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1. Introduction

The goal of this paper is to propose and analyse data structures where a lifetime of interest

may be left or right censored. Typically, a lifetime T is left or right censored if, instead of

observing T we observe a finite non-negative random variable Y , and a discrete random

variable A with values 0, 1 or 2. By definition, when A ¼ 0, Y ¼ T , when A ¼ 1, Y , T

and, when A ¼ 2, Y . T . Models for left- or right-censored data were proposed by Turnbull

(1974), Samuelsen (1989) and Huang (1999). See also Gu and Zhang (1993), van der Laan

and Gill (1999) and Kim (2003).

Assume that the sample consists of n independent copies of (Y , A) and let FT be the

distribution of the lifetime of interest T . Using the plug-in (or substitution) principle, the

nonparametric estimation of FT is straightforward if FT can be expressed as an explicit

function of the distribution of (Y , A). The existence of such a function requires a precise

description of the censoring mechanism that is generally achieved by introducing ‘latent’

variables and by making assumptions on their distributions. In this paper, two data

structures allowing for an explicit inversion formula, that is, a closed-form function relating

FT to the distribution of (Y , A), are proposed. The data structures considered extend the

classical current-status data situation and represent, in some sense, a particular case of the

left- or right-censoring model of Turnbull (1974). We shall use the term ‘latent models’, or

simply ‘models’, to refer to these data structures.
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In some sense, our first latent model lies between the classical right-censorship model

and the current-status data model. It may be applied to the following framework. Consider a

cross-sectional study where T , the age at onset of an occult non-fatal disease, is analysed.

The individuals are examined only once and belong to one of the following categories: (i)

evidence of the disease is present and the age at onset is known (from medical records,

interviews with the patient or family members, . . .); (ii) the disease is diagnosed but the age

at onset is unknown or the accuracy of the information about this is questionable; and (iii)

the disease is not diagnosed at the time of examination. It is supposed that when the disease

is present the subsample of individuals for which the age at onset is known is completely

random. Let C denote the age at which the individual is examined. In the first case the

exact failure time T (age at onset) is observed, that is, Y ¼ T . In case (ii) the failure time

T is left censored by C and thus Y ¼ C, A ¼ 2. Finally, T is right censored by C for those

individuals who have not yet developed the disease; in this case Y ¼ C, A ¼ 1. If no

observation as in (ii) occurs, we are in the classical right-censorship framework, while if no

uncensored observation is recorded we have current-status data. Our first latent model can

be applied, for instance, with the data sets analysed by Turnbull and Weiss (1978) and

Cupples et al. (1991: Table 1).

The second latent model proposed is related to the first and lies between the left-

censorship model and the current-status data model. Consider the example of a reliability

experiment on the failure time of a type of device. A random sample of devices is

considered and a single inspection for each device in the sample is undertaken. Some of the

devices have already failed at some unknown time (left-censored observations). To increase

the precision of the estimates, a proportion of the devices still working is selected at

random and all the selected devices are followed until failure (uncensored observations). For

the remaining working devices the failure time is right censored by the inspection time.

We remark that, without any model assumption, given a distribution for the observed

variables (Y , A) with Y > 0 and A 2 f0, 1, 2g, one can always apply our two inversion

formulae. In this way one constructs two pseudo-true distribution functions of the lifetime

of interest which are functionals of the distribution of (Y , A). If the experiment under

observation is compatible with the hypothesis of one of our latent models, the true FT can

be exactly recovered from the distribution of (Y , A). Otherwise, in general, one can only

approximate the true lifetime distribution.

Our paper is organized as follows. Section 2 introduces the two latent models through the

equations relating the distribution of the observations to those of the latent variables. By

solving these equations for FT , we deduce the inversion formulae. The product-limit

estimators are obtained by applying the inversion formulae to the empirical distribution.

Section 2 ends with some comments on related models. It is shown that our first (second)

latent model can be extended to the case where T is a failure time in the presence of

competing (complementary) failure causes. The relationship between our models and

Turnbull’s (1974) model is also discussed. Section 3 contains the asymptotic results for the

first latent model (similar arguments apply for the second model). The strong uniform

convergence for the product-limit estimator on the whole range of the observations is

proved. Our proof extends and simplifies the strong uniform convergence result for the

Kaplan–Meier estimator obtained by Stute and Wang (1993) and Gill (1994). Next, the
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asymptotic normality of our product-limit estimator is obtained. The variance of the limit

Gaussian process being complicated, a bootstrap procedure for which the asymptotic

validity is a direct consequence of the delta method is proposed. In Section 4, the first

model is applied to data on California high school students considered by Turnbull and

Weiss (1978). The Appendix contains some technical proofs.

