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Covariance matrices which can be arranged in tridiagonal form are called covariance chains. They are

used to clarify some issues of parameter equivalence and of independence equivalence for linear

models in which a set of latent variables influences a set of observed variables. For this purpose,

orthogonal decompositions for covariance chains are derived first in explicit form. Covariance chains

are also contrasted to concentration chains, for which estimation is explicit and simple. For this

purpose, maximum-likelihood equations are derived first for exponential families when some

parameters satisfy zero value constraints. From these equations explicit estimates are obtained, which

are asymptotically efficient, and they are applied to covariance chains. Simulation results confirm the

satisfactory behaviour of the explicit covariance chain estimates also in moderate-size samples.
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1. Introduction

1.1. General remarks

Independence can arise in linear multivariate systems in a number of ways. There may be

vanishing least-squares regression coefficients in a system defined recursively, vanishing

elements in a concentration matrix, i.e. in the inverse of the covariance matrix, each

reflecting a zero partial correlation given all remaining variables, or there may be vanishing

elements in a covariance matrix, reflecting zero marginal correlations. In particular, we

study covariance chains in which a series of component variables is such that only adjacent

pairs have non-zero correlation, in contrast to concentration chains in which a sequence of

only adjacent pairs have non-zero partial correlation. In the special context of stationary

time series the former correspond to moving-average processes and the latter to

autoregressive processes.

Covariance chains may be present directly for the component variables or for the

residuals in a system of linear equations. Both can result from recursive processes in which

the covariances of adjacent pairs are generated by latent, i.e. hidden, variables. Covariance

chains for residuals are valuable in clarifying relations between the important concepts of

parameter equivalence and independence equivalence.
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A Gaussian covariance chain is an exponential family model with zero constraints on the

moment parameters and with canonical parameters which are all non-vanishing. Therefore

we solve the more general task of finding explicit asymptotically efficient estimates for an

exponential family with zero constraints on the moment parameters. The results are studied

in more detail for covariance chains.

1.2. Constrained covariance structures

We consider mean-centred random vector variables Y with component variables Yi for i in

N ¼ (1, . . . , d), having an invertible covariance matrix �, with elements � ij, and

concentration matrix ��1, with elements � ij. Distinct types of constraints on the covariance

structure of Y are captured by different types of graph which consist of a set of nodes N

and of sets of edges connecting node pairs. Node i of N represents the component variable

Yi, and each missing edge coincides in different types of linear model with a parameter

constrained to be zero. The types of graph considered in this paper are either subclasses of

independence graphs, in which every edge represents a particular conditional relation of a

variable pair, or graphs attached to structural equation models, for which this need not hold.

Independence graphs have at most one edge for each pair of nodes, and each missing

edge corresponds to one particular independence statement. The statement that Yi is linearly

independent of Y j given YC where C is the subset of the remaining nodes, C ¼ Nnfijg,
means the vanishing of the corresponding partial correlation coefficient, i.e. rijjC ¼ 0. In the

case of a Gaussian distribution of Y , this is equivalent to the factorization of the joint

conditional density of Yi and Y j given YC . The precise meaning of a conditioning set C is

defined with the type of graph. Of the different types of independence graph, we describe

in the following the parent graph, covariance graph and concentration graph (see also Cox

and Wermuth 1993; Wermuth and Cox 1998, 2004).

For a parent graph, GN
par, the nodes are ordered N ¼ (1, . . . , d) and each edge is drawn

as an (i, j) arrow starting from a parent node j and pointing to an offspring node i , j. The

constraints defined by a parent graph are expressed in terms of nodes as the offspring node

i being independent of node j . i given all its parent nodes. The graph has an attached

system of recursive linear equations with uncorrelated residuals which is also called a path

analysis model or a linear triangular system.

For a covariance graph, GN
cov, each edge is drawn as an (i, j) dashed (broken) line. Each

missing (i, j) line defines marginal independence of Yi and Y j. This means in the attached

linear covariance graph model that � ij ¼ rij ¼ 0, where rij denotes a simple correlation

coefficient. In contrast, for a concentration graph, GN
con, each edge is drawn as an (i, j) full

(solid) line. Each missing (i, j) line defines independence of Yi and Y j given YNnfijg,
implying that in the attached linear concentration graph model � ij ¼ rijjNnfijg ¼ 0.

For instance, the three chordless graphs in Figure 1 define with the missing edges distinct

sets of independence constraints for the same three pairs. The model for the parent graph in

Figure 1(a) is arguably best known as a linear Markov model (Markov 1912). The linear

covariance graph model for Figure 1(b) is a covariance chain, and the linear concentration
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graph model for Figure 1(c) is a concentration chain (1, 2, 3, 4). The graph in Figure 1(a)

has attached to it the equations

Y1 ¼ ÆY2 þ �1, Y2 ¼ ªY3 þ �2, Y3 ¼ �Y4 þ �3, Y4 ¼ �4,

where the residuals � are uncorrelated so that the equation parameters are least-squares

regression coefficients (Cramér 1946: 302). These equations also imply the concentration

chain of Figure 1(c) as the structure in the concentration matrix; the parent graph is said to

generate or induce the other type of graph. The covariance graph induced by the parent graph

of Figure 1(a) is a complete graph, i.e. it has no missing edge.

A covariance matrix may be constrained in a more complex way by graphs other than

independence graphs. A recursive regression graph, GN
rec, is one of these types of graph. It

is a parent graph combined with a residual covariance graph so that it contains two types of

edge, arrows and dashed lines, and it may have two edges for a node pair. Recursive

regression graphs have an attached system of linear equations with correlated residuals,

which have been called recursive equations by Goldberger (1964), and form a subclass of

structural equation models. Graphs attached to general structural equations have an

independence interpretation (Koster 1999) but due to the correlated residuals there need not

be a direct relation between an equation parameter and any linear least-squares regression

coefficient.

We concentrate in this paper on constrained linear models for which stepwise data-

generating processes can be specified by parent graphs which may include latent variables.

This ensures that for each linear model considered here, densities of general type, generated

over the same parent graph, satisfy corresponding probabilistic independence constraints.

1.3. Parameter equivalence and independence equivalence

There is parameter equivalence between two models if, except possibly in subset of lower

dimension, there is a one-to-one correspondence between the sets of defining parameters.

Then, given the first set of parameters, all parameters in the second set can be expressed

uniquely in terms of those of the first, and vice versa, so that they imply in a linear model

covariance matrices with the same constraints. Parameter equivalence can be exploited for

estimation since it implies that maximum-likelihood estimates are in the same type of one-

to-one correspondence (Fisher 1922: 327).

