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Using an approach based on the Cameron—Martin—Girsanov theorem, we obtain a Taylor expansion
for the probability that Brownian motion hits a smooth nonlinear boundary which grows at a suitable
rate. The structure and probabilistic meaning of the terms in the expansion are studied in some detail.
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1. Introduction and summary

1.1. Some motivation

Peter Hall and ATAW considered the following statistical problem (viewed as a prototype for
a class of problems involving asymptotic expansions for probabilities in infinite-dimensional
settings). Exact, but discontinuous, confidence bands for a continuous distribution function
can be constructed using the (known) percentage points of the Kolmogorov—Smirnov statistic.
Suppose that one wishes to present smoothed confidence bands (perhaps for aesthetic
reasons). The simplest way to do this is to obtain a smoothed estimate of the distribution
function, but still use a percentage point of the Kolmogorov—Smirnov statistic to construct
the bands. The resulting bands are smooth but the nominal coverage probability is no longer
exactly correct. The question considered by Peter Hall and ATAW was the following: what is
the size of the coverage error incurred by smoothing?

An important paper by Gotze (1985) suggests a way in which one might approach
problems of this type. His key development is to describe Edgeworth-type expansions in
abstract settings in terms of Taylor expansions of the relevant ‘probability functional’.
However, although very illuminating on a conceptual level, this approach is often rather
difficult to justify rigorously (and these difficulties are certainly apparent in the confidence-
bands problem described above). Nevertheless, consideration of Gotze’s approach does lead
to some interesting questions concerning the existence and nature of Taylor expansions for
curve-crossing probabilities associated with Brownian motion. In the present paper, we
focus exclusively on this last-mentioned topic.
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1.2. General problems for Brownian motion

Let {W,:0<t<oo} be a Brownian motion with W, =0. Let ¢ and ¢ be continuous
functions on [0, co) with a(0) > 0. Let

W(a) := P[W hits a] := P[W, = a(t) for some ¢]. (1.1)

Problem 1. When can we write, for |e| <& (g9 some positive constant),
o) n
P[W hits a + ec] = P[W hits a] Y 7., (1.2)
‘= nl

the series being absolutely convergent? If ec(-) = 0, then, of course, the sum will be
P[W hits a + ec| W hits a].

Problem 2. What is the clearest intuitive probabilistic (that is, sample-path) meaning of y,?
Think about the case when c(-) = 0 and when ¢ is small and positive. Write

7:=inf{t: W, = a(t)}, T:=inf{t: W, = a(t) + ec(t)},

with inf(9) := oo as usual. Intuitively, the y; term should focus on first-order effects in the
situation where 7 and 7 are very close. The y, term should comprise two terms: one a
second-order effect for the situation just mentioned, the other the product of two first-order
effects in the situation where W makes a ‘significant’ downward excursion from the curve a
between times 7 and 7. The y, terms will become rapidly more complicated as » increases,
and it is already difficult to obtain complete understanding of the y3; term, even when we
know what it is.

In terms of analysis, we should of course be able to regard W(a)y, as in some sense an
nth order Fréchet derivative of W at a along c.

1.3 The harmonic-function method

Let m be a measure on (0, co) with m(0, co) <1 and let b be the function on [0, co) such
that

r exp{0b(1) — 16t} m(d6) = 1. (1.3)
0

As Lerche (1986, p. 34) and Karatzas and Shreve (1988, Section 4.3C) remark, b is strictly
increasing and concave. Then,

H(t, x) == Jw exp{0x — 167t} m(dO)
0

is space-time harmonic on {(t, x): x < b(#)} in that
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ot 2 0xr
i{l this region. Moreover, for fixed x, I:I(t, X) t~ends to zero as ¢ tends to infinity, and
H(t, b(t)) = 1. If o =inf{r: W, = b(1)}, then H(t Ao, W;\,) is a bounded martingale,
whence

P(W hits b) = H(0, 0) = m(0, cc).

