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This paper extends to d . 1 dimensions the concept of point-stationarity, which formalizes the

intuitive idea of a point process for which the behaviour relative to a given point of the process is

independent of the point selected as origin. After de®ning point-stationarity, this concept is

characterized in several ways and the characterizations then used to extend to d dimensions a

particular approach to Palm theory, producing two dualities between stationary and point-stationary

processes with quite different interpretations. The dualities coincide in the ergodic case.
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1. Introduction

The main purpose of this paper is to extend to d . 1 dimensions the concept of point-

stationarity, which formalizes the intuitive idea of a simple point process for which the

behaviour relative to a given point of the process is independent of the point selected as

origin.

Note that point-stationarity is different from stationarity. Stationarity means that the

behaviour of the point process relative to any given non-random site is independent of the

site selected as origin. For instance, when d � 1, the Poisson process with constant intensity

is stationary since if the origin is moved from 0 to any other ®xed site t then we still have

a Poisson process with the same intensity. But if a point is added at 0 then we obtain a

non-stationary process since if the origin is moved from the point which we placed at 0 to

any other ®xed site t then there need not be a point there. This new process, however, is

point-stationary since, seen from the point which we placed at 0, the intervals between

points are i.i.d. exponential and this will still be true if we move the origin, for instance, to

the ®rst point on the right of the point at 0.

The point-stationarity problem is presented in Section 2 and solved in Section 3.

After de®ning point-stationarity in Section 3 the concept is further characterized in

Sections 4, 5 and 6. In Sections 8 and 9 these characterizations are then used to extend to

d . 1 dimensions a particular approach to the Palm theory of stationary point processes

presented in Thorisson (1995) for the case d � 1, while Section 7 contrasts this approach to

the conventional one.

Section 10 concludes with comments on the two Palm dualities presented in Sections 8

and 9, on references, and on possible extensions of the point-stationarity concept, for
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instance, to the zero set of Brownian motion discussed by Mandelbrot (1983) and Kagan

and Vere-Jones (1988). These are in fact the only references that this author is aware of

where the point-stationarity problem is even mentioned.

The paper is fairly self-contained. In particular, no prior knowledge of Palm theory is

assumed. Only in the proof of the ®nal two theorems do we refer to Thorisson (1996) for a

coupling result and to Daley and Vere-Jones (1988) for an ergodic theorem.

2. The point-stationarity problem

This section explains the point-stationarity problem in full detail, moving from the obvious

one-dimensional case to the not so obvious higher-dimensional case. Necessary notation is

introduced along the way.

2.1. The simple point processes N and No

Intuitively a simple point process in d dimensions, d > 1, is a countable set of isolated points

scattered over the d-dimensional Euclidean space Rd in some random manner (like planets

scattered over space). This random set of points can be represented by a collection of random

variables

N � (N (B) : B 2 B d),

where B d are the Borel subsets of Rd and N (B) is the number of points in the set B. More

precisely, a simple point process in d dimensions is a random element N in the measurable

space (M, M ), where M is the set of all simple counting measures (that is, integer-valued

measures ì on (Rd , B d) with ì(B) ,1 for all bounded B 2 B d and ì(ftg) � 0 or 1 for all

t 2 Rd) and M is the product ó-algebra on M (the smallest ó-algebra such that, for each

B 2 B d , the projection mapping from M to R taking ì to ì(B) is M=B measurable). The

ó-algebra M is also generated by the usual topology on M, but we shall not need this fact.

We shall write N o to indicate that one of the points is placed at 0 (the origin of Rd), that

is,

N o(f0g) � 1:

We shall regard No as a random element in (Mo, M o), where Mo is the subset of M

containing the simple counting measures having mass one at the origin,

Mo � fì 2 M : ì(f0g) � 1g,
and M o is the trace of Mo on M, that is, M o �M \ Mo.

Let (Ù, F , P) be a common probability space supporting N and No, and all other

random elements in this paper. (In Sections 8 and 9 we break this convention by letting

there be two choices of P).
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2.2. Sites and points

Call a (non-random) element t of Rd a site (and not a point) to distinguish it from the points

of the point process. Thus a random element T in Rd is a random site. Call a random site Ð
a point or a random point of N only if the point process N has a point at Ð, that is, only if

N (fÐg) � 1:

Similarly, call a random site Ðo a point or a random point of No only if the point process

No has a point at Ðo, that is, only if

N o(fÐog) � 1:

A point process typically does not look the same seen from a non-random observation site as

seen from an observation point (the universe does not look the same seen from space as seen

from a planet).

2.3. Site-shifts and stationarity of N

For ì 2 M let s(ì) denote the set of ì-points (the point pattern or the support of ì):

s(ì) � fp 2 Rd : ì(fpg) � 1g,
For t 2 Rd, de®ne the shift or site-shift èt taking ì 2 M to ètì 2 M by

ètì(B) � ì(t � B), B 2 B d ,

where t � B � ft � s : s 2 Bg. The point process N is called stationary if

èt N �D N , t 2 Rd ,

where `�D ' denotes identity in distribution. Note that èt shifts (or translates) the point pattern

by ÿt. In other words, èt shifts the origin (the observation site) to t. Thus one could say that

stationarity of the point process N means that it looks the same from all non-random

observation sites.

2.4. The point-stationarity problem for No

Similarly, it would be natural to say that the point process No is point-stationary if it looks

the same from all observation points. What this means has not been clear, however ± except

in one dimension.

When d � 1, point-stationarity means that N o is interval-stationary, that is, the intervals

between the points form a stationary sequence:

(Ð0
n�k ÿÐo

n�kÿ1)ÿ1, k ,1 �D (Ðo
k ÿÐo

kÿ1)ÿ1, k ,1, n 2 Z,

where
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. . . ,Ðo
ÿ2 ,Ðo

ÿ1 ,Ðo
0 � 0 ,Ðo

1 ,Ðo
2 , . . .

are the points of N o written as an increasing sequence. This de®nition of point-stationarity

when d � 1 can be rewritten as

èÐo
n
No�D No, n 2 Z:

In other words, if the observer moves from the point at the origin to the nth point on the right

(or left) of the origin then the probability distribution of the point pattern that he sees does

not change: the point process No looks the same from all observation points.

When d . 1, this de®nition of point-stationarity does not work since then there are no

intervals between the points of N o to form a stationary sequence, and the observer cannot

use the simple point-selection rule `move from the point at the origin to the nth point on

the right (or left)' since there is typically no nth point on the right (or left). But is there

some similar way of moving between points in higher dimensions?

2.5. The point-stationarity problem in the Poisson case

Note that even the Poisson process seems to present a problem. Let N be a stationary Poisson

process. When d � 1 we obtain a point-stationary N o by adding a point at the origin to N,

No � N � ä0, (2:1)

where ä0 is the measure with mass one at 0. It is well known that the intervals between points

are then i.i.d. exponential and point-stationarity follows. But when d . 1 (in the plane, for

instance) how can we shift the origin to another point of No without spoiling the distribution

of the point pattern that we see?

`Why not shift the origin to the closest point?' tends to be the ®rst reaction to this

question. In order to indicate why this does not work, let us consider the following

example.

Example 2.1. Consider the case when d � 1 and let No be the Poisson process with a point

at the origin de®ned in (2.1). We know that N o is point-stationary so if shifting to the closest

point is to be the way to shift in higher dimensions it ought to work in one dimension also,

that is, it should not change the distribution of N o.

Shift the origin of No to the closest point to obtain èÐo
closest

N o, where

Ðo
closest �

Ðo
1 if Ðo

1 < ÿÐo
ÿ1,

Ðo
ÿ1 if Ðo

1 .ÿÐo
ÿ1:

�
Then you are sure to see, either to the right or to the left of the new origin, an interval

followed by a longer interval. This is de®nitely not a property of N o which in both directions

from the origin has an exponential interval followed by an independent exponential interval.

Thus èÐo
closest

N o does not have the same distribution as No, that is, shifting the origin to the

closest point does not preserve the distribution of this point-stationary No.
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2.6. Point-maps and point-shifts

Example 2.1 illustrates that the selection of a point to shift the origin to is the key issue when

de®ning point-stationarity. We cannot select points in any old way. In order to discuss this

problem, we need the following terminology.

Call an M o=B d measurable mapping ð from Mo to Rd an No-point-map if it selects a

point, that is, if

ì(fð(ì)g) � 1, ì 2 Mo:

Call the mapping èð from Mo to Mo de®ned by

èðì � èð(ì)ì, ì 2 Mo,

an N o-point-shift.

Note that èð shifts the origin from a point to a point. Call èð the point-shift associated

with ð. It is readily checked that èð is M o=M o measurable.

When d � 1, examples of N o-point-maps are the ðn, ÿ1, n ,1, de®ned for ì 2 Mo

by

ðn(ì) �
nth ì point to the right of 0, n . 1,

0, n � 0,

ÿnth ì point to the left of 0, n ,ÿ1:

8<:
The associated N o-point-shifts translate the origin to the nth point on the right (or ÿnth on

the left). Note that the random points Ðo
n introduced in Section 2.4 can be written as

Ðo
n � ðn(No).