An example of parameter equivalence of a covariance chain and a linear triangular

system is given in Section 6.1. A small non-trivial example of parameter equivalence

Figure 1. Three chain graphs respresenting distinct sets of independence constraints for the same

three pairs: (a) a parent graph with r14j23 ¼ r13j24 ¼ r24j3 ¼ 0; (b) a covariance graph with r14 ¼
r13 ¼ r34 ¼ 0; (c) a concentration graph with r14j23 ¼ r13j24 ¼ r24j13 ¼ 0:
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concerns the models for Figures 1(a) and 1(c), where the equivalence may be recognized

from the orthogonal decomposition of ��1 (see Section 2.2).

Parameter equivalence of two constrained models implies that they have the same number

of free parameters and that they are independence equivalent. The latter means that they

have coinciding sets of independencies, though derived from different graphs. For linear

models with independence graphs of one type of edge, such as in Figure 1, independence

equivalence also implies parameter equivalence, provided the two graphs have coinciding

sets of constrained variable pairs. We therefore summarize next a number of simple

graphical criteria for independence equivalence in terms of V-configurations, i.e. of

subgraphs induced by three nodes which have two edges.

An induced concentration graph is independence equivalent to its generating parent graph

if and only if the parent graph does not contain the configuration

s! s s

(see Wermuth 1980; Frydenberg 1990). Similarly, an induced covariance graph is

independence equivalent to its generating parent graph (see Wermuth and Cox 2004) if

and only if the parent graph does not contain any of the configurations

s s s, s s! s:

These conditions also explain two related results on independence equivalence. A

concentration graph GN
con can be independence equivalent to a parent graph in node set N if

and only if GN
con is decomposable, i.e. it does not contain a chordless q-cycle of length

q > 4 (Frydenberg 1990). The proof is that such a chordless cycle cannot be fully oriented,

i.e. have all undirected edges changed into arrows, without creating either a cycle or a

configuration s! s s. A covariance graph GN
cov can be independence equivalent to a

parent graph in node set N if and only if GN
cov does not contain a chordless chain of length

q > 4 (Pearl and Wermuth 1994). The proof is that such a chordless chain cannot be fully

oriented without creating at least one configuration of the type s s s, s s! s.

This means, in particular, that there is no parent graph in node set N which is

independence equivalent to a concentration graph with a chordless cycle of size larger than

3 or to a covariance graph with a chordless chain larger than 3. Thus, covariance matrices

satisfying corresponding independencies cannot be directly generated by triangular systems

in the observed variables, but can possibly be generated by a triangular system including in

addition some unobserved variables (Cox and Wermuth 2000; Pearl and Wermuth 1994).

Hitherto, however, it has been a matter of conjecture that the two necessary conditions

for parameter equivalence, namely independence equivalence and having the same number

of parameters, taken together are generally not sufficient for parameter equivalence of two

linear models. In Section 4 we settle this conjecture using models in which a missing edge

in the associated graph need not represent a conditional independence statement. We

illustrate further how triangular decompositions of covariance chains can be used to study

the interpretation and equivalence of recursive regression graph models.
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1.4. Estimation in concentration versus covariance graph models

Estimation in general Gaussian concentration graph models was introduced as covariance

selection by Dempster (1972), studied further by Speed and Kiiveri (1986), and may require

iterative calculations. The unique maximum-likelihood estimate of the constrained

covariance matrix satisfies

�̂� ij ¼ sij for i ¼ j or i j in GN
con, and �̂� ij ¼ 0 otherwise,

where sij is the observed covariance for Yi and Y j, an element of S, the maximum-likelihood

estimate of the covariance matrix of Y under the saturated model, i.e. when there are no

constraints.

Gaussian covariance graph models have been studied as linear in covariance structures by

Anderson (1969, 1973; Anderson and Olkin 1986). His maximum-likelihood equations can

be written, with �̂��1 denoting the maximum-likelihood estimate of the concentration matrix,

as

�̂� ij ¼ [�̂��1S�̂��1]i, j for i ¼ j or i --- j in GN
cov, and �̂� ij ¼ 0 otherwise:

To solve these equations typically requires iterative calculations. A cyclic fitting procedure to

compute maximum-likelihood estimates has been shown to converge to a local maximum

(Drton & Richardson 2003). We derive a different form of the likelihood equations from

more general results for exponential families in Section 6, to obtain explicit approximations

to the maximum-likelihood estimates of � which are asymptotically efficient.

1.5. Outline of the paper

Section 2 gives previous results needed to establish the explicit properties of covariance

chains given in Section 3. In Section 4 these results are applied to address the specific

issues of interpretation outlined in the previous paragraphs. Section 5 discusses an

approximation to maximum-likelihood estimates for constrained exponential families, and

Section 6 applies these estimates to covariance chains. The paper concludes with a small

simulation study to confirm the satisfactory behaviour of the estimates in moderate-size

samples.

2. Notation and previous results

2.1. Interpretation of linear covariance graph models

For linear covariance graph models, independence statements additional to the defining ones

may be obtained using the recursion relation for covariances (Anderson 1958: Section 2.5),

� ijjC ¼ � ij � � iC�
�1
CC�

T
jC , (1)

where � iC , � jC and �CC are disjoint submatrices of the covariance matrix �. The covariance
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in (1) is also called the partial covariance of Yi and Y j given YC , defined as the covariance of

YijC and Y jjC, where

YijC ¼ Yi �—ijC YC

denotes variable Yi after linear least-squares regression on YC . The parameters in this

regression are the regression coefficient vector —ijC and partial variances � iijC , defined by

—ijC ¼ � iC�
�1
CC , � iijC ¼ � ii �—ijC�

T
iC: (2)

From equation (1) and because � ij is proportional to the simple correlation coefficient rij, it

follows that two zero marginal covariances involving i imply a conditional linear

independence statement

� ij ¼ 0 and � iC ¼ 0 imply � ijjC ¼ 0: (3)

2.2. Linear least-squares regressions and orthogonal decompositions

Linear least-squares regressions of Yi on Yr(i) for i ¼ d � 1, . . . , 1 with r(i) ¼
(iþ 1, . . . , d) define a process of successive orthogonalization (Gram 1883; Schmidt

1907; Dempster 1969: Chapter 4), since a set of new variables is defined successively from

Yd , Yd�1, . . ., Y1 such that each is orthogonal to the new variables obtained at previous

steps. The new variables are the residuals �i in linear least-squares regressions of Yi on Yr(i)

and have diagonal covariance matrix ˜ ¼ cov(�).
This gives the following interpretation of the elements of an orthogonal decomposition

(A, ˜�1) of the concentration matrix, i.e. of the representation AT˜�1A ¼ ��1. Here, the
matrix A is upper-triangular and contains 1s along the diagonal. Off-diagonal elements in

the vector ai,r(i) of A are minus least-squares regression coefficients, the diagonal elements

of ˜ the corresponding variances:

�ai,r(i) ¼ —ijr(i), �ii ¼ � iijr(i):