(Note that if 0 = oo, then, for any x, W, will equal x for a sequence of ¢ values tending to
00, so that the limit of the martingale H(¢ A o, W,n,) will be 0.)

The harmonic-function method, also called the weighted-likelihood-function method, was
used by Robbins and Siegmund (1970; 1973) to calculate crossing probabilities of certain
classes of curved boundaries for Brownian motion. The harmonic-function method is related
by time inversion to the method of images which has been used effectively in similar
contexts by Daniels (1982; 1996). These methods can be extended to deduce the law of the
first-passage time, and this has applications to the construction of sequential tests of unit
power (Robbins and Siegmund 1973; Daniels 1982) and to the pricing of barrier options
(Roberts and Shortland 1997). A third approach, suggested by Durbin (1985; 1988; 1992),
yields a series expansion for the first-passage density to a general boundary. Unfortunately,
none of these methods seem well suited to our consideration of perturbing a to a+ ec,
though we shall use them as a cross-check on some of our ‘non-perturbative’ results.

1.4. The Cameron—Martin—Girsanov (CMG) method

This method is in one sense a probabilistic counterpart to the harmonic-function method just
described, but it has greater flexibility. A full account of this method may be found in Rogers
and Williams (1987).

As previously, let a be a continuous function on [0, co), with a(0) > 0. Let ¢ now be an
absolutely continuous function on [0, co) such that

t
c(0)=0 and J ¢'(s)*ds < oo for every ¢ in [0, o0). (1.4)
0

Let W be our Brownian motion started at 0. The CMG formula shows that with
7:=inf{#: W, = a(t)} as before,

P[W hits a + ec] = P[W — &c hits a]

—F (exp {—e J c'(H)dw, — %ezjr c'(1)? dt}; < oo)
0 0

=F (exp {—e JT () dw, — %eZJT c'(1)? dt}
0 0

since P[W hits a] = P(r < o0). That this is rigorously true given only (1.4) will be confirmed
later. Thus, at least formally,

< oo) P[W hits a], (1.5)
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Vo = [E{ﬁ,,(J;c'(t)zdt, —Ed(z)dW,)

where we define the Hermite polynomial 4, on [0, co) X R (note the (¢, x) order) via

‘E<oo}, (1.6)

o0 n

6" - g
> —h(t, %) = el a0,

n=0

1.5. The linearity assumption on «

To make progress, we shall henceforth in this paper restrict attention to the ‘linear boundary’
case:

a(t) = a + ft, a>0,5>0. (1.7)
It is well known that
P[W hits a] = e 2%. (1.8)

In our study of the ‘linear boundary’ case, we unashamedly use shift-invariance properties
and the like, which will not hold in general. Our definitions of A and OA are not the ‘proper’
ones: they are those which allow the special case to be treated most simply.

The process {W,: t<t} conditioned by the event {t <oc} has the same law as

{B: +2pt: t<T}, where T := T,z := inf{t: B, = a — ft}, (1.9)
in which B is a Brownian motion started at 0. This corresponds to the analytic fact that if, for

x<a -+ ft, we let p(t, x) be the probability that for some s>0, x+ W, ., — W, equals
a+ f(t+s), so that

p(t, x) = exp{=2(a + p1 — x)B},
then we have the operator identity
(0 1& o 1 0
? <at+2a;c2>p:at+2a;c2+2ﬂ&c‘
It follows from (1.5) and (1.9) that if we define the martingale N via

N, := JZ . c'(s)dBs, (1.10)
then
PIW hits a + ec] = P[W hits a][E(G<;°’>e—2ﬂ“(T>), (1.11)
where G is the martingale with
GY = exp{—eN, — 1e2(N),}. (1.12)

Here, (N) is the quadratic-variation process of N, so that
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(N), = J; c'(s)* ds.