When d > 1, an example of an No-point-map is the shift to the closest point, ðclosest,

de®ned for ì 2 Mo by

ðclosest(ì) � the ì-point having the lexicographically highest order among the non-zero

ì-points being at shortest distance from the origin:

The lexicographic rule here is just to make sure that ðclosest(ì) is uniquely de®ned. The

random point Ðo
closest in Example 2.1 can be written as Ðo

closest � ðclosest(No).

2.7. What is wrong with shifting the origin to the closest point?

In Example 2.1 shifting the origin to the closest point changed the distribution of an interval-

stationary (that is, point-stationary) N o. So what is wrong with this point-shift?

In order to answer this question let us ®rst consider another one: when d � 1, what is so

special about shifting the origin of No to the nth point on the right? The essential property

of this point-shift is the following. By knowing the point-selection rule (select the nth point

on the right) and by looking at the point pattern from the new origin you can always tell

from what point you came and shift the origin back to the nth point on the left of the new

origin: we ®rst shift the origin of ì to ðn(ì) to obtain èð n
ì and then the origin of èð n

ì to
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ðÿn(èð n
ì) � ÿðn(ì)

to obtain

èðÿ n
èðn

ì � ì, ì 2 Mo:

Thus ì is the only element of Mo that èð n
shifts to ì9 :� èð n

ì. Also any element ì9 of Mo

can arise from this point-shift since taking ì :� èðÿ n
ì9 yields

èð n
ì � ì9:

Thus, shifting the origin to the nth point on the right is a bijective point-shift.

When d � 1, it can be shown that an interval-stationary (that is, point-stationary) No is

distributionally invariant under the group of all bijective No-point-shifts (see Remark 3.1).

Shifting the origin to the closest point is wrong because this point-shift is not bijective:

there can be more than one point of a point pattern having a particular point p as the

closest point.

2.8. Bijective point-shifts?

It is natural to apply bijective point-shifts when de®ning point-stationarity since under a

bijective point-shift èð all points are equally important, or get equal attention, in the

following sense: with ì 2 Mo ®xed, the mapping

p 7! p� ð(èpì)

is a bijection from s(ì) to s(ì), that is, under this mapping each point is the image of a

unique point. All this suggests that we should de®ne point-stationarity in higher dimensions

by requiring that No is distributionally invariant under bijective No-point-shifts.

But for this de®nition to make sense we must ®nd some bijective point-shifts, other than

the trivial è0. Having searched for such point-shifts for quite some time, the author doubts

that they exist and therefore makes the following guess, without further motivation.

Conjecture 2.1. No nontrivial bijective No-point-shifts exist when d . 1.

If this is true, how then can we de®ne point-stationarity in higher dimensions? The answer is

that bijective point-shifts exist if we consider No against an independent stationary

background. We explain what this means in the next section.

3. De®nition of point-stationarity

In order to highlight the point-stationarity problem, we have up to now avoided saying that

the point process N o will be regarded in association with a random ®eld X o. Considering N o

jointly with X o does not solve our problem but is conceptually a step in the right direction.
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3.1. The associated random ®elds X and X o

We shall henceforth consider a pair (N , X ) where N is a simple counting process and

X � (X s)s2Rd

is a random ®eld with an arbitrary state space (E, E ) and path space (H, H ), where H is a

shift-invariant subset of ERd

and H is the ó-algebra on H generated by the projection

mappings taking x � (xs)s2Rd in H to xt in E, t 2 Rd .

In order to be able to apply random shifts we need the minimal regularity condition

(satis®ed in the standard settings, for instance when (E, E ) is Polish and the paths right-

continuous) that X is canonically measurable, that is, the mapping from H 3 Rd to E

taking (x, t) to xt is H 
B d=E measurable. For t 2 Rd, let èt denote the shift or site-shift

from H to H de®ned by

èt x � (xt�s)s2Rd , x 2 H :

Canonical measurability is equivalent to the mapping from H 3 Rd to H taking (x, t) to èt x

being H 
B d=H measurable (shift-measurability).

(Considering N in association with a random ®eld is equivalent to considering a marked

point process in the following sense. When X is given we could de®ne the mark of a point

Ð to be èÐ X . Conversely, when the marks are given we could de®ne X by letting X s be

the marked point process with origin shifted to s.)

We shall not assume any functional connection between N and X. At one extreme, N

could be determined by X. For instance, when d � 1, the points could be the times when a

stochastic process enters a given state. At the other extreme, X could be identically

constant, which boils down to regarding N alone (not in association with any random ®eld)

as we did in Section 2.

When we consider a random ®eld in association with N o we shall denote it X o. Thus the
o on X o is not to indicate a property of X o. It only indicates that X o is considered jointly

with No (while as before the o on N o is to indicate that No has a point at the origin).

3.2. Extended point-maps and point-shifts

Let èt denote the shift or site-shift from M 3 H to M 3 H de®ned, for t 2 Rd, by

èt(ì, x) � (ètì, èt x), (ì, x) 2 M 3 H :

Call an M o 
H =B d measurable mapping ð from Mo 3 H to Rd an (No, X o)-point-map if

it selects a point, that is, if

ì(fð(ì, x)g) � 1, (ì, x) 2 Mo 3 H :

Call the mapping èð from Mo 3 H to Mo 3 H de®ned by

èð(ì, x) � èð(ì,x)(ì, x), (ì, x) 2 Mo 3 H ,

an (No, X o)-point-shift.

Note that èð shifts the origin from a point to a point. Call èð the point-shift associated
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with ð. The M o 
H =M o 
H measurability of èð follows from the canonical

measurability of X o.

In order to distinguish (No, X o)-point-maps and -shifts from No-point-maps and -shifts

we shall sometimes call them extended point-maps and extended point-shifts.

3.3. The point-stationarity problem for (No, X o)

The pair (N , X ) is stationary if it looks the same from all observation sites, that is,

èt(N , X )�D (N , X ), t 2 Rd :

Similarly, (as in the case of N o alone) it would be natural to say that the pair (N o, X o) is

point-stationary if it looks the same from all observation points.

When d � 1, point-stationarity means that (N o, X o) is cycle-stationary, that is, the points

of No split X o into a stationary sequence of cycles. This de®nition of point-stationarity,

when d � 1, can be rewritten as

èÐo
n
(N o, X o)�D (N o, X o), n 2 Z,

and it can be shown that this is equivalent to (No, X o) being distributionally invariant under

the group of all bijective (N o, X o)-point-shifts (again see Remark 3.1).

Under a bijective (No, X o)-point-shift èð all points are equally important, or get equal

attention, in the same sense as in the No case: with (ì, x) 2 Mo 3 H ®xed, the mapping

p 7! p� ð(è p(ì, x))

is a bijection from s(ì) to s(ì), that is, under this mapping each point is the image of a

unique point.

This again suggests that we should de®ne point-stationarity for d . 1 by requiring that

(No, X o) is distributionally invariant under bijective (N o, X o)-point-shifts. Even if

Conjecture 2.1 is true, non-trivial bijective (N o, X o)-point-shifts might exist for certain

random ®elds X o. Indeed, we shall give an example in Section 3.6.

Although this will not give us a de®nition of point-stationarity for arbitrary pairs

(No, X o) it is a step half-way towards the solution.

3.4. Intuitive motivation of the solution

The solution to the point-stationarity problem is to consider (No, X o) against any

independent stationary background, that is, consider (No, X o) jointly with an arbitrary

independent stationary (canonically measurable) random ®eld

Y o � (Y o
s)s2Rd :

Let (L, L ) be the path space of Y o. Note that the o on Y o (like the o on X o) is only to

indicate that Y o is considered in association with N o and does not imply that Y o and N o are
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functionally connected (while the o on the point process N o itself indicates that N o has a

point at the origin).

Intuitively, if the triple (No, X o, Y o) looks the same from all the points of N o then so, in

particular, does the pair (No, X o). Conversely, if (N o, X o) looks the same from all the

points of N o then so will (N o, X o, Y o) because (due to the stationarity of Y o) Y o looks the

same from all random sites that are independent of Y o and thus (due to the independence

of Y o and (No, X o) and the fact that (N o, X o) looks the same from all the points of No)

the triple (N o, X o, Y o) should look the same from all points of No.

In other words, (N o, X o) should be point-stationary if and only if (N o, X o, Y o) is point-

stationary.

3.5. Solution of the point-stationarity problem

This suggests that we call the pair (No, X o) point-stationary if the triple (N o, X o, Y o) is

distributionally invariant under all bijective (No, X o, Y o)-point-shifts for all canonically

measurable random ®elds Y o which are stationary and independent of (No, X o). The above

discussion motivates this de®nition intuitively, while the theory established in the upcoming

sections motivates it practically. Here is the de®nition stated in full detail.

De®nition 3.1. Call (No, X o) point-stationary if

èÐo (No, X o, Y o)�D (No, X o, Y o) (3:1)

for all random points Ðo of the form

Ðo � ð(No, X o, Y o), (3:2)

where Y o is any canonically measurable random ®eld which is stationary and independent of

(No, X o) and ð is any (No, X o, Y o)-point-map (that is, ð is an M o 
H 
L =B d

measurable mapping from Mo 3 H 3 L to Rd which selects a point:

ì(fð(ì, x, y)g) � 1, (ì, x, y) 2 Mo 3 H 3 L)

such that the associated point-shift (that is, the M o
 H 
L =M o 
H 
L measurable

mapping èð from Mo 3 H 3 L to Mo 3 H 3 L de®ned by

èð(ì, x, y) � èð(ì,x, y)(ì, x, y), (ì, x, y) 2 Mo 3 H 3 L)

is a bijection.