There is a dual decomposition of � given by (B, ˜) with B ¼ A�1 and the representation

B˜BT ¼ �. Elements of B are linear least-squares coefficients obtained by marginalizing for

each pair (i, j) over variables corresponding to nodes between i and j, called the intermediate

nodes iþ 1, . . . , j� 1. To obtain this result, Cochran’s (1938) recursion relation for

regression coefficients is useful, where �ijk:C denotes the coefficient of Yk in linear least-

squares regression of Yi on all variables with nodes listed after the conditioning sign, j,
�ijk:C ¼ �ijk: jC þ �ij j:kC� jjk:C: (4)

Direct computation using BA ¼ I and (4) gives the elements in row i of B as

bij ¼ �ij j:r( j): (5)

Then both the covariance and the concentration matrix have an orthogonal basis in which

˜ ¼ A�AT, ˜�1 ¼ BT��1B:

For instance, for d ¼ 4, the elements of the two triangular matrices A, B are
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A ¼

1 ��1j2:34 ��1j3:24 ��1j4:23
0 1 ��2j3:4 ��2j4:3
0 0 1 ��3j4
0 0 0 1

0
BB@

1
CCA, B ¼

1 �1j2:34 �1j3:4 �1j4
0 1 �2j3:4 �2j4
0 0 1 �3j4
0 0 0 1

0
BB@

1
CCA: (6)

Since a coefficient �ij j:C is a multiple of the partial correlation coefficient rijjC , the

representation in equation (5), in essence given by Heywood (1931), and equations (4), (6)

explain the interpretation and relations of zero constraints on elements of A and B.

2.3. Linear least-squares regression coefficients and concentrations

Linear least-squares regression coefficients have an interpretation in terms of concentrations

(Dempster 1969: Section 6.4). We denote the elements in the concentration matrix of Y by

� ij and a submatrix corresponding to component Ys by �ss ¼ [��1]s,s. After partitioning Y

with s _[[v ¼ f1, . . . , dg we accordingly write

�ss �sv

�vs �vv

� �
¼ �ss �sv

�vs �vv

� ��1
:

With �ss�sv þ �sv�vv ¼ 0 and using the matrix analogue of equation (2), this gives

—sjv ¼ �(�ss)�1�sv ¼ �sv�
�1
vv : (7)

With �ss�ss þ �sv�vs ¼ I and using (7), we obtain

�ssjv ¼ (�ss)�1: (8)

Application of equation (8) to the partial covariance matrix of YijC and Y jjC, with s ¼ fi, jg
and v ¼ C denoting all variables except the pair (i, j), gives

�ss ¼ � ii � ij

� � jj

� �
¼ � iijC � ijjC

� � jjjC

� ��1
,

where the : notation indicates here that in a symmetric matrix the (j,i)th element coincides

with the (i, j)th element.

Therefore the elements of the overall concentration matrix can be written as

1

� ii
¼ � iij jC , � � ij

� ii
¼ �ij j:C: (9)

This means, in particular, that a diagonal element � ii is a measure of precision for the linear

least-squares regression of Yi on all other variables. Also, the off-diagonal element � ij is zero

if and only if YijC and Y jjC are linearly independent, i.e. when Yi is linearly independent of

Y j given all remaining variables YC .

Zero constraints on elements of the regression coefficient matrix —ujv have yet another

independence interpretation, since its elements are �ij j:vn j. For instance, for u ¼ 1, 2 and

v ¼ 3, 4, we have
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—ujv ¼
�1j3:4 �1j4:3
�2j3:4 �2j4:3

� �
:

2.4. Partial variances and determinants of covariance matrices

Let T ¼ ˜�1A and R(i) ¼ (i, r(i)). Then T is upper triangular and, analogously to equation

(9), its elements in row i are such that

1

tii

¼ � iijr(i), � ti,r(i)

tii

¼ —ijr(i): (10)

Thus, it contains in row i the precision and concentrations relating to Yi when considering

YR(i) alone, i.e. row i of the concentration matrix (�R(i),R(i))
�1. Elements in the first row of T

are the overall precision � 11 and the overall concentrations � 1 j. Let Ds denote the

determinant j�ssj of �ss and N ¼ f1, . . . , dg. Then

j�j ¼ DN ¼
Y

� iijr(i), j�ssjCj ¼
DN

DC

, � iijr(i) ¼
DR(i)

Dr(i)

: (11)

3. Parameters and generating processes for covariance chains

3.1. Constraints on partial regression coefficients and variances

For a covariance chain (1, . . . , d) the decomposition defined in Section 2.2 as B˜BT ¼ �
implies that bik ¼ 0 for k . iþ 1 and from equation (5) that

bi,iþ1 ¼ �ijiþ1:r(iþ1): (12)

Equation (1) implies that conditioning on other than neighbouring nodes leaves a covariance

and a variance in the chain unchanged. In particular,

� i,iþ1jr(iþ1) ¼ � i,iþ1, � iijr(iþ1) ¼ � ii: (13)

For instance, the covariance matrix of Y1, Y2 given Yr(2) is, with (2),

�1j2:r(2) ¼
�12

�22jr(2)
, �11jr(1) ¼ �11 �

� 2
12

�22jr(2)
:

To obtain the other regression coefficients and variances, note that all elements in � i,r(i)

are zero except for the first. Then use the definition of parameters in linear least-squares

regressions (2) as well as those of row iþ 1 in the concentration matrix of YR(iþ1), (see
(10)), where R(iþ 1) ¼ (iþ 1, r(iþ 1)) ¼ r(i), to give

—ijr(i) ¼ � i,iþ1 tiþ1,R(iþ1), � iijr(i) ¼ � ii �
� 2

i,iþ1
� iþ1,iþ1jr(iþ1)

: (14)
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3.2. The orthogonal decomposition of the covariance matrix

The orthogonal decomposition of � for a covariance chain (1, . . ., d) inherits the simple

chain structure in the following way. The elements of ˜ are, by (14),

�dd ¼ � dd ,

�ii ¼ � ii �
� 2

i,iþ1
� iþ1,iþ1jr(iþ1)

for i ¼ 1, . . . , d � 1: (15)

The elements of B are, by (14) and (15),

bi,iþ1 ¼
� i,iþ1
�iþ1,iþ1

for i ¼ 1, . . . , d � 1,

bik ¼ 0, for k . iþ 1, (16)

Example 1. For a covariance chain (1, 2, 3, 4) the orthogonal decomposition of � has the

same simple chain structure with

B ¼

1 �12=�22 0 0

0 1 �23=�33 0

0 0 1 �34=�44
0 0 0 1

0
BB@

1
CCA,

and �44 ¼ �44, �33 ¼ �33 � � 2
34=�44, �22 ¼ �22 � � 2

23=�33 and �11 ¼ �11 � � 2
12=�22.