1.6. The operator . 7
Define the sets A and JA and the projection : OA — [0, co) as follows:
A :={(t, x) €0, 0) X R: x<a — pt},
OA == {(¢, x) € [0, 00) X R: x = a — ft},
a(t, a — i) :=t.

Note that T is the exit time of B from A. It is well known that T has probability density
function

J(@) = fap(t) =

and that, for 1 = —152,
Fe T = ¢ 0% where 6(4) := /B2 + 21 — p.
Let & be a nice function on [0, oco), and define the function h on A via
h(t, x) := Eh(t + Tyu_pi—rp), (t, x) € A. (1.14)
Then with .77, = 0{B,: s < t} as usual,
H,:=EWT)|.7 ) =htAT, Bnr),

2
\/;[_ﬁexp(—(;) exp(ﬁa—— t) >0, (1.13)

and since H is a martingale, It0’s formula shows that
INT ail
Hi=u+| 3 (s BB, (1.15)
0 Ox

(where u :=[EA(T)) and that h s space-time-harmonic on A. Thus h is the space-time-
harmonic extension of 2 o s from OA to A. We note that

T Oh
WT) = Hr = u +J (s, B,)dB,. (1.16)
0 8)6'
For k=0, 1,2, ..., we define for x = a — ft, so that (¢, x) € OA,
kh
2 h)(t 1.17
A= m O ) (1.17)

Lemma 1.1. We have:

(a) Ay =id, Ay = 2k, where 7 = 7.
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Consideration of the space-time-harmonic function h(t, x) = exp(6x — %62 t) shows that, for

0 = —f (but not for 0 <—p),
(b) #Zh=0h when h(t)=exp{6(a — pt)—16°t},

whence, if h,(f) denotes the Hermite function h,(t, a — Bt) (in agreement with the tilde
convention), then

(C) Jz//i/hn = I’lh,,_l.
If ex(t) == e, then, for A = 152
(d) ey, = 0(A)e;, where O(A) == /B2 + 21 —f.

As is explained later, the operator .7 is the Lévy—Khinchine operator associated with the
hitting-time process for drifting Brownian motion with drift f3:

50 2

{h(t) = h(t + u)}
=0

e P
du.
V2mu?
The space-time-harmonic property of h is reflected in the fact that
) A? = —2D —2B.#, where D =d/dt;

© (2h(1) = J

u

and this agrees with the ‘symbol’ formula (d).

1.7. Main result

Our main result, is the following.

Theorem 1.1. We continue to work with an arbitrary perturbation a + ec (c satisfying (1.4))
of the linear boundary a(t) = a + Bt, where a, B> 0. Recall that W and B are Brownian
motions started at 0, and that we define

t t
N, = J c'(s)dB;, (N), = J c'(s)* ds, G¥9) = exp{—eN, — Le*(N),},
0 0

and
T :=inf{#. B, + ft = a}.
Recall that
(a) P[W hits a + ec] = P[W hits a][E(G(T‘c“c)efﬂfsc(T)).
Suppose that there exists @ >0 such that
(b) Eexp(ip®(N)7) < occ.

Then, for || <(v/10 — 3)¢p, we have the absolutely convergent Taylor expansion
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&c) —2pec - gn
© E(Goe ) =3 E Ly,
n=0 """
where
(d) v = e PUEn,((N) 7, =2Bc(T) — Ny).

For nice ¢ (say, smooth and with nth-order derivative ¢ bounded on [0, c0) for each
n =1, so that in particular (b) holds for some @), we have

(e vn = Egu(T),
the functions g, being obtained recursively via the fact that gy = 1 and, for n = 1,
. n k gk o n
0 kz;(k)c gt = (20"

Thus, for example, gi(f) = —2Bc(t), g:(t) = 4B(c.#c)(t) + 4B%c(t)* and
g3 = =8B — 12Bc. A #c) — 12B%c. 4(c*) + 6B A e.

