we obtain

knÿ1 hÿ1 Hÿ1(X TWX )Hÿ1 ÿ f (x)Sk1 !a:s: 0, (7:1)

where H � diag(1, h, h2, . . . , h p)( p�1)3( p�1). Lemma 2.1 follows from (2.7) and (7.1). h

Proof of Theorem 4.1. We begin by estimating the conditional bias using (3.3). From Lemma

2.1 and Condition A1, it can be shown that

tr(Aí) �
Xn

i�1

�
W n

í

X i ÿ x

h

� �� �2

w(x) dx

� 1

(nhí�1)2

Xn

i�1

�
1

f (x)
K�í

X i ÿ x

h

� �
� oP(1)I [X iÿh,X i�h](x)

 !2

w(x) dx

� 1� oP(1)

(nhí�1)2

Xn

i�1

�
1

f (x)2
K�2

í

X i ÿ x

h

� �
w(x) dx: (7:2)

Since

var
Xn

i�1

K�2
í

X i ÿ x

h

� � !
� O(nh) � o nE K�2

í

X i ÿ x

h

� �� �� �2
 !

,

the summation in (7.2) can be replaced by its expectation:

tr(Aí) � 1

nh2í�1

�
K�2

í (t)dt

� � �
f (x)ÿ1w(x) dx

� �
� oP(nÿ1 hÿ2íÿ1): (7:3)

We now evaluate the ®rst term of (3.3). A Taylor series expansion gives

Xn

i�1

W n
í

Xi ÿ x

h

� �
m(X i) �

Xn

i�1

W n
í

Xi ÿ x

h

� �
[m(x)� m9(x)(X i ÿ x) � . . .]

� âí(x)� r(x), (7:4)

where r(x) denotes the remainder terms. If s . ( p� í� 1)=2, assume initially that m(�) has

p� 1 bounded derivatives. It is shown in Ruppert and Wand (1994) that

r(x) � h p�1ÿí
�

t p�1 K�í (t)dt

� �
â p�1(x)� oP(h p�1ÿí): (7:5)

Hence
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mT Aím �
�
â2
í(x)w(x) dx� 2h p�1ÿí

�
t p�1 K�í (t)dt

� �

3

�
â p�1(x)âí(x)w(x) dx

� �
� oP(h p�1ÿí): (7:6)

As noted in Remark 1,
�
â p�1(x)âí(x)w(x) dx depends only on the ®rst ( p� í� 1)=2

derivatives of m(�). Since any function with ( p� í� 1)=2 derivatives can be approximated

arbitrarily close by a function with p� 1 derivatives, (7.6) must hold for s . ( p� í� 1)=2.

Similar arguments can be seen in Hall and Marron (1991, p. 170).

If s < ( p� í� 1)=2, set l � [s]� [sÿ í]. Assume initially that m( l) exists and is

bounded (note that l , ( p� 1)). From a Taylor expansion with an integral remainder,

m(X i) � m(x)�
Xlÿ1

k�1

(X i ÿ x)k m(k)(x)=k!� (X i ÿ x) l

(l ÿ 1)!

�1

0

(1ÿ t) lÿ1 m( l)(x� t(X i ÿ x))dt,

(7:7)

for i � 1, . . . , n. It follows from (7.4) and (7.7) that

mT Aím �
�
â2
í(x)w(x) dx�

�
âí(x)r(x)w(x) dx� OP(h2(sÿí)): (7:8)

The second term on the right-hand side of (7.8) can be written asXn

i�1

�1

0

(1ÿ t) lÿ1

(l ÿ 1)!

�
d[sÿí]

dx[sÿí]
âí(x)W n

í

X i ÿ x

h

� �
(X i ÿ x) lw(x)

� �
3 (m([s])(x� t(X i ÿ x))ÿ m([s])(x)) dx dt

� hÿíÿ1

�1

0

(1ÿ t) lÿ1

(l ÿ 1)!
E

�
d[sÿí]

dx[sÿí]
âí(x)K�í

X i ÿ x

h

� �
(X i ÿ x) lw(x) f ÿ1(x)

� �(

3 (m([s])(x� t(X i ÿ x))ÿ m([s])(x)
�
dx

�
dt � Op(hlÿían)

� hlÿí
�1

0

(1ÿ t) lÿ1

(l ÿ 1)!

��
d[sÿí]

dx[sÿí]
(âí(x)K�í (u)u lw(x) f ÿ1(x))

3 (m([s])(x� htu)ÿ m([s])(x)) f (x� hu)du dx dt � OP(hlÿían), (7:9)

where an � h� (nh)ÿ1=2 is obtained by more careful evaluation of the oP(1) term in Lemma

2.1. It follows from (7.8), (7.9) and (4.1) that if s < ( p� í� 1)=2, then

mT Aím �
�
â2
í(x)w(x) dx� OP(hs�[s]ÿ2í): (7:10)

The combination of (7.3), (7.6) and (7.10) gives the bias expression in Theorem 4.1(a).