Remark 3.1. When d � 1, this point-stationarity de®nition is equivalent to the apparently

weaker property of cycle-stationarity since both properties are equivalent to (4.3) in Theorem

4.1 below.

Remark 3.2. De®nition 3.1 is equivalent (see Lemma 4.1) to the apparently weaker condition
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èÐo (N o, X o)�D (N o, X o), (3:3)

for all random points

Ðo � kn(No, Y o),

where Y o and kn, n 2 Z, are from the family of random ®elds and point-shifts (indexed by

h . 0) de®ned in the next subsection.

3.6. A key example of extended bijective point-shifts

We shall now construct a random ®eld Y o and a two-sided sequence of (N o, Y o)-point-maps

kn, n 2 Z, such that the associated (No, Y o)-point-shifts are bijections. Both Y o and the

point-maps will depend on a ®xed constant h . 0. Thus we are really de®ning a family of

random ®elds and point-shifts indexed by h . 0, although we suppress the parameter h in the

notation.

We start by constructing Y o which will simply represent the stationary point-pattern

hZd ÿ hU , where U is uniformly distributed on [ÿ1
2
, 1

2
)d . Let b � (bs)s2Rd be the ®xed

function from Rd to Rd de®ned by

bs � the vector from the site s to the closest element of hZd :

If there are more than one such hZd-elements, let bs be the vector to the element of highest

lexicographic order (thus bs is right-continuous in all the d coordinates of s).

Let Y o have state space (Rd , B d) and have paths in

L � fèt b : t 2 [ÿh=2, h=2)dg � fèt b : t 2 Rdg:
Let U be a random site which is uniformly distributed on [ÿ1

2
, 1

2
)d and independent of

(No, X o), and de®ne

Y o � èUhb:

Clearly Y o is stationary and independent of (No, X o), and canonical measurability follows

from right-continuity of the paths.

We now turn to constructing the bijective (N o, Y o)-point-maps kn, n 2 Z. Fix

(ì, y) 2 Mo 3 L. Call a site t 2 Rd such that yt � 0 a y-centre and the associated set

t � [ÿh=2, h=2)d a y-box. Note that y0 is the centre of the y-box containing the origin. Let

k be the number of ì-points in that box,

k � ì(y0 � [ÿh=2, h=2)d),

(k > 1 since 0 2 s(ì) and y0 2 (ÿh=2, h=2]d). Let p0, . . . , pkÿ1 be the ì-points in

s(ì) \ (y0 � [ÿh=2, h=2)d) ordered lexicographically. Let m denote the index of the ì-point

at the origin, that is, pm � 0. For n 2 Z, put

kn(ì, y) � pm�n (mod k),

where
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(m� n) mod k � inf (m� nÿ kZ) \ [0, 1):

That is, kn(ì, y) is the nth point after the point at the origin (if n , 0, interpret this as the

ÿnth point before the point at the origin) in a circular enumeration of the points in the box

containing the origin. Thus the point at the origin is the nth point before kn(ì, y) in that

same circular enumeration. Thus

èkÿ n
èk n

(ì, y) � (ì, y) (ì, y) 2 Mo 3 L:

Thus (ì, y) is the only element of Mo 3 L that èkn
shifts to (ì9, y9) :� èkn

(ì, y). Also any

element (ì9, y9) of Mo 3 L can arise from èkn
since taking (ì, y) :� èkÿ n

(ì9, y9) yields

èkn
(ì, y) � (ì9, y9). Thus èkn

is bijective.

4. Palm characterization of point-stationarity

In this section we establish a pleasant characterization of point-stationarity in terms of non-

random site-shifts. We shall call it a Palm characterization because it is the key to the Palm

dualities presented in Sections 8 and 9. At the end of the section we state a dual Palm

characterization of stationarity.

We start by introducing an important concept, so-called Voronoi cells, which play in

some respects the same role in higher dimensions as the intervals between points in one

dimension.

4.1. Voronoi cells

Consider a point pattern in Rd represented by a simple counting measure ì 2 M . Note that

the point pattern s(ì) need not have a point at the origin. With each point p 2 s(ì) associate

the set of sites t 2 Rd which are strictly closer to p than to any other point. This set is the

open Voronoi cell with point p. De®ne the Voronoi cells themselves by extending the open

Voronoi cells in such a way that a site t 2 Rd which is at equal minimal distance to two or

more points belongs to the cell with point p having the highest lexicographic order.

Thus with each point p 2 s(ì) there is associated a Voronoi cell. There are ®nitely or

countably many of these Voronoi cells, they are disjoint, and their union is Rd . In other

words, the Voronoi cells form a ®nite or countable partition of Rd .

Note that, when d � 1, the Voronoi cells are intervals with the points in the interior

while one usually considers intervals with the points at the ends. For further information on

Voronoi cells, see for instance Okabe et al. (1992).

In what follows the Voronoi cell containing the origin is of key importance. For N put

C0 � the Voronoi cell of N which contains the origin

and

Ð0 � the N -point of C0:

For No put
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Co
0 � the Voronoi cell of No which contains the point at the origin:

4.2. Shifting the origin to and from Ð0

From now on the pairs (N , X ) and (No, X o) will be functionally linked as follows. Regard

(N , X ) as given. De®ne (N o, X o) and a Co
0-valued random site S by

(No, X o) � èÐ0
(N , X ), and S � ÿÐ0:

Thus ((No, X o), S) is ((N , X ), 0) seen from Ð0.

Conversely, regard (N o, X o) and a Co
0-valued random site S as given. De®ne (N , X ) by

(N , X ) � èS(No, X o)

(this implies that Ð0 � ÿS). Thus (N, X) is (N o, X o) seen from S.

Under this functional one-to-one correspondence between (N , X ) and ((No, X o), S) we

have

Co
0 � C0 ÿÐ0

or, equivalently,

C0 � Co
0 ÿ S:

Thus, in particular, the Voronoi cells C0 and Co
0 have the same volume:

ë(Co
0) � ë(C0)

where ë is Lebesgue measure on (Rd , B d).

4.3. The Palm characterization of point-stationarity

We shall now show that point-stationarity of the pair (No, X o) means that if we shift the

origin to a site selected uniformly at random in Co
0 then the pair will look the same from all

observation sites provided we volume-bias by the volume of Co
0.

Theorem 4.1. Let (No, X o), S and (N , X ) be linked as in Section 4.2, and suppose ë(C0) is

®nite with probability one. Then

(No, X o) is point-stationary (4:1)

and

the conditional distribution of S given (No, X o) is uniform on Co
0 (4:2)

if and only if

E[ f (èt(N , X ))ë(C0)] � E[ f (N , X )ë(C0)], f 2M 
H �, t 2 Rd : (4:3)

We prove Theorem 4.1 in the next three subsections.
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4.4. First part of proof of Theorem 4.1: (4.1) and (4.2) imply (4.3)

We shall ®rst assume that (4.1) and (4.2) hold and show that this implies (4.3). Take t 2 Rd

and f 2M 
H � and use the conditional uniformity (4.2), and ë(Co
0) � ë(C0), to obtain the

second identity in

E[ë(C0) f (èt(N , X ))] � E[ë(C0) f (èt�S(No, X o))]

� E

�
t�Co

0

f (ès(No, X o))ds

" #
: (4:4)

Let kn and Y o be as in Section 3.6; furthermore, let C n denote the Voronoi cell of N o

associated with the point kn(N o, Y o),

K � N o(Y o
0 � [ÿh=2, h=2)d)

denote the number of No-points in the Y o-box containing the origin, and

A �
[Kÿ1

n�o

Cn

denote the union of cells with points in the Y o-box containing the origin.

Note that the number of No-points in the box containing the origin remains (since the

point-map kn selects a point in that box) the same after the shift by èkn
, namely K. Thus

1fK�kg
�

( t�Co
0)\C n f (ès(N o, X o))ds is obtained from (No, X o, Y o) by the same function in

M o 
H 
L � as 1fK�kg
�

( t�Cÿ n)\Co
0

f (ès(No, X o))ds from èkn
(No, X o, Y o). Due to (4.1),

(No, X o, Y o) and èkÿn
(No, X o, Y o) have the same distribution, and thus

E 1fK�kg

�
( t�Co

0)\C n

f (ès(No, X o))ds

" #
� E 1fK�kg

�
( t�Cÿ n)\Co

0

f (ès(N o, X o))ds

" #
:

Recall that A is the union of C n over 0 < n , K and note that A is also the union of Cÿn

over 0 < n , K. Thus summing ®rst over 0 < n , k and then over 1 < k ,1 yields

E

�
( t�Co

0)\A

f (ès(No, X o))ds

" #
� E

�
( t�A)\Co

0

f (ès(N o, X o))ds

" #
:

Now A in fact depends on the parameter h and expands to the union of all the Voronoi cells

as h!1. Thus both A and t � A expand to Rd as h!1. Thus by monotone convergence

E

�
t�Co

0

f (ès(N o, X o))ds

" #
� E

�
Co

0

f (ès(No, X o))ds

" #
:

Apply this to (4.4) to obtain that E[ë(C0) f (èt(N , X ))] does not depend on t, that is, (4.3)

holds.