The above results may be derived formally as the special case when h = ¢e"g,/n! of the
following formula for a nice function h on [0, c0):

co) o (D)
(g) EGY ; T(/M)(T) = EA(T).

We can reformulate (f) as the formal-power-series result:

(h) {e“(’" > jgn(o}(r) = o e,
n=0 """

1.8. Boundaries below a

Define
S/f = inf{u: B, + fu>t}, t=0,

so that {S[f } is the hitting-time process (in its right-continuous version) for Brownian motion
with drift 8. The process {S/f } is a subordinator (increasing process with independent in-
crements) with

Fe S/ — exp{—0(\)t}, for > —18°. (1.18)

The operator (—.7) is the infinitesimal generator of the transition semigroup {P/: } of {S[,)) 1,
so that, for a nice function 4 on [0, co) and for u € [0, co0), we have

Y 4 ,
Z{W}U) — (&)Y = (PP (1) = Eh(t + SP). (1.19)
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On comparing this with parts (a) and (g) of Theorem 1.1 with ¢ = —1, we would guess the
‘equality’ case of the following theorem — at least when c¢ satisfies (1.4).

Theorem 1.2. Again take a(t) = a + Bt where a, §>0. Assume that c is a right-continuous
non-negative function on [0, c0), with c(0) < a(0). Suppose that we can find a function h on
[0, c0) such that

(a) fort=0, U _Enr+S0,)=(=,<)0.
Then
(b) P[W hits @ — ] — P[W hits a]EA(T) = (=, <)0.

Because the boundary a — ¢ lies below the boundary @, this theorem might seem rather
weird at first. The result was first discovered as indicated above. Once found, it looked as if
it should have a direct proof; and indeed it does.

Example 1.1. Suppose that c(f) = nt, where 0 < 5 < %ﬂ If we put & = e; in Theorem 1.2(a),
then we see from (1.18) that we must have —A—60@)y =28y, whence A=
—2Pn + 2n* € [-3p%, 0], and

En(T) = e P = &2,

in agreement with (1.8).

The restriction 7 < %ﬂ is necessary for the square root involved in 6(4), namely
(B* — 4Py +45*)'/2, to equal +(B —27). From some points of view, it is a strange
restriction. We note that, since ¢ = /5, in order to apply Theorem 1.1 we need

n<(/10 — 3)B.

We can ‘proceed in the time-honoured way’ by choosing a suitable answer # and then
finding the ¢ to which it corresponds under Theorem 1.2(a). Indeed, choosing /% to be a
positive mixture of exponentials (in other words, a Laplace transform) amounts to using the
harmonic-function method. The simplest new example is given by A(¢f) = 1+ ¢ This leads
to the following result.

Lemma 1.2. 4s usual, a(t) = a + Bt where a, f>0. If 23> > 1, then

(a) P[W hits a — ] = (1 n %) o208

in the case when c(t) is the unique solution in [0, c0) of
(b) 1+ 14 7 e(r) = 2P0,

The condition that 23% > 1 is needed to guarantee that (b) has a unique solution c¢(¢) in
[0, 00). It also forces the right-hand side of (a) to be less than 1 for all a(!) Note that c(f)
is roughly (log #)/(2p) for large 1.
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1.9. Discussion of Theorem 1.2 and Theorem 1.1

We note that Theorem 1.2 gives a partial sample-path explanation of Theorem 1.1 for the
case when ¢(-) = 0 and £ <0 (and |e| <(+/10 — 3)@); for then Theorem 1.1(h) and equation
(1.19) show that if (—ec) becomes the ‘¢’ in Theorem 1.2, then the ‘%4’ in the equality case of

Theorem 1.2(a) may be taken to be > (—¢)"g,/n!. However, this explanation does not
provide sample-path identification of the individual g, functions.