The decompositions can look more complex when the chain is written in a different

sequence from (1, . . . , d). For instance, for the covariance chain (3, 1, 2, 4), the matrix �
and the matrix B of its orthogonal decomposition (5) can be written with (11) as

� ¼

D1 �12 �13 0

: D2 0 �24

: : D3 0

: : : D4

0
BB@

1
CCA, B ¼

1 �12D4=D24 �13=D3 0

0 1 0 �24=D4

0 0 1 0

0 0 0 1

0
BB@

1
CCA,

while for the covariance chain (2, 3, 4, 1) we obtain

� ¼

D1 0 0 �14

: D2 �23 0

: : D3 �34

: : : D4

0
BB@

1
CCA, B ¼

1 �14�23�34=D234 ��14�34=D34 �14=D4

0 1 �23D4=D34 0

0 0 1 �34=D4

0 0 0 1

0
BB@

1
CCA:

3.3. The concentration matrix

To obtain the concentration matrix induced by a covariance chain in nodes R(i) we denote

the nodes to the left of i by l(i) ¼ 1, . . . , i� 1, the nodes to the right of i by r(i), and use
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the convention that D˘ ¼ 1. Then the elements øik of the concentration matrix �(i) of

YR(i) can be written as

øii DN ¼ Dl(i)Dr(i) for i ¼ 1, . . . , d,

øi,iþ1DN ¼ �Dl(i)� i,iþ1Dr(iþ1) for i ¼ 1, . . . , d � 1, (17)

øik ¼
øijø jk

ø jj

for k . j . i ¼ 1, . . . , d � 2,

where the last equation defines øi,iþ2, . . . recursively, using �R(i),R(i)�(i) ¼ I :
Equation (17) leads to the following compact expression for the concentrations

corresponding to zero covariances, denoting by q ¼ k � i the number of edges in a chain

segment from node i to node k:

øik ¼ (�1)q Dl(i)� i,iþ1 � iþ1,iþ2 � � � � k�1,k
Dr(k)

DR(i)

, (18)

where, for example, with R(i) ¼ (i, r(i)) the determinant DR(i) is computed as

Di,r(i) ¼ Di Dr(i) � � 2
i,iþ1Dr(iþ1), (19)

which is a recursion relation for determinants of tridiagonal symmetric matrices.

Example 2. For a covariance chain (1, 2, 3, 4) the covariance and the concentration matrix

are

� ¼

D1 �12 0 0

: D2 �23 0

: : D3 �34

: : : D4

0
BB@

1
CCA,

��1 ¼ D�11234

D234 ��12D34 �12�23D4 ��12�23�34

: D1D34 �D1�23D4 D1�23�34

: : D12D4 �D12�34

: : : D123

0
BB@

1
CCA:

The determinant of � for this covariance chain is

D1234 ¼ D1D2D3D4(1� r212 � r223 � r234 þ r212r
2
34): (20)

This can be used to measure the distance from an unrestricted covariance matrix, since it may

be viewed as a residual generalized variance (Wilks 1932).

3.4. The orthogonal decomposition of the concentration matrix

The orthogonal decomposition of ��1 for a covariance chain (1, . . . , d) results as follows.

The elements of A are
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�ai,iþ1 ¼ bi,iþ1 for i ¼ 1, . . ., d � 1,

aik ¼ aija jk for k . j . i, (21)

where the last equation defines ai,iþ2, . . . , recursively. Each element aik of A for k . iþ 1

is, from (15)–(21) also a multiple of the covariances along the chain segment from node i to

k having q edges

�aik ¼ (�1)q � i,iþ1
�iþ1,iþ1

� iþ1,iþ2
�iþ2,iþ2

� � � � k�1,k
�kk

: (22)

Example 3. For a covariance chain (1, 2, 3, 4) the matrix elements of the orthogonal

decomposition of the concentration matrix ��1 are, with (22) and (16),

A ¼

1 ��1j2:34 �1j2:34�2j3:4 ��1j2:34�2j3:4�3j4
0 1 ��2j3:4 �2j3:4�3j4
0 0 1 ��3j4
0 0 0 1

0
BB@

1
CCA:

3.5. Generating processes for covariance chains

A chain structure in a covariance matrix of residuals of Y may be generated by a linear

triangular system for (Y , X ) in which the latent variables X are standardized and

orthogonal and where

HY þ ˆX ¼ � y, X ¼ �x:

Here, the coefficient matrix H of Y is upper triangular and the elements of ˆ are non-zero,

ªij 6¼ 0, only for i ¼ j and i ¼ jþ 1. Then, the linear equations in the observed variables Y

are

HY ¼ �,

with � ¼ � y � ˆX , k ¼ cov(�) ¼ ˜ yy þ ˆˆT, ��1yy ¼ HTk�1 H , and the elements of H have

interpretations as least-squares regression coefficients given both observed and latent

variables. These may or may not coincide with least-squares regression coefficients given

only the observed variables.

The triangular decomposition (G, ˜�1) of k�1 relates to the triangular decomposition

(A, ˜�1) of ��1yy with

A ¼ GH ,

since ��1yy ¼ (HTGT)˜�1(GH) ¼ HTk�1 H and orthogonal decompositions are unique for a

fixed ordering. This leads to an interpretation of H ¼ G�1A, in terms of least-squares

regression coefficients of the observed variables contained in A (cf. (6)), and regression

coefficients of residuals obtained with the triangular decomposition of the residual covariance

matrix k and contained in G�1. This is exploited for the examples in Section 4.
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When H ¼ I , a covariance chain results for the observed variables, i.e. directly in � yy.

For instance, the covariance chain (1, 2, 3, 4) has as a generating parent graph

GN ,L
par : 1 s

��
! 2 s

��
! 3 s

��
! 4,

where s
��

denotes hidden variables.

4. Parameter and independence equivalence

4.1. Independence equivalence but no parameter equivalence

We can now consider the recursive regression graph

GN
rec: 1 --- 2 --- 3 --- 4

to prove that the two necessary conditions for parameter equivalence, an equal number of

parameters and independence equivalence, taken together are not yet sufficient for parameter

equivalence. As explained below, this recursive regression graph model has ten parameters

and imposes no independence constraint, just like the saturated model, but it is nevertheless

not parameter equivalent to the saturated model.