Next, we compute the asymptotic conditional variance of è̂í. In what follows, we treat
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explicitly the three terms given in the right-hand side of (3.4). The ®rst term (omitting the

factor 4ó 2) is

mT A2
ím �

Xn

j�1

Xn

i�1

ai, j(í)m(X i)

 !2

�
Xn

j�1

Xn

i�1

Xn

k�1

ai, j(í)m(X i)ak, j(í)m(Xk)

�
X

i, j,k all different

�
X

i�k 6� j

� 2
X

i� j 6�k

�
X

i� j�k

: (7:11)

Now

X
i�k 6� j

�
X
i6� j

m2(Xi)

�
W n

í

X i ÿ x

h

� �
W n

í

X j ÿ x

h

� �
w(x) dx

 !2

�
X
i6� j

m2(X i)

n4 h4í�4

��
K�í

Xi ÿ x

h

� �
K�í

Xj ÿ x

h

� �
w(x) f ÿ2(x)

3 (1� oP(1)I [ÿh�X i,h�X i](x)I [ÿh�X j ,h�X j](x)) dx

�2

� nÿ2 hÿ4íÿ2

����
K�í (u1)K�í u1 � xÿ y

h

� �
m2(x� hu1) f (x� hu1)

3 (1� oP(1)I [ÿ1,1](u1)I [ÿ1ÿ(xÿ y)=h,1ÿ(xÿ y)=h](u1))du1

�

3

��
K�í (u2)K�í u2 � xÿ y

h

� �
f (y� hu2)(1� oP(1)I [ÿ1,1](u2)

3 I [ÿ1ÿ(xÿ y)=h,1ÿ(xÿ y)=h](u2))du2

�
w(x)w(y) f ÿ2(x) f ÿ2(y) dx dy

� OP(nÿ3 hÿ4íÿ3=2)

� nÿ2 hÿ4íÿ1(1� oP(1))

�
(K�í � K�í (z))2 dz

� �

3

��
m2(x) f ÿ1(x) f ÿ1(y)w(x)w(y) dx dy: (7:12)

By (7.4) and Lemma 2.1,
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X
i, j,k all different

� nÿ1 hÿ2í
���

(âí(y)� r(y))(âí(y� hz)� r(y� hz))K�í (t)

3 K�í (t � z) f (y� h(z� t))w(y)w(y� hz) f ÿ1(y� hz)

3 f ÿ1(y)dt dz dy� OP(
������
nh
p

nÿ2 hÿ2íÿ2)

� nÿ1 hÿ2í
���

gí(y)gí(y� hz)K�í (t)K�í (t � z)

3 f (y� h(z� t))dt dz dy� OP(
������
nh
p

nÿ2 hÿ2íÿ2), (7:13)

with gí(y) � (âí(y)� r(y))w(y) f ÿ1(y). If s . 2í, it is assumed initially that s . 3í. Then

write

gí(y� hz) �
X2í
l�0

g( l)
í (y)hlz l=l!� o(h2í) (7:14)

and

f (y� h(z� t)) �
Xí
k�0

f (k)(y)hk(z� t)k=k!� o(hí): (7:15)

Note that from (2.10), for non-negative integers l, k, and l � k < 2í,

��
z l(z� t)k K�í (t)K�í (t � z)dt dz �

(ÿ1)í
l!

í!(l ÿ í)!
if l > í, k < í

and l � k � 2í,

0 elsewhere:

8>><>>: (7:16)

Combining (7.13)±(7.16),

X
i, j,k all different

� (ÿ1)í

n(í!)2

�
gí(y)

Xí
i�0

g(í�i)
í (y) f (íÿi)(y)

í!

i!(íÿ i)!

 !
dy� oP(nÿ1)

� (ÿ1)í

n(í!)2

�
gí(y)

dí

dyí
[g(í)

í (y) f (y)] dy� oP(nÿ1): (7:17)

Applying integration by parts and Condition A3 to (7.17), it follows thatX
i, j,k all different

� 1

n(í!)2

�
[g(í)

í (y)]2 f (y)dy� oP(nÿ1)

� 1

n(í!)2

�
[G(í)

í (y)]2 f (y)dy� oP(nÿ1), (7:18)
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with Gí(y) � âí(y)w(y) f ÿ1(y). Expression (7.18) only involves derivatives of m(�) up to the

2íth, and hence must hold for s . 2í. To modify arguments (7.13)±(7.18) for the case of

s < 2í, the change required is in (7.14) and (7.15). The initial assumption is that m(�) has

(2[s]ÿ í) bounded derivatives, and Taylor expansions of orders 2([s]ÿ í) and (2íÿ [s]) for

gí(y� hz)ÿ gí(y)� � and f (y� h(z� t)), respectively. Then, applying integration by parts

[s]ÿ í times, together with the smoothness de®nition (4.1), we obtain

X
i, j,k all different

� OP(nÿ1 hÿ2í�s):

The other two terms in (7.11), 2
P

i� j 6�k and
P

i� j�k, are of smaller order than
P

i, j,k all different

and
P

i�k 6� j.