Point-stationarity in d dimensions and Palm theory 809



4.5. Middle part of proof of Theorem 4.1: (4.3) implies (4.2)

We shall now assume that (4.3) holds and show that this implies (4.2). For t 2 Rd, write Ct

for the Voronoi cell of N containing the site t, and Ð t for the N-point of Ct. From (4.3) and

P(ë(C0) ,1) � 1 we have

E[1fë(C t)�1gë(C0)] � E[1fë(C0)�1gë(C0)] � 0,

which, together with ë(C0) . 0, yields

P(ë(Ct) ,1) � 1, t 2 Rd :

Let g be a non-negative measurable real-valued function de®ned on Rd and let f 2
M 
H �. Note that ë(C0)ÿ1 g(S) f (N o, X o) is obtained from (N , X ) by the same function

in M 
H � as ë(Ct)
ÿ1 g(t ÿÐ t) f (èÐ t

(N , X )) from èt(N , X ). Due to (4.3), this implies

that

E[g(S) f (N o, X o)] � E[ë(C0)ë(Ct)
ÿ1 g(t ÿÐ t) f (èÐ t

(N , X ))]:

Integrating over 0 < t , 1 and interchanging integration and expectation yields

E[g(S) f (N o, X o)] � E ë(C0)

�
0< t , 1

ë(Ct)
ÿ1 g(t ÿÐ t) f (èÐ t

(N , X ))dt

� �
: (4:5)

Take i 2 Zd and note that�
0< t , 1

1fi<Ð t , i�1gë(Ct)
ÿ1 g(t ÿÐ t) f (èÐ t

(N , X ))dt

is obtained from (N, X) by the same function in M 
H � as�
ÿi< t ,ÿi�1

1f0<Ð t , 1gë(Ct)
ÿ1 g(t ÿÐ t) f (èÐ t

(N , X ))dt

from èÿi(N , X ). Applying (4.3), with t replaced by ÿi, yields

E ë(C0)

�
0< t , 1

1fi<Ð t , i�1gë(Ct)
ÿ1 g(t ÿÐ t) f (èÐ t

(N , X ))dt

� �

� E ë(C0)

�
ÿi< t ,ÿi�1

1f0<Ð t , 1gë(Ct)
ÿ1 g(t ÿÐ t) f (èÐ t

(N , X ))dt

� �
:

Sum over i 2 Zd to obtain, due to (4.5) and since Rd is the union of the disjoint sets, [ÿi,

ÿi� 1)d ,

E[g(S) f (No, X o)] � E ë(C0)

�
t2Rd

1f0<Ð t , 1gë(Ct)
ÿ1 g(t ÿÐ t) f (èÐ t

(N , X ))dt

� �
:

Since ft 2 Rd : 0 < Ð t , 1g is the disjoint union of C p over the points p in [0, 1)d and

since

ë(Ct) � ë(C p) and f (èÐ t
(N , X )) � f (è p(N , X )), t 2 C p,

g(t ÿÐ t) � g(t ÿ p), t 2 C p,
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we obtain

E[g(S) f (No, X o)] � E ë(C0)
X

p2s(N )\[0,1)d

f (è p(N , X ))ë(C p)ÿ1

�
t2Cp

g(t ÿ p)dt

" #
: (4:6)

Taking g � 1 yields

E[ f (No, X o)] � E ë(C0)
X

p2s(N )\[0,1)d

f (è p(N , X ))

" #
, f 2M 
H �: (4:7)

Replacing f (N o, X o) by f (N o, X o)ë(C0)ÿ1
�

t2Co
0
g(t)dt in (4.7) yields

E f (No, X o)ë(C0)ÿ1

�
t2Co

0

g(t)dt

" #

� E ë(C0)
X

p2s(N )\[0,1)d

f (è p(N , X ))ë(C p)ÿ1

�
t2C p

g(t ÿ p)dt

" #
:

Compare this and (4.6) to obtain

E[g(S) f (N o, X o)] � E f (N o, X o)ë(C0)ÿ1

�
t2Co

0

g(t)dt

" #
, g 2 B d� , f 2M 
H �,

which is equivalent to (4.2).

4.6. Final part of proof of Theorem 4.1: (4.3) implies (4.1)

Finally, we assume that (4.3) holds and show that this implies (4.1). Let Y o and ð be as in

De®nition 3.1. Assume also that Y o is independent of (N , X ), that is, not only independent of

(No, X o) but also of ((No, X o), S). (This is no restriction since if this were not the case we

could replace Y o by a random ®eld which is independent of (N , X ) and has the same

distribution as Y o: (3.1) holds for Y o if and only if it holds with Y o replaced by this copy of

Y o.) Put

Y � èS Y o

and note that since Y o is stationary and independent of ((No, X o), S), so is Y.

Since Y is stationary and independent of (N , X ) we obtain from (4.3) that

E[ f (èt(N , X , Y ))ë(C0)] � E[ f (N , X , Y )ë(C0)], f 2M 
H 
L �, t 2 Rd : (4:8)

In the same way as (4.7) followed from (4.3), we obtain that (4.8) implies

E[ f (N o, X o, Y o)] � E ë(C0)
X

p2s(N )\[0,1)d

f (è p(N , X , Y ))

" #
, f 2M 
H 
L �: (4:9)

Replace f by f (èð(:)) in (4.9) to obtain
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E[ f (èð(No, X o, Y o))] � E ë(C0)
X

p2s(N )\[0,1)d

f (èðè p(N , X , Y ))

" #
: (4:10)

Take i 2 Zd and note thatX
p2s(N )\[0,1)d

1fi< p�ð(è p(N ,X ,Y )) , i�1g f (èðè p(N , X , Y ))

is obtained from (N , X , Y ) by the same function in M 
H 
L � asX
p2s(N )\[ÿi,ÿi�1)d

1f0< p�ð(è p(N ,X ,Y )) , 1g f (èðè p(N , X , Y ))

from èÿi(N , X , Y ). Applying (4.8), with t replaced by ÿi, yields

E ë(C0)
X

p2s(N)\[0,1)d

1fi< p�ð(è p(N ,X ,Y )) , i�1g f (èðè p(N , X , Y ))

" #

� E ë(C0)
X

p2s(N )\[ÿi,ÿi�1)d

1f0< p�ð(è p(N ,X ,Y )) , 1g f (èðè p(N , X , Y ))

" #
:

Sum over i 2 Zd and compare with (4.10) to obtain

E[ f (èð(No, X o, Y o))] � E ë(C0)
X

p2s(N )

1f0< p�ð(è p(N ,X ,Y )) , 1g f (èðè p(N , X , Y ))

" #
:

Since èð is bijective we have that for each point q 2 s(N ) \ [0, 1)d there is a unique point

p 2 s(N ) such that q � p� ð(è p(N , X , Y )). Applying this on the right-hand side yields

(note that èðè p(N , X , Y ) � è p�ð(è p(N ,X ,Y ))(N , X , Y ))

E[ f (èð(No, X o, Y o))] � E ë(C0)
X

q2s(N )\[0,1)d

f (èq(N , X , Y ))

" #
:

Compare this and (4.9) to obtain that

E[ f (èð(No, X o, Y o))] � E[ f (N o, X o, Y o)], f 2M 
H 
L�,

holds for Y o and ð as in De®nition 3.1. Thus (4.1) holds and the proof of Theorem 4.1 is

complete.

4.7. The backgrounds and point-maps in Section 3.6 suf®ce

The family of background ®elds Y o and point-maps kn, n 2 Z, de®ned in Section 3.6, depend

on a parameter 0 , h ,1 suppressed in the notation. This family played a crucial role in the

above proof and does in fact suf®ce to characterize point-stationarity. Below (in the proof of

Theorem 5.1) we shall need the following slightly more general result.
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Lemma 4.1. Let V be a [0, 1)-valued random variable which is independent of (N o, X o) and

the family of random ®elds Y o in Section 3.6. Let V o be the stationary random ®eld de®ned

by V o
t � V, t 2 Rd . The pair (N o, X o) is point-stationary if and only if

èÐo
n
(N o, X o)�D (N o, X o) (4:11)

for all random points Ðo
n of the form

Ðo
n � án(N o, X o, Y o, V o)

where án, n 2 Z, are the (N o, X o, Y o, V o)-point-maps de®ned by

án(ì, x, y, v) � k[v0 k]�n(ì, y),

with k � ì(y0 � [ÿh=2, h=2)d) and [:] denoting the integer part.

Proof. The `only if' part holds because (Y o, V o), regarded as a bivariate random ®eld,

(Y o
t , V o

t )s2Rd , is stationary and independent of (N o, X o) and èá n
is bijective for the same

reason as èkn
is: see the end of Section 3.6 and replace the origin in that argument by

á0(ì, x, y, v).