The matrix H of equation parameters for GN
rec is obtained directly from the graph, and

the matrix G�1 by the triangular decomposition of the residual covariance chain of Section

3.2:

H ¼

1 �Æ 0 0

0 1 �ª 0

0 0 1 ��
0 0 0 1

0
BB@

1
CCA, G�1 ¼

1 � 0 0

0 1 ł 0

0 0 1 �
0 0 0 1

0
BB@

1
CCA:

The matrices B ¼ H�1G�1 and A ¼ GH of the triangular decompositions of � and ��1 are

then

B ¼

1 Æþ � Æ(ªþ ł) Æª(�þ �)
0 1 ªþ ł ª(�þ �)
0 0 1 �þ �
0 0 0 1

0
BB@

1
CCA,

A ¼

1 �(Æþ �) �(ªþ ł) ��ł(�þ �)
0 1 �(ªþ ł) ł(�þ �)
0 0 1 �(�þ �)
0 0 0 1

0
BB@

1
CCA:

These explicit forms make it transparent that the transformation from the parameters in

H and G�1 to the linear least-squares coefficients in A or in B is for this model non-

invertible: the confounding of �3j4 ¼ �þ � cannot be resolved, i.e. not all elements of H , k
can be obtained given �. The recursive regression graph model has three equation

parameters in H , and three residual covariances and four residual variances in k. The
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parameters are from A and B such that every marginal and every type of partial correlation

is non-zero for each variable pair Yi, Y j. Therefore, the recursive regression graph model is

independence but not parameter equivalent to the unconstrained covariance matrix with ten

parameters. Thus, two models may have the same number of parameters and generate the

same independencies but not be equivalent, since one implies an additional constraint,

which in the above example does not correspond to an independence. The explicit form of

the matrix B and the interpretation of its elements from (5) show that

Æ ¼ �1j3:4=�2j3:4 ¼ �1j4=�2j4 may have two distinct representations and that ª ¼ �2j4=�3j4.
The non-unique representation poses a potential problem for instrumental variable

estimation (Sargan 1958) of some of the dependencies.

4.2. Parameter equivalence in spite of confounding

The following case establishes parameter equivalence of a recursive regression graph with

parameters (H , k) to the triangular decomposition (B, ˜) of � with an independence

constraint and a confounded least-squares regression coefficient. From the graph of Figure

2, the matrices H and G�1 and B ¼ H�1G�1 are given by

H ¼

1 �Æ 0 �ª
0 1 0 0

0 0 1 0

0 0 0 1

0
BB@

1
CCA, G�1 ¼

1 � 0 0

0 1 ł 0

0 0 1 �
0 0 0 1

0
BB@

1
CCA, B ¼

1 Æþ � Æł ª
0 1 ł 0

0 0 1 �
0 0 0 1

0
BB@

1
CCA:

The zero entry in B means �2j4 ¼ r24 ¼ 0. Furthermore, reversibility of the transformation

results from the explicit form of B with ª ¼ �1j4, � ¼ �3j4, ł ¼ �2j3:4, Æ ¼ �1j3:4=�2j3:4, and
� ¼ �1j2:34 � Æ.

Here, by contrast with Section 4.1, we have two models that generate the same

independence structure and that are parameter equivalent. Because in one of the models

unique and simple estimation by least-squares is available, estimates in the other, seemingly

more complex model, can be obtained directly due to the one-to-one correspondence of the

sets of parameters. This type of parameter equivalence supplements results on identifiability

of parameters in which there is renewed interest related to recursive regression graph models;

see McDonald (2002), Pearl and Brito (2002) and Stanghellini and Wermuth (2005).

4.3. The parameter constraint in an independence equivalent model

To have the same number of parameters is not a necessary condition for independence

equivalence. For instance, the single factor analysis model generates an observed covariance

Figure 2. (a) A recursive regression graph and (b) an independence equivalent covariance graph.
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matrix constrained to be the sum of a rank-one and a diagonal matrix, but which is

independence equivalent to a saturated model. We show here how the specific constraint by

which two independence equivalent recursive regression graph models may differ, results

directly from the triangular decomposition of the residual covariance matrix.

The graph in Figure 3(a) is an example of what Richardson and Spirtes (2002) call a

maximal ancestral graph, and the graph in Figure 3(b) is a corresponding independence

equivalent ancestral graph in which the missing edge does not correspond to any

independence statement. Our form of the constraint shows that it captures the contribution

of the residual covariance chain from node 1 to 2 via the parent nodes 3, 4. The authors

suggest moving from ancestral graphs to corresponding maximal ancestral graphs so that

graphs are obtained in which at least one independence statement is associated with every

missing edge.

The two recursive regression graphs in Figure 3 coincide in the edges within

v ¼ f2, 3, 4g; therefore they have the same submatrices �vv. By the symmetry of the

graphs, nodes (1, 3) may be exchanged with (2, 4) and therefore the submatrices �uu for

u ¼ f1, 3, 4g coincide as well. As the constraint implied by the graph of Figure 3(b) we

obtain from �1j2:34 in the covariance chain (2, 3, 4, 1) in Example 1 of Section 3.2 that

�12j34 ¼ k14k23k34=D34,

where D now refers to the determinant of a submatrix of k. The model with six edges in

Figure 3(a) implies no constraints since it is parameter equivalent to the saturated model.

Thus two independence equivalent models may differ appreciably with respect to one

parameter as may be shown from a triangular decomposition of the residual covariance

matrix.

5. Estimation of moment parameters of exponential families

5.1. The general case

If the observed random variable Y has a multivariate Gaussian distribution the estimation of

� in a covariance chain model requires estimation of a covariance matrix with some

elements constrained to be zero. We suppose without essential loss of generality that

E(Y ) ¼ 0 and that n independent and identically distributed observations are available.

It is simplest to deal with the corresponding more general problem for a full exponential

family, taking the log-likelihood in the form

Figure 3. Two independence equivalent recursive regression graphs with coinciding matrices �vv for

v ¼ f2, 3, 4g and �uu for u ¼ f1, 3, 4g, but different non-zero partial covariances for the pair (1,2)

given (3,4): (a) � unconstrained; (b) � constrained by �12j34 ¼ k14k23k34=D34.
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nfsT�� k(�)g,

where � is the canonical parameter and s the sufficient statistic. The mean parameter �, a
one-to-one function of �, is defined by � ¼ =k(�), where = denotes a gradient, i.e. the vector

of first derivatives, with respect to �.
The maximum-likelihood estimate of � is �̂� ¼ s, a possible value of the corresponding

random variable S, and

n cov(S) ¼ ==Tk(�) ¼ i(�),

where ==T k(�) is the matrix of second derivatives of k(�) with respect to �. It is convenient
to express this matrix as a function i(�) of the mean parameter and to note that it is a

gradient of � with respect to �, i.e. =(�) ¼ i(�). It can be shown that not only does i(�)
determine the covariance matrix of S but also, as the so-called Fisher information matrix for

estimating �, it gives the asymptotic concentration matrix of the maximum-likelihood

estimate of the canonical parameter.

We now introduce the constraints that �c ¼ 0 for some subset of elements of �, writing
� ¼ (�u, �c), and consider the Lagrangian

sT�� k(�)� ºT�c:

Differentiating with respect to � gives the maximum-likelihood estimating equations as

�̂�u ¼ su � îiuc îi�1cc sc, �̂�c ¼ 0: (23)

The (u, c) and (c, c) components of the matrix i(�) are evaluated at the new maximum-

likelihood estimate for which �̂�c ¼ 0. Usually iterative solution is required.