The second term in the right-hand side of (3.4) (omitting the factor 2ó 4) is

tr(A2
í) �

Xn

i�1

a2
i,i(í)�

X
i 6� j

a2
i, j(í)

� I1 � I2,

where I1 and I2 denote the diagonal and non-diagonal terms, respectively. By means of

arguments similar to those used in establishing the term mT A2
ím, we obtain that

I1 � OP(nÿ3 hÿ4íÿ2) and

I2 � n(nÿ 1)(1� oP(1))

n4 h4í�4

X
i6� j

E

�
K�í

Xi ÿ x

h

� �
K�í

X j ÿ x

h

� �
f (x)ÿ2w(x) dx

( )2

� nÿ2 hÿ4íÿ1

��
f(K�í � K�í )(z)g2 dz f (x)ÿ2w2(x) dx� oP(nÿ2 hÿ4íÿ1):

Consequently,

tr(A2
í) � nÿ2 hÿ4íÿ1(1� oP(1))

�
[(K�í � K�í )(z)]2 dz

� � �
f (x)ÿ2w2(x) dx

� �
: (7:19)

Observe that the last term (omitting the factor E(å4
1)ÿ 3ó 4) in the right-hand side of (3.4) is

Xn

i�1

a2
i,i(í) � I1 � oP(tr(A2

í)): (7:20)

The asymptotic variance follows from (7.12), (7.18), (7.19) and (7.20). h
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Proof of Theorem 4.3. This theorem follows directly by the following two expressions:

E(�èí) � E(è̂í)ÿ E(ó̂ 2tr(Aí))

� E(è̂í)ÿ ó 2tr(Aí)� E((ó̂ 2 ÿ ó 2)tr(Aí))

� E(è̂í)ÿ ó 2tr(Aí)� OP(En nÿ1 hÿ2íÿ1):

var(�èí) � var(è̂í ÿ (ó̂ 2 ÿ ó 2)tr(Aí))

� var(è̂í)� OP(E2
n nÿ2 hÿ4íÿ2):

Proof of Theorem 5.1. If the linear term dominates, i.e. tr(A2)=mT A2m!P 0 (case (i)), then

åT Aåÿ E(åT Aå) � oP (mT A2m)1=2
ÿ �

. Conditioning on fX1, . . . , Xng, it is trivial that mT Aå
is normally distributed with mean 0 and variance ó 2mT A2m. This implies

(4ó 2mT A2m)1=2(è̂ÿ E(è̂)) � (4ó 2mT A2m)1=2f2mT Aå� (åT Aåÿ E(åT Aå))g

!C N (0, 1):

For case (ii), tr(A2)=mT A2m!P 1, we need only consider åT Aå. Factor A into a product

ÃTËÃ, where Ã is an orthonormal matrix and Ë is a diagonal matrix with the eigenvalues

of A, ëi, as its entries. Now

åT Aå � äTËä �
Xn

i�1

ëiä
2
i ,

with ä � Ãå � (ä1, . . . , än): Note that by the assumption that tr(A4)=tr(A2))2 !P 0, as

n!1,

Xn

i�1

Ecjëiä
2
i ÿ ëij4 �

Xn

i�1

ë4
i Ec(ä2

i ÿ 1)4 � 60ó 4
Xn

i�1

ë4
i � oP([tr(A2)]2),

where Ec denotes the conditional expectation given fX 1, . . . , X ng. Hence the Lindeberg

condition for the asymptotic normality of
Pn

i�1ëiä
2
i holds:

Xn

i�1

Ecjëiä
2
i ÿ ëij4

var
Xn

i�1

ëiä
2
i jX1, . . . , Xn

 !" #2
�

15ó 4
Xn

i�1

ë4
i

[tr(A2)]2
!P 0,

and so åT Aå is asymptotic normally distributed. Consequently, the asymptotic normality of è̂
for cases (i) and (ii) is proved. h
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Proof of Lemma 6.1. Note that

P max
j

Z n, j . nhbn

� �
<
X

j

P(Z n, j . nhbn): (7:21)

Clearly, it is suf®cient to show that [
Pn

j�1 P(Z n, j . nhbn)]! 0.