In order to establish the `if' part, let S be a random site such that the conditional

distribution of S given (No, X o) is uniform on Co
0. Replace Y o by (Y o, V o) and kn by án

in the argument in Section 4.4 to obtain that (4.3) holds. By Theorem 4.1 this implies that

(No, X o) is point-stationary. h

4.8. Palm characterization of stationarity

Modifying the proof of Theorem 4.1 in an obvious way yields the following dual result.

Theorem 4.2. Let (N, X), (N o, X o) and S be linked as in Section 4.2 and suppose ë(C0) ,1
with probability one. Then (N , X ) is stationary if and only if the conditional distribution of S

given (N o, X o) is uniform on Co
0 and

E[ f (èÐo (N o, X o))=ë(C0)] � E[ f (N o, X o)=ë(C0)], f 2M o 
H �,

for all random points Ðo as in De®nition 3.1.

Proof. Simply replace E[:] by E[:=ë(C0)] throughout the proof of Theorem 4.1. h

Thus stationarity of the pair (N , X ) means that if we view it from the point of the Voronoi

cell where the origin lies then the origin is located uniformly at random in the cell and,

moreover, the pair looks the same from all observation points provided we volume-debias by

the volume of the cell.

We shall need the following result in Section 6.

Lemma 4.2. If (N , X ) is stationary then
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E[ f (N o, X o)=ë(C0)] � E
X

p2s(N)\[0,1)d

f (è p(N , X ))

" #
, f 2M 
H �: (4:12)

In particular,

E[1=ë(C0)] � E[N ([0, 1)d)]: (4:13)

Proof. In the proof of (4.7) replace E[:] by E[:=ë(C0)] to obtain (4.12). Then take f � 1 to

obtain (4.13). h

The expected number of points in a unit box, E[N ([0, 1)d)], is called the intensity of the

stationary point process N. According to (4.13) it can be calculated by taking the expectation

of one over the volume of the Voronoi cell containing the origin, E[1=ë(C0)].

5. Point-stationarity characterized by randomized point-shifts

In this section we shall show that point-stationarity means distributional invariance under

doubly randomized point-shifts: a shift to a uniformly selected site followed by a shift to a

uniformly selected point.

5.1. The characterization result

It turns out that a point-stationary (No, X o) is characterized by the following property: if

(No, X o) is ®rst shifted by an independent site U selected uniformly at random in any

bounded Borel set B of positive volume and the origin is then shifted to a èÿU No-point Ð
picked uniformly at random among the points s(èÿU N o) \ B that ended up in B, then the

distribution of (N o, X o) does not change. Note that there is at least one èÿU N o-point in B,

the one at U which initially was at the origin:

èÿU No(fUg) � No(f0g) � 1:

The ®rst randomized shift would not change the distribution of a stationary pair: if (N , X ) is

stationary then, since U is independent of (N , X ),

èÿU (N , X )�D (N , X ):

The ®rst randomized shift does, however, change the distribution of a point-stationary pair

since èÿU (No, X o) has no point at the origin, unlike (N o, X o). But when the ®rst randomized

shift is followed by the second then the distribution is restored: if (No, X o) is point-

stationary then

èÐèÿU (N o, X o)�D (N o, X o):

Note that Ðo � Ð ÿ U is uniform on s(No) \ (Bÿ U ) so we can describe this characteri-
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zation of a point-stationary (No, X o) alternatively as follows: if we place any bounded Borel

set of positive volume uniformly at random around the N o-point at the origin and shift the

origin to a point Ðo selected uniformly at random among the No-points in that set then the

distribution of (N o, X o) does not change.

Here is a more formal statement.

Theorem 5.1. Let B 2 B d be bounded and such that ë(B) . 0. Let U be a random site that

is uniform on B and independent of (No, X o). Let Ðo be a random point of N o such that the

conditional distribution of Ðo given ((No, X o), U ) is uniform on the ®nite set of points of

No lying in Bÿ U, that is, uniform on

s(N o) \ (Bÿ U ):

Then (N o, X o) is point-stationary if and only if for each such B

(èÐo (No, X o), Ðo � U )�D ((No, X o), U ): (5:1)

In fact, (N o, X o) is point-stationary if (5.1) holds for all B of the form

B � [ÿh=2, h=2)d , h . 0:

Note that it follows from (5.1) that if we place a bounded Borel set of positive volume

uniformly at random around the point at the origin then the point at the origin is located

uniformly at random among the points in the set.

5.2. Proof of Theorem 5.1

Let Y o be as in Section 3.6 and choose h large enough for B to be contained in

[ÿh=2, h=2)d . Put

B9 � [ÿh=2, h=2)dnB:

Let ân, n 2 Z, be the following modi®cation of the point-shifts kn in Section 3.6: if

0 2 y0 � B let ân(ì, y) be the nth point after the point at the origin in the circular

lexicographic enumeration of the ì-points in y0 � B; if 0 2 y0 � B9 let ân(ì, y) be the nth

point after the point at the origin in the circular lexicographic enumeration of the ì-points in

y0 � B9. Then èâ n
is bijective for the same reason as èkn

is bijective (see Section 3.6).

Note that conditionally on ÿY o
0 2 B, Y o

0 � B is B placed uniformly at random around the

origin. In order to obtain a point placed uniformly at random among the points in Y o
0 � B,

let V be uniform of [0, 1) and independent of (N o, X o, Y o), and de®ne a stationary random

®eld V o by

V o
t � V , t 2 Rd :

For each n 2 Z, de®ne (No, X o, Y o, V o)-point-maps án as follows: if 0 2 y0 � B let

án(ì, x, y, v) � â[v0 k]�n(ì, y), where k � ì(y0 � B), and if 0 2 y0 � B9 let án(ì, x, y, v) �
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ân(ì, y). Then èá n
is bijective and (Y o, V o), regarded as a bivariate random ®eld,

(Y o
t , V o

t )s2Rd , is stationary and independent of (No, X o).

With

Ðo
n � án(N o, X o, Y o, V o)

we have

P(((N o, X o), Ðo
n ÿ Y o

0, ÿY o
0) 2 :j ÿ Y o

0 2 B) � P(((No, X o), Ðo � U , U ) 2 :): (5:2)

Suppose (No, X o) is point-stationary. Then

èÐo
n
(No, X o, Y o, V o)�D (No, X o, Y o, V o),

which implies

(èÐo
n
(No, X o), ÿY o

Ðo
n
)�D ((N o, X o), ÿY o

0): (5:3)

Now

fÿY o
0 2 Bg � fÿY o

Ð0
n
2 Bg, ÿY o

Ðo
n
� Ðo

n ÿ Y o
0, (5:4)

which yields the second identity in

P((èÐo (No, X o), Ðo � U ) 2 :)
� P((èÐ0

n
(N o, X o), Ðo

n ÿ Y o
0) 2 :j ÿ Y o

0 2 B) (due to (5:2))

� P((èÐo
n
(N o, X o), ÿY o

Ðo
n
) 2 :j ÿ Y o

Ðo
n
2 B) (due to (5:4))

� P(((N o, X o), ÿY o
0) 2 :j ÿ Y o

0 2 B) (due to (5:3))

� P(((N o, X o), U ) 2 :) (due to (5:2)):

Thus point-stationarity implies (5.1) for all bounded B of positive Lebesgue measure.

Conversely, suppose (5.1) holds for B � [ÿh=2, h=2)d. With this B (5.2) becomes

P(((N o, X o), Ðo
n ÿ Y o

0, ÿY o
0) 2 :) � P(((No, X o), Ðo � U , U ) 2 :),

which implies èÐo
n
(No, X o)�D èÐo (No, X o). Thus, due to (5.1),

èÐo
n
(No, X o)�D (No, X o),

that is, (4.11) in Lemma 4.1 holds. Also, when B � [ÿh=2, h=2)d the án satisfy the

condition in Lemma 4.1. Thus (No, X o) is point-stationary.

6. Point-stationarity and the invariant ó-algebras I and J

In this section we ®rst de®ne the invariant ó-algebras I and J , then extend Theorem 5.1
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slightly, and ®nally show that several properties are preserved under conditioning on J , the

invariant ó-algebra of both (N , X ) and (No, X o) � èÐ0
(N , X ).

6.1. The invariant ó-algebras I and J

Let I be the invariant ó-algebra on M 
H , namely the following sub-ó-algebra of

M 
H :

I � fB 2M 
H : èt B � B, t 2 Rdg:
Let J be the invariant ó-algebra of (N , X ), namely the following sub-ó-algebra of F :

J � (N , X )ÿ1I , (6:1)

(short for J � ff(N , X ) 2 Bg : B 2 I g). Note that, for any random site T and any B 2 I ,

fèt(N , X ) 2 B, T � tg � f(N , X ) 2 èÿ t B, T � tg

� f(N , X ) 2 B, T � tg, t 2 Rd ,

and thus taking union over t 2 Rd yields

fèT (N , X ) 2 Bg � f(N , X ) 2 Bg, B 2 I : (6:2)

In particular, with (No, X o) � èÐ0
(N , X ) this yields

J � (No, X o)ÿ1I , (6:3)

that is, when (N , X ) and (No, X o) are linked as in Section 4.2 then J is also the invariant ó-

algebra of (No, X o).