However, because in the second term sc is O p(1=
p

n), an asymptotically efficient

estimate is obtained by replacing the matrices pre-multiplying sc by any consistent estimate

of them. That is, sc differs from zero only by a random error of estimation, small for large

n. The multiplying coefficients then do not have to be determined with high precision. For

this the simplest procedure is to use the relevant portions of the matrix i(su, 0), i.e. the

information matrix evaluated at the unconstrained estimate su of �u and at zero values of

the constrained parameter �c. The resulting explicit estimates are

~��u ¼ su �~iiuc
~ii�1cc sc, ~��c ¼ 0: (24)

In a general context such estimates were called reduced model estimates by Cox and

Wermuth (1990). There is a close connection with the Lagrange multiplier tests of

Aitchison and Silvey (1958), here much simplified by the exponential family structure.

The adjustment to su in (24) means that the new estimate �̂�u is asymptotically orthogonal

to sc or, expressed differently, is obtained by adjusting su for linear regression on sc. The

attractive feature of this representation is that it shows for each parameter the precise

modification of the corresponding unconstrained estimate. Though the explicit reduced

model estimates of constrained moment parameters (24) for exponential families are

asymptotically efficient, they are recommended only for observations which strongly support

the reduced model.
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5.2. The Gaussian case

Now consider the special case of a Gaussian distribution in which the moment parameter is

� , a vector obtained from the covariance matrix � by taking the variances � ii and the

covariances � ij considered only once. Elements of a corresponding observed vector s and of

a random variable S are

sij ¼
X

t

yti ytj=n, Sij ¼
X

t

Y tiY tj=n:

Note that if an unknown mean were included in the model, the sum of products would be

replaced by a sum of products of deviations from the sample mean; some of the following

formulae would then be approximations, essentially from replacing n� 1 by n.

Now because of the assumed Gaussian distribution

n cov(S)ij;kl ¼ � ik� jl þ � il� jk ,

the right-hand side being called the Isserlis matrix, after Isserlis (1918); see, for example,

Roverato and Whittaker (1998). This Isserlis matrix, Iss(� ), of covariances has for q variables

the determinant 2qj�jq�1 (Press 1972: 79). Therefore, if the covariance matrix � is positive

definite, so is the Isserlis matrix.

Equation (23) specializes to the maximum-likelihood equations for �̂� u given that � c ¼ 0

as

�̂� u ¼ su � ÎIssuc ÎIss
�1
cc sc, �̂� c ¼ 0, (25)

where for ÎIss we first evaluate the matrix Iss(� ) at � red ¼ (� u, 0) and then replace � u by �̂� u.

Similarly, equation (24) specializes to the explicit estimate ~�� u given that � c ¼ 0 as

~�� u ¼ su �~IIssuc
~IIss�1cc sc, ~�� c ¼ 0, (26)

where for ~IIss we first evaluate Iss(� ) again at � red ¼ (� u, 0) but then replace � u by su.

The non-zero estimates of � u are thus obtained by an adjustment to the standard

unconstrained estimates su, the adjustment having the form of a typically small correction

for regression on sc. Provided the sample size is large and the assumed model is correct, sc

differs from zero only by small sampling fluctuations. It can be shown that after two steps

of the iterative algorithm suggested by Anderson (1973), to solve his maximum-likelihood

equations in Section 1.4, one also obtains the reduced model estimate of equation (26).

Kauermann (1996) has applied to Gaussian covariance graph models a method which

maximizes the dual likelihood function in exponential families (Christensen 1989). This

gives estimates which tend to underestimate some of the variances.

The notion of a regression-based correction has direct appeal without strong distributional

assumptions. The matrix of regression coefficients used in the method does, however,

involve a theoretical calculation based initially on a Gaussian distribution of the original

observations. A generalization of the Isserlis matrix to arbitrary distributions (McCullagh

1987: 118) involves fourth cumulants. Thus the method has a strong justification if the

fourth cumulants are close to zero or if the effect of non-Gaussian form is merely to inflate

the whole covariance matrix of S by a constant factor.
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While we have not explored the issue in detail, it seems likely that some forms of

departure, for example long-tailed marginal distributions for particular components, would

inflate the diagonal elements of cov(S) more strongly than the off-diagonal elements and

that this would tend to reduce the magnitude of the regression correction. Since the

uncorrected estimate is already often of quite high efficiency, this suggests that the

assumption of multivariate Gaussian form may not be critical.

6. Applications to covariance chains

6.1. The covariance chain of length 3

For the covariance chain (1, 2, 3) the independence constraint is r13 ¼ 0 and the moment

parameters may be written in vector form as

� u ¼ (�11, �22, �33, �12, �23), � c ¼ (�13) ¼ 0:

The Isserlis matrix for the constrained model given � red ¼ (� u, 0), with elements ordered as

above, is

Iss(� red) ¼

2� 2
11 2� 2

12 0 2�12�11 0 0

: 2� 2
22 2� 2

23 2�12�22 2�23�22 2�12�23

: : 2� 2
33 0 2�23�33 0

: : : �11�22 þ � 2
12 �12�23 �23�11

: : : : �22�33 þ � 2
23 �12�33

: : : : : �11�33

0
BBBBBBBBB@

1
CCCCCCCCCA
:

From the last column of this matrix equations (25) become �̂�11 ¼ s11, �̂�33 ¼ s33 and

�̂�22 ¼ s22 � 2
�̂�12�̂�23

�̂�11�̂�33

s13, �̂�12 ¼ s12 �
�̂�23

�̂�33

s13, �̂�23 ¼ s23 �
�̂�12

�̂�11

s13:

The three equations can be solved to give the maximum-likelihood estimates

�̂�12 ¼ �̂�2j1:3s11, �̂�23 ¼ �̂�2j3:1s33, �̂�22 ¼ s22 � 2�̂�2j1:3�̂�2j3:1s13, (27)

where �̂�ij j:k ¼ sijjk=s jjjk ¼ �sij=sii denotes the least-squares estimate of �ij j:k .
Alternatively, the triangular decomposition ( ÂA, ^̃̃�1), defined as in Section 2.2 for the

estimated concentration matrix given in the ordering (2, 1, 3), can be used to obtain the

same estimates

ÂA ¼
1 ��̂�2j1:3 ��̂�2j3:1
0 1 0

0 0 1

0
@

1
A, ^̃̃ ¼

s22j13 0 0

: s11 0

: : s33

0
@

1
A:

The estimates in (27) are a one-to-one transformation of the maximum-likelihood
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estimates for a Gaussian distribution of Y in the corresponding system of linear regression

equations given by

Y2 ¼ �2j1:3Y1 þ �2j3:1Y3 þ �2, Y1 ¼ �1, Y3 ¼ �3, (28)

with diagonal residual covariance matrix cov(�) ¼ ˜.
The linear least-squares estimates for the parameters in (28) are written compactly in

terms of concentrations by using (9) as

�̂�2j1:3 ¼ �
s12

s22
, �̂�2j3:1 ¼ �

s23

s22
, �̂�22:13 ¼

1

s22
, �̂�11 ¼ s11, �̂�33 ¼ s33: (29)