Given an arbitrary positive constant d,

P(Z n, j . nhbn) � P(exp(Z n, jd) . exp(nhbnd))

< exp(ÿnhbnd)Efexp(Z n, jd)g

� exp(ÿnhbnd)(1ÿ pn, j � ed pn, j)
n

< exp(ÿnhbnd � npn, je
d): (7:22)

Take d � log(hbn=pn, j) in (7.22). If n is suf®ciently large, then

P(Z n, j . nhbn) <
pn, je

hbnn

� �nhbn

: (7:23)

Since max j pn, j < ch, the right-hand side of (7.23) is bounded by

(ch)nhb nÿ1 e

hbn

� �nhb n

pn, j � 1

ch

ce

bn

� �nhb n

pn, j:

Now bn(log(ce)ÿ log(bn)) < ÿ1 for suf®ciently large n, which, together with Condition B,

gives

X
j

P(Z n, j . nhbn) <
X

j

1

ch

1

e

� �nh

pn, j

� 1

ch

1

e

� �nh

! 0: (7:24)

The conclusion follows from (7.21) and (7.24). h

Proof of Lemma 6.2. Observe that from (7.19)

tr(A2
í) > c1 nÿ2 hÿ4íÿ1 � oP(nÿ2 hÿ4íÿ1) (7:25)

for some non-negative constant c1. It suf®ces to consider the rate of ëmax(í). From basic

theory of linear algebra,

ëmax(í) � sup
kbk�1

Xn

i�1

Xn

j�1

ai, j(í)bibj: (7:26)
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From Lemma 2.1, for n suf®ciently large,

Xn

i�1

Xn

j�1

ai, j(í)bibj <
2

(nhí�1)2

�
f (x)ÿ2

Xn

i�1

K�í
Xi ÿ x

h

� �
bi

 !2

w(x) dx: (7:27)

Under Conditions A, the right-hand side of (7.27) is further bounded by

c2 nÿ2 hÿ2íÿ2

� Xn

i�1

jbijI [Xiÿh,h�Xi](x)

 !2

dx

� c2 nÿ2 hÿ2íÿ2
Xn

i�1

b2
i

�
I [Xiÿh,Xi�h](x) dx

 

�
X
i 6� j

jbij jb jj
�

I [Xiÿh,Xi�h](x)I [X jÿh,X j�h](x) dx

!

< c2 nÿ2 hÿ2íÿ2 2h
Xn

i�1

b2
i � 2h

X
i6� j

I [jXiÿX jj<2h]jbij jb jj
 !

(7:28)

for some non-negative constant c2.

We use the following argument to evaluate the double summation in (7.28). Let

I k � (4(k ÿ 1)h, 4kh], k 2 Z be a partition of (ÿ1, 1), and nk be the number of design

points X i that fall in the interval I k . Since I [jX iÿX jj<2h] � 0 for X i 2 I k1
, X j 2 I k2

, and

jk1 ÿ k2j. 1,X
i, j

I [jX iÿX jj<2h]jbij jbjj <
X1

k�ÿ1

X
X i ,X j2 I k[ I( k�1)

jbij jbjj
 !

�
X1

k�ÿ1

X
X i2 I k[ I( k�1)

jbij
 !2

: (7:29)

Put N � maxk2Z(nk � nk�1) � (nk0
� nk0�1) for some k0 2 Z. The maximum of the right-

hand side of (7.29) over kbk � 1 is attained at jbij � 1=
�����
N
p

for those indices such that

X i 2 I k0
[ I k0�1. Therefore,

max
kbk�1

X
i, j

I [jXiÿX jj<2h]jbikb jj < N :

Note that the fnkg have a multinomial distribution and hence, by Lemma 6.1, N �
OP(nhán), for any sequence án !1. Taking án � hÿ1=4, it follows from (7.28) that

ëmax(í) < c2 nÿ2 hÿ2íÿ2OP(h� nh7=4): (7:30)

Combine (7.25) and (7.30) to conclude that

ë2
max(í)

tr(A2
í)
� OP(nÿ2 hÿ1 � h1=2)! 0: h
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Proof of Theorem 6.1. From Theorem 5.1, one only needs to verify

tr(A4
í)

(tr(A2
í))2
!P 0, as n!1:

Let ëi(í), i � 1, . . . , n, be eigenvalues of Aí and ëmax(í) be the maximum eigenvalue among

all ëi(í)s. Then,

tr(A4
í)

(tr(A2
í))

2
�

Xn

i�1

ë4
i (í)

Xn

i�1

ë2
i (í)

 !2
<

ë2
max(í)Xn

i�1

ë2
i (í)

� ë2
max(í)

tr(A2
í)
!P 0, as n!1: (7:31)

Hence the asymptotic normality of è̂í and �èí follows. h
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