Note that although we have chosen to regard No as a random element in (Mo, M o), and

not in (M, M ), the invariant ó-algebra of (No, X o) � èÐ0
(N , X ) is still J since

I o � the invariant ó-algebra on (Mo, M o) � the trace of Mo 3 H on I

and thus J � (N o, X o)ÿ1I � (No, X o)ÿ1I o.

6.2. Extension of Theorem 5.1

We shall now extend Theorem 5.1 by allowing the set B to be expanded by an invariant

random variable. This result will be used in the proof of Theorem 9.3.

Theorem 6.1. Let g 2 I be a strictly positive and ®nite function and put

G � g(N o, X o):

Let B 2 B d be bounded and such that ë(B) . 0. Let U be a random site that is uniform on B

and independent of (No, X o). Let Ðo be a random point of No such that the conditional

distribution of Ðo given ((No, X o), U ) is uniform on the ®nite set of points of No lying in

G(Bÿ U ); that is, let Ðo be uniform on
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s(N o) \ G(Bÿ U ):

Then (N o, X o) is point-stationary if and only if for each such B

(èÐo (No, X o), Ðo � GU )�D ((No, X o), GU ): (6:4)

Proof. First assume that g is bounded and repeat the proof of Theorem 5.1 with B replaced

by g(ì, x)B. Now g 2 I means that g(èt(ì, x))B � g(ì, x)B for all t 2 Rd . This fact ± that

the set g(ì, x)B does not change by shifting (ì, x) ± is needed to deduce that èâ n
is still

bijective. Thus (6.4) holds for bounded g. If g is not bounded, take a ®nite constant a . 0

and apply (6.4), with g replaced by g ^ a, to obtain

E[ f (èÐo (N o, X o), Ðo�GU )1fg(èÐo (No, X o)) , ag]

� E[ f ((N o, X o), GU )1fg(No, X o) , ag], f 2K 
H 
B d� :

Send a to in®nity to obtain (6.4). h

6.3. Conditioning on the invariant ó-algebra J

We shall now show that all characterizations still hold when we condition on the invariant ó-

algebra J of (N , X ) and of (No, X o) � èÐ0
(N , X ). This result will be used in Section 9.

Theorem 6.2. Let (No, X o), S and (N, X) be linked as in Section 4.2.

(a) The pair (N o, X o) is point-stationary under P if and only if it is so under P(:jJ ).

(b) The pair (N, X) is stationary under P if and only if it is so under P(:jJ ).

(c) Formula (4.3) holds if and only if it holds with E replaced by E[:jJ ].

(d) Formulae (5.1) and (6.4) hold if and only if they hold when P is replaced by P(:jJ ).

(e) If (N, X) is stationary under P then

E[N ([0, 1)d)jJ ] � E[1=ë(C0)jJ ] a:s: P:

Proof. Formula (3.1) in the de®nition of point-stationarity is equivalent to

E[ f (èÐo (N o, X o, Y o))1fèÐo (No,X o)2Bg]

E[ f (N o, X o, Y o)1f(No,X o)2Bg], B 2 I , f 2M 
H �:

Due to (6.2), we have that

1fèÐo (No,X o)2Bg � 1f(No,X o)2Bg, B 2 I ,

and thus (3.1) is equivalent to

E[ f (èÐo (N o, X o, Y o))jJ ] � E[ f (No, X o, Y o)jJ ], f 2K 
H �:

This yields (a). We obtain (b), (c) and (d) in a similar way.
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In order to obtain (e), take f 2 I in Lemma 4.2. Then f (è p(N , X )) � f (No, X o) and

we obtain from (4.12) that

E[ f (No, X o)=ë(C0)] � E[ f (N o, X o)N ([0, 1)d)], f 2 I ,

that is, (e) holds. h

7. On Palm theory of stationary point processes

We are now ready to extend to d . 1 dimensions the approach to Palm theory presented in

Thorisson (1995) for d � 1. Since this approach differs from the conventional one, let us ®rst

have a brief look at the conventional theory.

7.1. On the conventional Palm theory of stationary point processes

The so-called Palm version (N o, X o) of a stationary pair (N , X ) having ®nite intensity:

E[1=ë(C0)] � E[N ([0, 1)d)] ,1
is usually de®ned by specifying the expectations of f (No, X o) to coincide with

E
X

p2s(N)\[0,1)d

f (è p(N , X ))

" #�
E[N ([0, 1)d)], f 2M 
H � (7:1)

(compare with (4.12) and Theorem 4.2). This (N o, X o) has the following interpretation:

(No, X o) behaves as (N , X ) when N happens to have a point at the origin. (That is, the

distribution of (No, X o) is the conditional distribution of (N , X ) when it is given that N has

a point at the origin. Since the probability of N having a point at the origin is zero this

interpretation is informal and must be motivated, for instance, by a limit theorem.)

The distribution of the Palm version (No, X o) can be reversed to get back the

distribution of the stationary pair (N , X ). Thus there is a duality (one-to-one correspon-

dence) between the distributions of stationary pairs (N , X ) with ®nite intensity and their

Palm versions (No, X o). This is not a very satisfying duality since the Palm version is

derived from the stationary (N , X ). In other words, the Palm version does not have a

de®ning property without reference to its stationary dual and thus the duality is rather half-

baked.

When d � 1, however, it is known that the Palm version (N o, X o) is cycle-stationary

(that is, point-stationary) with cycle lengths having ®nite mean. Moreover, it is known that

the reversed Palm of any cycle-stationary (N o, X o) with cycle lengths having ®nite mean

yields a stationary pair (N , X ) with ®nite intensity. Thus, when d � 1, there is a Palm

duality between stationary (N , X ) with ®nite intensity and point-stationary (N o, X o) with

cycle lengths having ®nite mean.

When d . 1, there should be a Palm duality between two classes of processes of equal

status: stationary and point-stationary.
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7.2. The approach of this paper

In this paper we have given meaning to point-stationarity when d . 1. The task now is to

extend the above-mentioned Palm duality to d . 1. We shall do so along the lines of

Thorisson (1995). This approach differs from the conventional one in two ways.

On the one hand, rather than de®ning the distribution of the Palm version by the single

formula (7.1) (and then getting the stationary process back through a single reversion

formula) we de®ne the Palm duality in two separate steps. The ®rst step is measure-free,

involving only the paths (shifting to or from a point; Section 4.2). The other is a biasing

step involving the probability measure and the volume of the Voronoi cell containing the

origin. (Other expressions for biasing are weighting, Radon±Nikodym, change of measure.)

On the other hand, we present two Palm dualities rather than only one. These dualities

have quite different interpretations:

(1) The ®rst duality has the conventional informal interpretation that the point-stationary

pair behaves like its stationary dual conditioned on having a point at the origin. In

particular, this means that the point-stationary pair in this duality is the conventional

Palm version of the stationary pair.

(2) The second duality has the informal interpretation that the point-stationary pair

behaves like its stationary dual observed from a point selected uniformly at random

among all the points. Conversely, the stationary pair behaves like its point-stationary

dual observed from a site selected uniformly at random among all sites in Rd .

In other words:

(1) If we watch a stationary pair (N , X ) from the origin and there happens to be a point

there then (N , X ) behaves as its ®rst point-stationary dual.

(2) If we watch a stationary pair (N , X ) from a uniformly selected point then (N , X )

behaves as its second point-stationary dual.

The two dualities coincide in the ergodic case (when the invariant ó-algebra is trivial). The

exact condition for coincidence is more general; see Section 10.1.

We shall present these two Palm dualities in the next two sections. The two dualities are

indicated by subscripts on the probability measures.

8. The ®rst Palm duality

We start by extending from d � 1 to d . 1 the conventional (point-at-zero) Palm duality

between stationarity and point-stationarity.

8.1. The ®rst Palm duality theorem

Let (N , X ) and ((No, X o), S) be de®ned on the same measurable space (Ù, F ) and linked as

in Section 4.2, that is to say,
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(No, X o) � èÐ0
(N , X ) and S � ÿÐ0

or equivalently

(N , X ) � èS(No, X o):

Recall that C0 and Co
0, respectively, are the Voronoi cells of (N , X ) and (N o, X o) containing

the origin and that they have the same Lebesgue measure ë(Co
0) � ë(C0).

Let P1 and Po
1 be two probability measures on (Ù, F ) satisfying

E1[1=ë(C0)] ,1
and

dPo
1 �

1

ë(C0)E1[1=ë(C0)]
dP1 (volume-debiasing P1);

or, equivalently,

Eo
1[ë(C0)] ,1

and

dP1 � ë(C0)

Eo
1[ë(C0)]

dPo
1 (volume-biasing Po

1):

Note that

E1[1=ë(C0)] � 1

Eo
1[ë(C0)]

and that the conditional distribution of S given (No, X o) is the same under P1 as under Po
1

[since ë(C0) is determined by (No, X o)].

Theorem 8.1. We have that

(N , X ) is stationary under P1

if and only if

(N o, X o) is point-stationary under Po
1

and the conditional distribution of S given (N o, X o) is uniform on Co
0:

Proof. This is an immediate consequence of Theorem 4.1. h

8.2. Interpretation and properties

Theorem 8.1 yields a duality between the distributions of stationary (N , X ) with ®nite

intensity and point-stationary (No, X o) with ®nite-mean Voronoi cell volume, as follows. If

the distribution of the stationary (N , X ) is given we obtain the distribution of a point-

stationary (N o, X o) immediately from the theorem. If, on the other hand, the distribution of
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the point-stationary (N o, X o) is given then we can introduce a random site S with a uniform

conditional distribution on Co
0, given (No, X o), to obtain a distribution of a stationary (N , X ).