The covariance chain (1, 2, 3) and this system of equations both specify marginal

orthogonality for the pair Y1, Y3, i.e. r13 ¼ 0. The corresponding independence equivalent

graphs are

GN
cov: 1 - - - 2 - - -3, GN

par: 1! 2 3:

6.2. The covariance chain of length 4

For the covariance chain (1, 2, 3, 4), the independence constraints are the three zero

marginal correlations r13 ¼ r14 ¼ r24 ¼ 0 and there are two implied constraints, (see (3)),

on partial correlations: r24j1 ¼ r13j4 ¼ 0. The chain has no independence equivalent parent

graph in the observed nodes and the moment parameters may be written in vector form as

� u ¼ (�11, �22, �33, �44, �12, �23, �34), � c ¼ (�13, �14, �24) ¼ 0:

The maximum-likelihood equations (25) do not appear to have a explicit solution, but the

reduced model estimates of (26) can be written as ~��11 ¼ s11, ~��44 ¼ s44 and

~��22 ¼ s22 � 2s23 �̂�2j1 �̂�1j3:4,

~��33 ¼ s33 � 2s23 �̂�3j4 �̂�4j2:1,

~��12 ¼ s12 � s23 �̂�1j3:4, (30)

~��23 ¼ s23 � �̂�3j4 s24 � �̂�2j1 s13 þ �̂�3j4 �̂�2j1 s14,

~��34 ¼ s34 � s23 �̂�4j2:1:

When the data are a sample of moderate size from a covariance chain (1, 2, 3, 4), then the

constrained observed correlations will be close to zero, as well as s13, s14, s24, �̂�1j3:4 and

�̂�4j2:1. Thus, the above corrections to the observed second moments will be small.

There is the distinction between chains of length 3 and chains of length greater than 3 in

that the former, but not the latter, have explicit expressions for maximum-likelihood

estimates in terms of least-squares regression coefficients. The explanation is that only the

former model is parameter equivalent to a parent graph model for which the regression
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coefficients arise directly. But for both types of estimates, the estimated correlation structure

remains unchanged when the units of measurement are changed for some of the variables.

6.3. Some simulation results

The following simulation results show that the estimates in (30) give a close approximation

to the population parameters also in the case of moderate-size samples from a covariance

chain (1, 2, 3, 4) for a Gaussian distribution. The log-likelihood ratio, evaluated at estimates

of the unconstrained, i.e. saturated, covariance matrix �sat and of the constrained covariance

matrix having a reduced number of parameters �red, provide a goodness-of-fit statistic. For

q variables and k constraints these statistics are, for the two types of estimates,

�n log (j�̂�satj=j�̂�red)j), �n flog (j�̂�satj=j~��redj)þ trace(�̂�sat
~���1red)� qg:

where the first has for large n approximately a central chi-squared distribution with k degrees

of freedom.

The curves in Figure 4 show how closely the smoothed observed distributions

approximate the corresponding chi-squared distribution for moderate sample sizes. The

population covariance chain chosen for these simulations is

Figure 4. Density plots of the log-likelihood ratio for the maximum-likelihood estimate (dashed) and

for the reduced model estimates (solid); chi-squared density with 3 degrees of freedom (dotted); 1000

draws each for a sample size n¼ 50 (left) and for n¼ 100 (right).

Covariance chains 859



� ¼

1 Æ 0 0

: 1þ Æ2 þ ª2 ªŁ 0

: : 1þ �2 þ Ł2 �
: : : 1

0
BB@

1
CCA ¼

1 0:5 0 0

: 2:25 �3 0

: : 10:64 �0:8
: : : 1

0
BB@

1
CCA:

In addition, equally correlated variables (r ¼ 0:5) having equal variances (� ii ¼ 2) were

chosen to exemplify strong deviations from a covariance chain.

Table 1 contains some detailed results for 1000 draws at sample size n ¼ 50 (first row)

and n ¼ 100 (second row). The simulations started with seed �26 634, using the graphical

Gausssian model package of R (Marchetti 2006). The identity matrix was used as the

starting value for the iterative conditional fitting algorithm.

The differences between maximum likelihood estimates, satisfying (25), and the explicit

reduced model estimates, obtained with (26), are small compared with the standard error of

estimation when the draws are from covariance chains (left-hand part of the table). For

population parameters far away from a covariance chain this is no longer the case (right-

hand part of the table), illustrating a quite general feature of such iterative procedures

applied to ill-fitting models. In this case about 0.5% of the matrices ~�� are not positive

definite.

Unimodality of the likelihood was established by finding just one real root to equations

(25); for a related discussion, see Drton and Richardson (2004). Since the likelihood

function turned out to be unimodal in all 2000 samples, the maximum-likelihood estimates

agree with those by the E(xpectation) M(aximization) algorithm, as specialized by Kiiveri

(1987) to path analysis with some variables unobserved. The simulation results suggest that

even in moderate-sized samples the explicit form estimates differ from the population

Table 1. Comparison of maximum-likelihood estimates �̂� and the explicit reduced model estimates ~��
and for sample size n ¼ 50 (first row) and n ¼ 100 (second row); 1000 draws from two models

Covariance chain model Equal-correlation model

�̂� ~�� �̂� ~��

Mean St.d. Mean St.d. rms* Mean St.d. Mean St.d. rms*

�22 ¼ 2.25 2.19 0.42 2.15 0.42 0.08 �22 ¼ 2 1.89 0.38 1.62 0.33 0.35

2.22 0.32 2.20 0.31 0.04 1.87 0.26 1.63 0.23 0.28

�33 ¼ 10.64 10.31 2.06 10.10 2.04 0.38 �33 ¼ 2 1.88 0.38 1.62 0.34 0.35

10.51 1.45 10.40 1.42 0.20 1.89 0.27 1.65 0.24 0.28

�12 ¼ 0.50 0.49 0.18 0.48 0.17 0.02 �12 ¼ 1 0.86 0.33 0.64 0.26 0.28

0.50 0.13 0.49 0.13 0.01 0.87 0.23 0.66 0.19 0.24

�23 ¼ �3.00 �2.92 0.76 �2.81 0.75 0.16 �23 ¼ 1 0.31 0.26 0.24 0.20 0.11

�2.96 0.55 �2.90 0.54 0.09 0.31 0.18 0.25 0.14 0.08

�34 ¼ �0.80 �0.79 0.37 �0.77 0.37 0.05 �34 ¼ 1 0.86 0.33 0.64 0.27 0.28

�0.79 0.26 �0.78 0.26 0.02 0.88 0.23 0.66 0.19 0.25

*rms: root mean square difference between the two estimates.
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parameters by only small sampling fluctuations, provided the constraints are closely

reflected in the observed correlations.
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Gram, J.P. (1883) Über die Entwicklung reeller Funktionen in Reihen mittelst der Methode der

kleinsten Quadrate. J. Reine Angew. Math., 94, 41–73.