1.10. Boundaries above a
We now concentrate on the case when ¢ =1 and ¢(-) = 0.

Example 1.2. First take ¢ = 1 and c(#) = 5t, where 5> 0. Comparing parts (a) and (g) of
Theorem 1.1 suggests that we try to arrange that

o k
> C(k? (A1) = e D =0, (1.20)
k=0 :

and we see that we can do this if we take 4 = e, so that .Z¥h = O(A)*h, and then pick A so
that nO(L) — A = —2Bn. Thus, we choose A = 28y + 252, and find that O(1) = 27, so that we
have EA(T) = e~2*7. It all tallies with (1.18): we have arrived at the correct answer.

Once more it is the case that choosing % to be a mixture of exponentials amounts to
using the harmonic-function method.

Example 1.3. Let us try once more to cheat in the time-honoured way. We take € = +1 and
h(t) = 1 + ¢, whence . Zh = —3~! and . #*h = 0. We assume that 23> < 1, and define c(¢) to
be the unique root in [0, co) of

L+t =B e(t) = e 2P0,

Thus, (1.20) holds with our new notation, and, on comparing parts (a) and (g) of Theorem
1.1, it looks as though we should have
P[W hits a + ¢] = P[W hits a]EA(T) = P[W hits a](1 + a/p).

But this is clearly nonsensical since P[W hits a + ¢] is certainly less than P[W hits a].

Why have things gone wrong in Example 1.3? We note that c¢(¢) is close to ¢ for large
t. In the case when c(¢) is exactly B¢ and ¢ = 1, we have N, = f3B,, (N), = °t and

Gr == G} = exp{—BBr — 1p*T} = exp{—Pa + 1°T},

since By = a — BT. We note from (1.13) that E(G7T) = oo in this case. It is therefore to be
expected that the terms in Theorem 1.1(g) will explode for Example 1.3. It is perhaps a little
strange in regard to (1.20) that 2 = 1 + ¢ corresponds to a ¢ with ¢(f) ~ B¢, whereas, as we
saw in Example 1.2, & = exp(—4/%1) corresponds to c(t) = ft.
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If we try to use Theorem 1.1 on Example 1.3, we find that, since c(f) ~ fBt, the
supremum value for ¢ is 1, so that the theorem applies if || <+/10 — 3; hence, the value
e =1 is not allowed in the theorem.

1.11. What is the significance of the functions g,?

We give one explanation — not the excursion one on this occasion(!) — at the end of this
paper.

2. Proofs of Lemma 1.1 and Theorem 1.1

Formal verification of Lemma 1.1. ‘Formal verification’ here signifies that we check the
‘algebra’ rather than concerning ourselves with, for example, the precise degree of regularity
required of the /4 functions.

The fact that .Z, =.7Z* follows because 6I~z/8x is space-time-harmonic on A with
boundary function (.Zh) o m. Proving (b), (c) and (d) in the statement of Lemma 1.1 is
straightforward. The agreement of (d) and (e) is a well-known Laplace-transform result. We
have

O(A)* +2B6(A) — 24 = 0,
whence, from (d),
(A +2B.4+2D)e; =0,

and (f) clearly holds on suitably nice functions. A better way of seeing (f) is to observe that,
for a nice function 4 on [0, c0),

d - oh ,0h
(Dh)(f)—ah(l, a—pt= (E— a)(h a — 1)
19%h  0h ,
= (— Ew — ﬂa)(l‘, a — ﬁt) = (—%‘,%Zh — ﬂu%h)(l‘)
The reader might be amused to derive (f) directly from (e). O

Proof of the first parts of Theorem 1.1. We begin by checking equation (1.5). For any finite
t, the law P (say) of W — ec has likelihood ratio relative to the Wiener law of W given by

d[la’ t t
— =R, = exp{—eJ c'(s)dw, — %szj c'(s)? ds} on 7,
dP 0 0

where 77"; is the augmented natural filtration of W. Recall that 7 := inf{#: W(¢) = a(¢)}.
Since the martingale R;: 0 < s < ¢} is uniformly integrable, we have
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dp
dP

Now the event {7 <t} is an element of 77,5, so that

= Rin on 7 ing.