The following theorem yields an unusually strong limit motivation of the conventional

point-at-zero interpretation of this duality. Put Ð0 � t � 0 in (c) to obtain the informal

expression:

P1((N , X ) 2 :jÐ0 � 0) � Po
1((N o, X o) 2 :):

(This expression is informal because P1(Ð0 � 0) � 0.)

Theorem 8.2. Suppose that the conditional distribution of S given (No, X o) is uniform on Co
0

under P1 (or, equivalently, under Po
1). Then the following claims hold:

(a) Under P1 the random site S is continuous with density

P1(S 2 ds)

ds
� Po

1(s 2 Co
0)

Eo
1[ë(C0)]

, s 2 Rd :

(b) For each A 2M 
H ,

P1((No, X o) 2 AjS � s) � Po
1((N o, X o) 2 Ajs 2 Co

0), s 2 Rd :

(c) For each A 2M 
H , there is a version of P1(èÐ0
(N , X ) 2 AjÐ0 � :) such that

P1(èÐ0
(N , X ) 2 AjÐ0 � t)! Po

1((No, X o) 2 A), jtj # 0:

Proof. (a) For B 2 B d,

P1(S 2 B) � E1[E1[1fS2Bgj(No, X o)]]

� E1[ë(B \ Co
0)=ë(C0)]

� Eo
1[ë(B \ Co

0)]=Eo
1[ë(C0)]

�
�

B

Po
1(s 2 Co

0)ds=Eo
1[ë(C0)]:

(b) With f 2M 
H � put

g f (s) � Eo
1[ f (No, X o)js 2 Co

0], s 2 Rd :

Let h 2 B d be a non-negative function and apply (a) for the ®rst step in
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E1[h(S)g f (S)] �
�

Rd

h(S)Eo
1[ f (N o, X o)js 2 Co

0]Po
1(s 2 Co

0)=Eo
1[ë(C0)]ds

� Eo
1 f (No, X o)

�
Rd

h(s)1fs2Co
0gds

� ��
Eo

1[ë(C0)]

� E1 f (No, X o)

�
Rd

h(s)1fs2Co
0gds=ë(C0)

� �
:

Apply the conditional uniformity of S to obtain the desired result on the following form:

E1[h(S)g f (S)] � E1[h(S) f (No, X o)], f 2M 
H �:

(c) This follows from (b) since Ð0 � ÿS, and 1fÿ t2Co
0g ! 1 pointwise as jtj # 0. h

9. The second Palm duality

We now extend the less known duality from d � 1 to d . 1. It is obtained by conditioning on

the invariant ó-algebra J before biasing. Thus, in particular, the two dualities coincide in the

ergodic case (when J is trivial).

9.1. The second Palm duality theorem

Again let (N , X ) and ((No, X o), S) be de®ned on the same measurable space (Ù, F ) and

linked as in Section 4.2, that is,

(No, X o) � èÐ0
(N , X ) and S � ÿÐ0

or equivalently

(N , X ) � èS(No, X o):

Recall that C0 and Co
0, respectively, are the Voronoi cells of (N , X ) and (N o, X o) containing

the origin and that they have the same Lebesgue measure ë(Co
0) � ë(C0). Recall from Section

6.1 that (N , X ) and (N o, X o) have the same invariant ó-algebra, namely

J � (N , X )ÿ1I � (No, X o)ÿ1I ,

where

I � fB 2M 
H � : èt B � B, t 2 Rdg:
Let P2 and Po

2 be probability measures on (Ù, F ) satisfying

E2[1=ë(C0)jJ ] ,1 a:s: P2

and
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dPo
2 �

1

ë(C0)E2[1=ë(C0)jJ ]
dP2 (volume-debiasing P2 given J )

or, equivalently,

Eo
2[ë(C0)jJ ] ,1 a:s: Po

2

and

dP2 � ë(C0)

Eo
2[ë(C0)jJ ]

dPo
2 (volume-biasing Po

2 given J ):

Note that

P2 � Po
2 on J , P2((N , X ) 2 :) � Po

2((N o, X o) 2 :) on I , (9:1)

Eo
2[Vë(C0)jJ ] � E2[V jJ ]

E2[1=ë(C0)jJ ]
, V 2 F �: (9:2)

and that the conditional distribution of S given (No, X o) is the same under P2 as under Po
2

(since ë(C0) is determined by (No, X o) and since J is contained in óf(N o, X o)g).

Theorem 9.1. We have that

(N , X ) is stationary under P2

if and only if

(N o, X o) is point-stationary under Po
2

and the conditional distribution of S given (No, X o) is uniform on Co
0:

Proof. By Theorem 6.2(b), (N , X ) is stationary under P2 if and only if

E2[ f (èt(N , X ))jJ ] � E2[ f (N , X )jJ ], f 2M 
H �, t 2 Rd :

By (9.2) this is equivalent to

Eo
2[ f (èt(N , X ))ë(C0)jJ ] � Eo

2[ f (N , X )ë(C0)jJ ], f 2M 
H �, t 2 Rd :

Combining this, Theorem 6.2(c) and Theorem 4.1 completes the proof. h

9.2. Shift-coupling the stationary and point-stationary duals

Theorem 9.1 yields (in the same way as described at the beginning of Section 8.2) a duality

between the distributions of stationary (N , X ) with ®nite intensity given J and point-

stationary (No, X o) with ®nite-mean Voronoi cell volume given J .

According to the following theorem the stationary and point-stationary duals in this

second duality are really the same, only seen from different sites.
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Theorem 9.2. The probability space (Ù, F , P2) can be extended to support a random point

Ð of N such that

èÐ(N , X ) under P2 �D (No, X o) under Po
2,

and the probability space (Ù, F , Po
2) can be extended to support a random site T o such that

èT o (No, X o) under Po
2 �D (N , X ) under P2:

Proof. Due to (9.1), this is a consequence of Theorem 2 in Thorisson (1996). h

9.3. Interpretation

The following theorem yields a limit motivation of the randomized-origin interpretations of

the second duality. Put h � 1 and G � 1 in (a) to obtain the informal expression:

Po
2(èuniform site in Rd (No, X o) 2 :) � P2((N , X ) 2 :)

and put h � 1 and G � 1 in (b), or n � 1 in (c), to obtain the informal expression:

P2(èuniform point of N (N , X ) 2 :) � Po
2((N o, X o) 2 :):

(These expressions are informal because there is neither a uniform distribution on Rd nor a

uniform distribution on a countable set of points.)

Theorem 9.3. Suppose the equivalent conditions in Theorem 9.1 hold. Let Bh 2 B d,

0 , h ,1, be a family of sets satisfying 0 , ë(Bh) ,1 and, for all t 2 Rd,

ë(Bh \ (t � Bh))=ë(Bh)! 1, h!1,

(which holds, for example, when Bh � hB1). Let g 2 I be strictly positive and ®nite and put

G � g(N o, X o):

Then the following limit results hold:

(a) Let U h be uniformly distributed on Bh and independent of (No, X o) under Po
2. Then

èGUh
(No, X o) under Po

2 ! (N , X ) under P2

in total variation as h!1.

(b) Let each Bh be bounded. Let Th be a random site such that under P2 the conditional

distribution of Th given (N , X ) is uniform on s(N ) \ GBh when s(N ) \ GBh 6� �.

Then

èTh
(N , X ) under P2 ! (No, X o) under Po

2

in total variation as h!1.

(c) Let the Bh be convex and compact and increase continuously from {0} to Rd as h

increases from 0 to 1. Let Ð n, n > 0, be the points of N enumerated in the order
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they are hit by Bh as h increases and lexicographically if two or more are hit

simultaneously. Let U be uniform on [0, 1) and independent of (N , X ) under P2.

Then

èÐ[U n]
(N , X ) under P2 ! (No, X o) under Po

2

in total variation as n!1.

Proof. (a) Due to (9.1), this is a consequence of Theorem 2 in Thorisson (1996).

(b) Let U h be as in (a). Let Ðo
h be a random point of N o such that the conditional

distribution of Ðo
h given ((N o, X o), U h) is uniform on s(N o) \ G(Bh ÿ U h). Apply

Theorem 6.1 to obtain that, under Po
2,

(èÐ h
èÿGUh

(No, X o), Ð h)�D ((No, X o), GUh), (9:3)

where

Ð h � Ðo
h � GUh:

The conditional distribution of Ð h given ((N o, X o), U h) is uniform on s(èÿGU h
N o) \ GBh.