2. The latent models

2.1. Model 1

The survival time of interest is T (e.g., the age at onset). Let C be a censoring time (e.g.,

the age of the individual at the time of examination) and ˜ be a Bernoulli random variable.

Assume that the latent variables T , C and ˜ are independent. The observations are

independent copies of the variables (Y , A), with Y > 0 and A 2 f0, 1, 2g. These variables

are defined as follows:

Y ¼ T , A ¼ 0, if 0 < T < C and ˜ ¼ 1,

Y ¼ C, A ¼ 1, if 0 < C , T ,

Y ¼ C, A ¼ 2, if 0 < T < C and ˜ ¼ 0:

8<:
We can also write

Y ¼ min(T , C)þ (1� ˜)max(C � T , 0) ¼ C þ ˜min(T � C, 0)

and A ¼ 2(1� ˜)1fT<Cg þ 1fC,Tg, where 1S denotes the indicator function of the set S.

With this censoring mechanism the lifetime T is observed, right censored or left censored. If

˜ is constant and equal to one (zero), we obtain right-censored (current-status) data. See, for

example, Huang and Wellner (1997) for a review on estimation with current-status data.

Let FT and FC denote the distributions of T and C, respectively. Let p ¼ P(˜ ¼ 1).

Define the subdistributions of Y as

H k(B) ¼ P(Y 2 B, A ¼ k), k ¼ 0, 1, 2, (2:1)

for any B Borel subset of [0, 1]. As usual in survival analysis, the censoring mechanism

defines a map � between the distributions of the latent variables and the distribution of

the observed lifetime. For the data structure described above, the relationship

(H0, H1, H2) ¼ �(FT , FC , p) between the subdistributions of Y and the distributions of

the latent variables T , C and ˜ is the following:

H0(dt) ¼ p FC([t, 1])FT (dt),

H1(dt) ¼ FT ((t, 1])FC(dt),

H2(dt) ¼ (1� p)FT ([0, t])FC(dt):

8<: (2:2)

When p ¼ 1 ( p ¼ 0), equations (2.2) boil down to the equations of the classical independent

right-censoring (current-status) model.

The nonparametric estimation of the distribution of T is straightforward if the map � is

invertible and FT can be written as an explicit function of the subdistributions H k , as it
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suffices to apply the inverse of � to the empirical counterparts of H k , k ¼ 0, 1, 2. The

model considered above allows for an explicit inversion formula for FT. To derive this

formula, integrate the first and the second equation in (2.2) on [t, 1] and deduce that

H0([t, 1])þ pH1([t, 1]) ¼ pFT ([t, 1])FC([t, 1]): (2:3)

For t ¼ 0, it follows that

p ¼ H0([0, 1])

1� H1([0, 1])
¼ H0([0, 1])

H0([0, 1])þ H2([0, 1])
: (2:4)

Recall that the hazard measure associated with a distribution F is ¸(dt) ¼ F(dt)=F([t, 1]).

Use (2.2)–(2.3) to deduce that the hazard function corresponding to FT can be written as

¸T (dt) ¼ H0(dt)

H0([t, 1])þ pH1([t, 1])
: (2:5)

Finally, the distribution FT can be expressed as

FT ((t, 1]) ¼
Y
[0, t]

(1�¸T (ds)), (2:6)

where
Q

is the product integral (e.g., Gill and Johansen 1990). Note that there is no explicit

formula for FT if p ¼ 0 in equations (2.2), that is, with current-status data.

The inversion formula above applies only for t 2 I ¼ ft : H0([t, 1])þ pH1([t, 1])

. 0g. Obviously, there is no information from data about FT ((t, 1]) for t outside the

interval I , unless FT (I) ¼ 1 in which case there is nothing else to know. If FT (I) , 1, we

make FT a distribution on [0, 1] by supposing that FT (f1g) ¼ 1� FT (I).