P(t<f) = ERng; 7<) = ERejy< o) T< 1) (2.1)

However, by Fatous lemma, R:/{;<;} is in L' (with expectation at most 1). Hence, on
letting ¢Too in (2.1), we obtain

ﬂa’(r <o0) =R(R; 1<),

which is equation (1.5).

We now make the linearity assumption: a(f) = a + ¢, where a, 8> 0. The equivalence
of law stated around (1.9) is standard. There is therefore no problem in obtaining part (a) of
Theorem 1.1, so we have

P[W hits a + ec] = P[W hits a]Eexp{—eN7 — 1e*(N)7 — 2Bec(T)}.
Recall that we next assume that there exists a ¢ >0 such that

Eexp(o*(N)7) < oc. (2.2)

Lemma 2.1. For 0 < |¢| <(v/10 — 3)p,
Eexp{le| [N7| +3le[*(N) 1 +2Ble] |o(T)|} < co.
We assume this lemma for the time being. Then, for 0 < || <(/10 — 3)¢, the terms in the
expansion as a power series in & of
exp{—eNr — 1e?(N) 7 — 2Bec(T)}
are dominated by the (non-negative) terms in the expansion as a power series in |g| of
exp{le| [N7| +3le[*(N)r +2Be] |o(T)]}-
Lemma 2.1 therefore guarantees that, for 0 < |e| <(v/10 — 3)¢, we do have the absolutely

convergent Taylor series expansion at (c¢) with the y, as at (d) in Theorem 1.1. O

Having settled that main analytic point, we now assume that ¢ is smooth with derivatives
(of all orders at least 1) bounded, and use formal power series to prove (e) in Theorem
where the g, are related via the recurrence relation (f). It is enough to prove the formal
formula at (g),

> k k
EGi Y SO o = Enn), @3)
k=0 :

and to substitute the formal expression A = e"g,/n!. Formal power series make things
neat, but the reader who is unhappy with their use can (as we did at first) derive the
recurrence relation directly by an analogue of the method we now give.
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Formal verification of (2.3). We use the & notation around (1.15). We apply the ‘differential’
version of the stochastic calculus as described in Revuz and Yor (1991) or Rogers and
Williams (1987). By the usual ‘exponential martingale’ formula,

dGY9 = —ec'()G¥9 dB,.

Since 9%h/Ox* is space-time-harmonic on A,

akh ak+1
{ — (1, B,)} oot (b BBy, t<T.

The ‘¢ < T’ here and elsewhere is made rigorous by replacing ¢ by ¢ A T on the left-hand side
and multlplymg the right-hand side by 7, <7}

With <2 denoting ‘equality modulo the differential of a local martingale’, we have, for
two local martingales M) and M®, and a smooth deterministic function £ on [0, c0),

MO MPYE oM MP de+ £ dMD dmP.

As always, dB,dB; = d¢
Hence, for t<<T,

eke(t)F ooy OFh
d{ T G() k( Br)}

cc) £ctk18kh k+lctkak+lh
=G (r){(k(—)l),a e B»}dr

the first term of the right-hand side being 0 if k¥ = 0. Formal summation over k from 0 to co
now yields that

i & C(t) G(éc)a h(t Br)

=0

when stopped at T, defines a local martingale. The (formal) value of this local martingale
when t =T is

o) o efe(THF
Gy A ),
k=0

and the value when 7 =0 is /(0, 0) = EA(T). Hence, if we ignore the difference between
local martingale and martingale, and assume that the relevant optional-stopping theorem is
valid at time 7, the result (2.3) follows. U]

Proof of Lemma 2.1. For ¢ >0, define
A(e) := Eexp{e|Nr| + 1e*(N) 7 + 2e|c(T)[}.