Heywood, H.B. (1931) On finite sequences of real numbers. Proc. Roy. Soc. Lond. Ser. A, 134,

486–501.

Isserlis, L. (1918) Formulae for determining the near values of products of deviations of mixed

moment coefficients. Biometrika, 12, 183–184.

Kauermann, G. (1996) On a dualization of graphical Gaussian models. Scand. J. Statist., 23, 105–116.

Kiiveri, H.T. (1987) An incomplete data approach to the analysis of covariance structures.

Psychometrika, 52, 539–554.

Koster, J. (1999) On the validity of the Markov interpretation of path diagrams of Gaussian structural

equation systems of simultaneous equations. Scand. J. Statist., 26, 413–431.

Marchetti, G.M. (2006) Independencies induced from a graphical Markov model after marginalization

and conditioning: the R package ggm. J. Statist. Software, 15(6).

Markov, A.A. (1912) Wahrscheinlichkeitsrechnung (German translation of 2nd Russian edition).

Leipzig: Teubner.

McDonald, R.P. (2002) What can we learn from the path equations? Identifiability, constraints,

equivalence. Psychometrika, 67, 225–249.

McCullagh, P. (1987) Tensor Methods in Statistics. London: Chapman & Hall.

Pearl, J. and Brito, C. (2002) A new identification condition for recursive models with correlated

errors. Structural Equation Modeling, 9, 459–474.

Pearl, J. and Wermuth, N. (1994) When can association graphs admit a causal interpretation? In P.

Cheeseman and W. Oldford (eds.), Selecting Models from Data: Artificial Intelligence and

Statistics IV, Lecture Notes in Statist. 89, pp. 205–214. New York: Springer-Verlag.

Press, S.J. (1972) Applied Multivariate Analysis: Using Bayesian and Frequentist Methods of

Inference. New York: Holt, Rinehart and Winston.

Richardson, T.S. and Spirtes, P. (2002) Ancestral Markov graphical models. Ann. Statist., 30,

962–1030.

Roverato, A. and Whittaker, J. (1998) The Isserlis matrix and its application to non-decomposable

graphical models. Biometrika, 85, 711–725.

Sargan, J.D. (1958) The estimation of economic relationships using instrumental variables.

Econometrica, 26, 393–415.

Schmidt, E. (1907) Zur Theorie der linearen und nichtlinearen Integralgleichungen. I. Teil:

Entwicklungen willkürlicher Funktionen nach Systemen vorgeschriebener, Math. Ann., 63,

433–476.

Speed, T.P. and Kiiveri, H.T. (1986) Gaussian Markov distributions over finite graphs. Ann. Statist., 14,

138–150.

Stanghellini, E. and Wermuth, N. (2005) On the identification of path analysis models with one hidden

variable. Biometrika, 92, 332–350.

Wermuth, N. (1980) Linear recursive equations, covariance selection, and path analysis. J. Amer.

Statist. Assoc., 75, 963–997.

Wermuth, N. and Cox, D.R. (1998) On association models defined over independence graphs.

Bernoulli, 4, 477–495.

Wermuth, N. and Cox, D.R. (2004) Joint response graphs and separation induced by triangular

systems. J. Roy. Statist. Soc. Ser. B, 66, 687–717.

Wilks, S.S. (1932) Certain generalisations in the analysis of variance. Biometrika, 24, 471–494.

Received February 2005 and revised December 2005

862 N. Wermuth, D.R. Cox and G.M. Marchetti


	1.&X;Introduction
	1.1.&Y;General remarks
	1.2.&Y;Constrained covariance structures
	1.3.&Y;Parameter equivalence and independence equivalence

	Figure 1
	1.4.&Y;Estimation in concentration versus covariance graph models
	1.5.&Y;Outline of the paper

	2.&X;Notation and previous results
	2.1.&Y;Interpretation of linear covariance graph models

	Equation 1
	Equation 2
	Equation 3
	2.2.&Y;Linear least-squares regressions and orthogonal decompositions

	Equation 4
	Equation 5
	Equation 6
	2.3.&Y;Linear least-squares regression co—ef—fi—cients and concentrations

	Equation 7
	Equation 8
	Equation 9
	2.4.&Y;Partial variances and determinants of covariance matrices

	Equation 10
	Equation 11
	3.&X;Parameters and gen—er—at—ing processes for covariance chains
	3.1.&Y;Constraints on partial regression co—ef—fi—cients and variances

	Equation 12
	Equation 13
	Equation 14
	3.2.&Y;The orthogonal decomposition of the covariance matrix
	3.3.&Y;The concentration matrix

	Equation 18
	Equation 19
	Equation 20
	3.4.&Y;The orthogonal decomposition of the concentration matrix

	Equation 22
	3.5.&Y;Generating processes for covariance chains

	4.&X;Parameter and independence equivalence
	4.1.&Y;Independence equivalence but no parameter equivalence
	4.2.&Y;Parameter equivalence in spite of confounding
	4.3.&Y;The parameter constraint in an independence equiva—lent model

	Figure 2
	5.&X;Estimation of moment parameters of exponential families
	5.1.&Y;The general case

	Figure 3
	Equation 23
	Equation 24
	5.2.&Y;The Gaussian case

	Equation 25
	Equation 26
	6.&X;Applications to covariance chains
	6.1.&Y;The covariance chain of length 3

	Equation 27
	Equation 28
	Equation 29
	6.2.&Y;The covariance chain of length 4
	6.3.&Y;Some simulation results

	Figure 4
	Table 1
	Acknowledgement
	References
	mkr1
	mkr2
	mkr3
	mkr4
	mkr5
	mkr6
	mkr7
	mkr8
	mkr9
	mkr10
	mkr11
	mkr12
	mkr13
	mkr14
	mkr15
	mkr16
	mkr17
	mkr18
	mkr19
	mkr20
	mkr21
	mkr22
	mkr23
	mkr24
	mkr25
	mkr26
	mkr27
	mkr28
	mkr29
	mkr30
	mkr31
	mkr32
	mkr33
	mkr34
	mkr35
	mkr36
	mkr37
	mkr38
	mkr39
	mkr40
	mkr41