Given the explicit relationship between FT and the subdistributions of Y , to obtain the

product-limit estimator of FT , we simply replace H k , k ¼ 0, 1, 2, by their empirical

counterparts. Consider a sample f(Yi, Ai) : 1 < i < ng and let Z1 < . . . < Z J be the

distinct values in increasing order of Yi. For any j ¼ 1, . . . , J and k ¼ 0, 1, 2, define

Dkj ¼
X

1<i<n

1fYi¼Z j ,Ai¼kg and N kj ¼
X

1<i<n

1fYi>Z j,Ai¼kg ¼
X

j< l<J

Dkl:

In view of (2.4), the estimator of p is

p̂p ¼ N01

N01 þ N21

,

while the estimator of the hazard measure is

^̧̧
T ([0, t]) ¼

X
j : Z j< t

D0 j

N0 j þ p̂p N1 j

:

Finally, the product-limit estimator of FT is a discrete (possibly sub)distribution F̂FT with the

mass concentrated at the points Z1 < . . . < Z J and such that
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F̂FT ((Z j, 1]) ¼
Y

1< l< j

1� D0 l

N0 l þ p̂p N1 l

� �
, 1 < j < J : (2:7)

When N21 ¼ 0, F̂FT is the Kaplan–Meier estimator for right-censored observations.

Remark 1. In Model 1, like in most situations in survival analysis, there is a problem of

identification in the sense that different joint distributions of (T , C, ˜) may generate the

same subdistributions H k , k ¼ 0, 1, 2. A way to avoid this problem is to impose

identification restrictions. The simplest one is to assume that the latent variables T , C and

˜ are independent. As in the classical right-censorship model (see Fleming and Harrington

1991: Theorem 1.3.2), weaker assumptions than the independence of T , C and ˜ may suffice

for the identification of FT . Nevertheless, any non-independence assumption on T , C and ˜
is not testable using the observations since none of the pairs (T , C), (T , ˜) and (C, ˜) are
completely observed.

Remark 2. By the second and third equations in (2.2), (1� p)H1(dt)þ H2(dt) ¼
(1� p)FC(dt). Then equation (2.3) yields another solution of system (2.2):

FT ((t, 1]) ¼ 1� p

p

H0((t, 1])þ pH1((t, 1])

H2((t, 1])þ (1� p)H1((t, 1])
,

t > 0, with p as in (2.4). However, this solution may not be a survival function when H0, H1

and H2 are replaced by their empirical counterparts.

Remark 3. Only the first two equations of system (2.2) have been used to derive formula

(2.6). This means that the inversion formula proposed still recovers FT from the

subdistributions of Y even if the definition of H2 is modified, for instance, to take into

account that T lies in a subinterval of the positive half-line with right endpoint C.

2.2. Model 2

As in Model 1, assume that T , C and ˜ are independent. The observations are independent

copies of the variables (Y , A), with Y > 0 and A 2 f0, 1, 2g, where

Y ¼ T , A ¼ 0, if 0 < C < T and ˜ ¼ 1,

Y ¼ C, A ¼ 1, if 0 < C < T and ˜ ¼ 0,

Y ¼ C, A ¼ 2 if 0 < T , C:

8<:
The equations of this model are

H0(dt) ¼ p FC([0, t])FT (dt)

H1(dt) ¼ (1� p)FT ([t, 1])FC(dt)

H2(dt) ¼ FT ([0, t))FC(dt)

8<: : (2:8)

When p ¼ 1 ( p ¼ 0) equations (2.8) boil down to the equations of the classical independent

left-censoring (current-status) model. This model also allows for an explicit inversion formula
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for FT. By integration in the first and the third equation in (2.8), H0([0, t])þ pH2([0, t]) ¼
pFT ([0, t])FC([0, t]). Deduce that

p ¼ H0([0, 1])

1� H2([0, 1])
:

Recall that, given a distribution F, the associated reverse hazard measure is

M(dt) ¼ F(dt)=F([0, t]). By equations (2.8) deduce that the reverse hazard function M T

associated with FT can be written as

M T (dt) ¼ H0(dt)

H0([0, t])þ pH2([0, t])
:

Finally, the distribution FT can be expressed as

FT ([0, t]) ¼
Y
( t,1]

(1� M T (ds)):

The inversion formula applies on the interval ft : H0([0, t])þ pH2([0, t]) . 0g. Applying
the inversion formula with the empirical subdistributions, we get the product-limit estimator

of FT . The details are omitted.

Note that if eTT ¼ h(T ) and eCC ¼ h(C), with h > 0 a decreasing transformation, then eTT , eCC
and ˜ are the variables of Model 1 applied to the left- or right-censored lifetime h(Y ). In

other words, Model 2 is equivalent to Model 1 up to a time-reversal transformation. In

particular, Remarks 1–3 can be restated accordingly.