By Hélder’s inequality, we have for any p, ¢, >0 with p~! + ¢~ + 71 =1,
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A(e) < {Eexp(ep|N7|)} /P {Eexp(le’q(N) 1)}/ {Eexp2Ber|c(T))}I/ . (2.4)

We shall make good choices of p, ¢ and r later.
For any v >0,

Eexp(y|N7|) < Eexp(y Nr) + Eexp(—ypNy). (2.5)
But
Eexp (£yN7) = E{exp(y*(N)7) exp(=y Nz — p*(N) 1)}
< {Eexpy(N) )} A{Eexp(2yN7 — 29*(N) 1)}/?

< {Eexpy?*(N)r)}'/? (2.6)

using the Cauchy—Schwarz inequality and the fact that exp(£2yN, — 2y?(N),) is a non-
negative supermartingale. So, by (2.5) and (2.6) with ¥ = ep, we have

Eexp(ep|Nr|) < 2{Eexp(2e?p*(N)1)}'/2. 2.7)
To establish a bound on Eexp(2fer|c(T)|), we argue as follows. First,

le()] = J c'(s)ds

0

< [lewlas

< "2(N)}? < max{t/y, y(N),;},  for any y>0.

Define z(17) := Eexp(nT). The largest 7 for which z(») is finite is 13%. So choose 7 = 12 and
y = 2fer/n to obtain

Eexp(2Ber|c(T)|) < Eexp(nT) + Eexp(2Bery(N)r)
< z(}p*) + Eexp(8&°r*(N) 1). (2.8)

From (2.4), (2.7) and (2.8), the sensible choice of (p, ¢, r), giving rise to the largest value
eo(p) of ¢, is such that

2e0(0)’ p* = 3eo(9)q = 8eo(@)’r? =30%,  pl4q ' +r =1
The solution is given by
p=2r q=16r7, r=(/10+3)/4, eo(@) = (V10 — 3)o.

Lemma 2.1 is proved. O

3. Theorem 1.2 and the g, functions

Throughout the remainder of the paper, let B and W denote independent Brownian motions
starting at 0.
Suppose that a(f) = a + Bt. Suppose that ¢(-) = 0. Define
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7:=inf{u: W, = a(u)} (as before),
o =inf{u: W, = a(u) — c(u).}

For ¢t = 0, define

S[f = inf{u: B, + fu>t}, (so that S[f < o0 a.s.),
S;P = inf{u: B, — pu> 1t} < oo,

T := Sﬁ (as usual).
We use the following standard facts:

(a) conditional on {S;ﬁ<oo}, S:ﬁ has the law of S/f;

(b) 120 + S;(/;) (yi signifying equality of law), by the strong Markov property of W at
stopping time o,

) tZ5.7.

We shall use & to signify ‘is equal to because of (a)’.

Proof of Theorem 1.2. Rewrite the assumption that
26 _ Ep(t + sz(t)) =0 (t = 0)
as

1= e 2BOER(s + Sf(,))

=P(S.f) <oco)Eh(t + S5,

(@ - -
2 E[h(t+ S S <0l

Since o is independent of B (and hence of the S-process),
1= E[h(o + S5 S5 <oolo]  on {0 <oo},
whence

P(o <o)

= E[h(o + S ); SP <o0; 0 <o0]

c(o) c(o)

= E[h(o + Sg(ﬁ)); o+ S;({i) <]

© E[h(r); v < 0o] LE[(S,P); 8,7 < oo]

@ P(s,# < 00)ER(SE) = P(z < 00)EA(T).
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Thus,
P[W hits a — ¢] = P[W hits a]EA(T),

>

as required. The ‘<’ and ‘=" cases are done similarly. O

3.1. Another formulation of the Taylor expansion

Our Taylor expansion is now perhaps best formulated as

P[W hits a +ec] =Y % E[g.(7); T< 0],
n=0 """

where go =1 and, for n = 1,
n n _
> ( k)(—cyﬂﬂgnk = 0.
k=0

Here, & := —_7 — 2§ denotes the generator of the killed subordinator {S,”: 1 = 0}.
The g, functions just mentioned are identical to those used previously, and one can
derive this reformulation by simple algebra.