This set is determined by èÿGU h
(No, X o) ± since g 2 I implies G � g(èÿGU h

(No, X o)) ±

and thus the conditional distribution of Ð h given èÿGU h
(No, X o) is uniform on

s(èÿGU h
N o) \ GBh. It follows that, a.s. Po

2(èÿGU h
(No, X o) 2 :), we have

P2(Th 2 :j(N , X ) � :) � Po
2(Ð h 2 :jèÿGU h

(N o, X o) � :): (9:4)

Thus, with jj:jj denoting the total variation norm,

jjP2(èTh
(N , X ) 2 :)ÿ Po

2((No, X o) 2 :)jj
� jjP2(èTh

(N , X ) 2 :)ÿ Po
2(èÐ h

èÿGU h
(No, X o) 2 :)jj (due to (9:3))

< jjP2((N , X ), Th) 2 :)ÿ Po
2((èÿGU h

(N o, X o), Ð h) 2 :)jj
� jjP2((N , X ) 2 :)ÿ Po

2(èÿGU h
(No, X o) 2 :)jj (due to (9:4)):

Applying (a) yields the desired result.

(c) Due to Theorem 6.2(e), E2[N ([0, 1)d)jJ ] � E2[1=ë(C0)jJ ] and by assumption

E2[1=ë(C0)jJ ] ,1. Put G � E2[N ([0, 1)d)jJ ]ÿ1=d . Then N (G:) is stationary and

E2[N (G[0, 1)d)jJ ] � GdE2[N ([0, 1)d)jJ ] � 1 a:s: P2:

Let h(n) be such that ë(Bh(n)) � n and apply Theorem 10.2.IV in Daley and Vere-Jones

(1988) to N (G:) to obtain

N (GBh(n))=n! 1 a:s: P2, n!1: (9:5)

Let Th be as in (b) with Th � 0 when s(N ) \ GBh � �. Interpret

0ÿ1
X0

1

1fèÐ kÿ1
(N ,X )2:g � 1f(N ,X )2:g
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and note that, for n, m > 1 and 0 < a1 < 1, 0 < a2 < 1, . . . ,

nÿ1
Xn

1

ak ÿ mÿ1
Xm

1

ak <
n(nÿ1 ÿ mÿ1) � 1ÿ n=m, n < m,

(nÿ m)nÿ1 � 1ÿ m=n, m < n,

�
to obtain (with Ù denoting minimum and Ú maximum)

P2(èÐ[Un]
(N , X ) 2 :) ÿ P2(èTh( n)

(N , X ) 2 :)

� E2 nÿ1
Xn

1

1fèÐ kÿ1
(N ,X )2:g ÿ N (GBh(n))

ÿ1
XN(GBh( n))

1

1fèÐ kÿ1
(N ,X )2:g

24 35
< 1ÿ E2

n ^ N (GBh(n))

n _ N (GBh(n))

� �
:

Thus, with jj:jj denoting the total variation norm,

jjP2(èð[Un]
(N , X ) 2 :)ÿ P2(èTh( n)

(N , X ) 2 :)jj < 2ÿ 2E2

n ^ N (GBh(n))

n _ N (GBh(n))

� �
:

By (9.5) and bounded convergence the expectation goes to 1 as n!1 and thus

jjP2(èÐ[Un]
(N , X ) 2 :)ÿ P2(èTh( n)

(N , X ) 2 :)jj ! 0, n!1:
This, together with (b), yields the ®nal step in

jjP2(èÐ[Un]
(N , X ) 2 :) ÿ Po

2((N o, X o) 2 :)jj
< jjP2(èÐ[Un]

(N , X ) 2 :)ÿ P2(èTh( n)
(N , X ) 2 :)jj

� jjP2(èTh( n)
(N , X ) 2 :)ÿ Po

2((No, X o) 2 :)jj

! 0, n!1: h

10. Comments and discussion

We conclude with comments on the two Palm dualities, on references, and on a possible

extension of the point-stationarity concept to more general random phenomena.

10.1. The exact condition for coincidence of the two Palm dualities

When is standing at the origin of a stationary point pattern and happening to ®nd a point

there equivalent to standing at a point selected uniformly at random from the point pattern?

The two dualities coincide when

P1 � P2 , Po
1 � Po

2:
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This holds if and only if

E2[1=ë(C0)jJ ] � E2[1=ë(C0)] a:s: P2 (10:1)

and if and only if

Eo
2[ë(C0)jJ ] � Eo

2[ë(C0)] a:s: Po
2:

In particular, this is true in the ergodic case (that is, when J is trivial, under either measure)

which is a common assumption in the literature.

The ®rst Palm version is well known and widely used, but the second is not so well

known. From the point of view of applications the second version, however, is often (for

instance when averaging over the points) more natural than the ®rst, which suggests a

partial explanation of the common ergodicity assumption.

10.2. A random site change hides the gap between the two dualities

We can make the two Palm dualities coincide by a simple random change of site scale

(provided X is measurable under change of site scale, as when it has a Polish state space and

right-continuous paths with left-hand limits). Let (N , X ) be stationary under a probability

measure P with E[1=ë(C0)] ,1 and change the site scale by

G � E[1=ë(C0)jJ ]ÿ1=d

to obtain

(N (G:), (X Gs)s2Rd ):

This new pair is stationary and the Voronoi cell containing the origin is C0=G. Noting that

ë(C0=G) � ë(C0)=Gd and G 2 J � yields

E[1=ë(C0=G)jJ ] � E[1=ë(C0)jJ ]Gd � 1:

The invariant ó-algebra of (N (G:), (X Gs)s2Rd ) is contained in J and thus

E[1=ë(C0=G)j(N (G:), (X Gs)s2Rd )ÿ1I ] � 1:

Since also E[1=ë(C0=G)] � 1, the coincidence condition holds (see (10.1)). Thus the two

point-stationary Palm duals of (N (G:), (X Gs)s2Rd ) coincide, that is, (N (G:), (X Gs)s2Rd ) has

only one point-stationary Palm dual.

Note that ë(C0=G) � ë(C0)E[1=ë(C0)jJ ] and thus the change of measure used to obtain

this common point-stationary dual of (N (G:), (X Gs)s2Rd ) is the same as the change of

measure used to obtain the point-stationary randomized-origin dual of (N , X ). Thus this

procedure preserves the randomized-origin duality and not the point-at-zero duality.

In fact, we lose the point-at-zero duality by this procedure: the point-at-zero duality

merges with the randomized-origin duality through the change of site scale and does not

reappear when we return to the original time scale after change of measure (as the

randomized-origin duality does). Thus the change of site scale is not a way to bridge the

gap between the two dualities, it only hides it. To bridge the gap we cannot avoid a change

of measure.
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10.3. On references

For d � 1, see Thorisson (1995) for references on the ®rst Palm duality (the conventional

point-at-zero duality). The author is aware of the following references on the second (the

randomized-origin duality): Nawrotzki (1978) and the recent papers by Glynn and Sigman

(1992), Nieuwenhuis (1994; 1998), Thorisson (1995), and Miyazawa et al. (1999). The

second duality is highlighted in Sigman (1994).

For d . 1, see Matthes et al. (1978), Daley and Vere-Jones (1988), Stoyan et al. (1987)

and Cowan (1978) for references on the conventional (point-at-zero) Palm version of

stationary point-processes. The author is not aware of references on the other (the

randomized-origin) Palm version.

The only references (beyond the ®nal comment in his own 1995 paper) that the author

has seen where the point-stationarity problem is mentioned are Mandelbrot (1983) and

Kagan and Vere-Jones (1988), which we discuss below.

10.4. Extending point-stationarity to more general random sets?

When working on the revision of this paper the author had the good fortune to meet David

Vere-Jones, who informed him about Mandelbrot (1983) and Kagan and Vere-Jones (1988).

The following is taken from Kagan and Vere-Jones (1988):

Kagan refers at several points to the suggestion of Mandelbrot (1983) that point process models for

self-similar behaviour should be sought not within the class of homogeneous processes [called

stationary in this paper] but within the class of processes for which the behaviour relative to a given

point of the process is independent of the point selected as origin.

The authors then speculate:

One interpretation of this requirement is that the Palm distributions of the process should be the

same for all points of the process.

They are on the right track because if we turn this on its head to read `One interpretation of

this requirement is that the reversed Palm distribution of the process should be stationary',

then it becomes similar to de®ning point-stationarity by its Palm characterization (Theorem

4.1 above). Observe that (due to Theorem 4.1) the reversed Palm distribution can be

generalized beyond a probability distribution and thus ®nite-mean Voronoi cell volume is not

needed for this alternative de®nition.

Further, Kagan and Vere-Jones say:

What hampers us in pursuing this discussion, is that we are not aware of a well established theory for

such Palm-stationary point processes. . . . Any references which deal with these and related questions

would be appreciated.

Further examples of Palm-stationary processes suggested by Mandelbrot, such as the LeÂvy dust

model and zeros of Brownian motion, have a very complex point set structure, including ®nite

accumulation points, and cannot be modelled within the standard point process framework.

The solution in the present paper of the point-stationarity problem in the case of point
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processes in d . 1 dimensions (De®nition 3.1) suggests that one might attempt to de®ne

point-stationarity in these models as follows.

Proposed de®nition. A random set is point-stationary if it is distributionally invariant under

bijective point-shifts against any independent stationary background.

Thus our next task is to ®nd such backgrounds and point-shifts!

NOTE ADDED IN PROOF

Conjecture 2.1 has been proved wrong by Olle Haggstrom (personal communication). It is,

however, not clear at this point whether the class of bijective No-point-shifts is rich enough to

de®ne point-stationarity.
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