3.2. Discussion of the functions g,

Suppose now that c is strictly increasing and that € > 0. Define
15 :=1:=inf{t: W, =a+ft} <o (7 is as before),
° =1inf{t: W, =a+pt+ec(r,_|)} <0 (n=1).
Then
1T, =inf{r W, =a+ ft+ ec(t)} < oo.
Of course, it does not necessarily follow that P(z% < o0)|P(7%, < o0).
Conditionally on 73, 73§, ..., 7%,_,;, we have (with 7_; :=0)
N/ - .
U0 =Tt T Sefee ey O AT <00},

and, because of the relation between the {S#} process and the {S#} process, the transition
semigroup { Pf } of which has generator (—.7), we can hope to prove that on {t<oo},

n_ ok
P, <ocln) =Y %gk(r) + o), 3.1
k=0 :

a result which would give some insight into the g, functions.
Now, on {7 <oo},
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P(z8 < oolr) = e 2D = 1 — e2B¢(1) + O(?),

= (go + £g1)(7) + O(e?),

so that (3.1) holds when n = 1.
Now consider (3.1) when n =2. On {7t <oco}, we have

P(r5 <o) = E{exp[—2Pe{c(t]) — c(z))}]; 7§ < oot}
= E{exp[—2Be{c(S, 4y +7) — e} S, < oolt}

= P{S, 5, < oo} E{exp[-2Be{c(SL,,, + 7) — c(D)}|7}

ec(7)
_ efzﬁsc(r)eﬂ?ec(r)[E{exp[_zlggc(sfc(r) + D]t}
Hence, we have the exact formula on {7t <oo}:

P(75 < ool7) = (Pﬁc(r)e_zﬂ“('))(r).

&

Formal expansion in terms of the infinitesimal generator (—.7) of {P/f } yields (using the fact
that .Z1 = 0) on {t<oo}:

P(t5 < oolr) = (1 — ec.Z + 12 2)(1 — 2Bec + 267> *)(1) + O(e?)
= 1 + &(—2Bc) + e2(2Bc.#c + 252 P) (1) + O(e?),

which is result (3.1) for n = 2.
Things become more complicated for » = 3; and we have to be careful and systematic in
doing the calculations. One finds that on {7{ <o},

P(75 < oo|t, 75) = eee0(Ph e 0 ah).

Here, ¢ stands for ¢(z§)) and co for c(zf = c(7). Since we shall always work conditionally on
7, we regard c( as a constant. Now, on {7 <oo},

=5 11

ECo
After the usual S~ to S” interchange, we find that on {r < oo},

P(z5 < oo|r) = (PP PP e e (p),

eco” e[c(*)—col
We write this as the value at 7 of

{(1 — eco. 2+ 123 72)(1 — e(c — co)# + e (c — co)* 27)ye 5 + O(e*).

Here, ¢ is initially regarded as a constant unaffected by .Z; however, having worked things
out in this way, we then put ¢p = c. If we employ this italicized strategy on the operator
within the large {} braces, we find that it becomes
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1 —¢ec”+ 82(%02,///2 +etet—E )+ -

=1—¢ec 2+ 82(7%62.,752 +cte )+ -
If we apply this operator to
e e =1 —2Bec + 2% — 4B + -

and remember that .-Z1 = 0, we obtain (3.1) for n = 3.

We emphasize that in Theorem 1.1, ¢ can have fluctuating sign. Martingales do have
their uses! However, the sample-path method just indicated applies in cases where (1.4)
fails.
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