2.3. Extensions and related models

Model 1 can be easily extended as follows: suppose that T ¼ min(Ta, Tb), with Ta (Tb) the

failure time due to cause a (b). Assume that Ta and Tb are independent of one another and

of (C, ˜). For simplicity, consider only two failure causes, the extension to k . 2

competing failure causes being straightforward. Assume that if T . C, one only observes C

and one knows that T is greater. When T < C there are two cases: either C is observed

and one only knows that the failure time T is less than or equal to C, or T is observed and

one knows if the failure cause is a or b. The equations of the model are

H0a(dt) ¼ p FC([t, 1])FTb
([t, 1])FTa

(dt),

H0b(dt) ¼ p FC([t, 1])FTa
((t, 1])FTb

(dt),

H1(dt) ¼ FT ((t, 1])FC(dt),

H2(dt) ¼ (1� p)FT ([0, t])FC(dt),

8>><>>:
where H0a (H0b) is the subdistribution of the uncensored observations for which the failure

cause is a (b). If H0 denotes the subdistribution of the uncensored observations,

H0(dt) ¼ p FC([t, 1])FT (dt) and thus (2.3) holds and p can be expressed as in (2.4).

Consequently,
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¸Ta
(dt) ¼ FTa

(dt)

FTa
([t, 1])

¼ p FC([t, 1])FTb
([t, 1])FTa

(dt)

p FC([t, 1])FT ([t, 1])
¼ H0a(dt)

H0([t, 1])þ pH1([t, 1])

from which the expression for FTa
can be derived. Model 2 can be extended in a similar way

by considering T ¼ max(Ta, Tb), with Ta and Tb the independent failure times corresponding

to the complementary causes a and b, respectively.

Let us end this section with some comments on related models. Huang (1999) introduced

a model for the so-called partly interval-censored data (his Case 1); see also Kim (2003). In

such data, for some subjects, the exact failure time of interest T is observed. For the

remaining subjects, only the information on their current-status at the examination time is

available. Huang (1999) considered the nonparametric maximum likelihood estimator

(NPMLE) of FT . Unfortunately, the NPMLE does not have an explicit form and therefore

Huang needs strong assumptions for deriving its asymptotic properties and a numerical

algorithm for the applications. We remark that, contrary to our Model 1 (Model 2), in

Huang’s model one may observe exact failure times even if failure occurs after (before) the

time of examination. Moreover, in Huang’s model one may still obtain a
ffiffiffi
n

p
-consistent

estimator of the distribution FT if one simply considers the empirical distribution of the

uncensored lifetimes. This is no longer true in our models.

Perhaps the most popular model for left- or right-censored data is that introduced by

Turnbull (1974). In Turnbull’s model there are three latent lifetimes L (left censoring), T

(lifetime of interest) and R (right censoring), with L < R. The observed variables are

Y ¼ max(L, min(T , R)) ¼ min(max(L, T ), R) and A is defined as follows: A ¼ 0 if

L , T < R; A ¼ 1 if R , T ; and A ¼ 2 if T < L. The equations for this model are

H0(dt) ¼ fFR([t, 1])� FL([t, 1])g FT (dt),

H1(dt) ¼ FT ((t, 1]) FR(dt),

H2(dt) ¼ FT ([0, t]) FL(dt),

8<:
where H k , k ¼ 0, 1, 2, are defined as in (2.1) and FT, FL and FR are the distributions of T ,

L and R, respectively. The NPMLE of the distribution of the failure time T is not explicit but

can be computed, for instance, by iterations based on the so-called self-consistency equation.

Note that by imposing FC(dt) ¼ (1� p)�1FL(dt) ¼ FR(dt) one recovers the equations of

Model 1. However, for the applications we have in mind, there is no natural interpretation for

such a constraint in Turnbull’s model. Moreover, we derive a product-limit estimator for our

Model 1. Finally, the proofs of asymptotic results below are much simpler and are derived

under weaker conditions than in Turnbull’s model (see Gu and Zhang 1993; Wellner and

Zhan 1996).

3. Asymptotic results

In this section the strong uniform convergence and the asymptotic normality of the

estimator of the distribution FT in Model 1 are derived. Moreover, we propose a bootstrap

procedure that can be used to construct confidence intervals for FT. As in the previous
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sections, the distributions FT and FC need not be continuous. To simplify the notation,

hereafter, the subscript T is suppressed when there is no possible confusion.

3.1. Strong uniform convergence

Let H nk be the empirical counterparts of the subdistributions H k , that is,

H nk([0, t]) ¼ n�1
Xn

i¼1

1fYi< t,Ai¼kg, k ¼ 0, 1, 2:

We wish to prove the strong uniform convergence of the distribution F̂F, that is,

sup
t2 I

jF̂F([0, t])� F([0, t])j ! 0 as n ! 1, almost surely,

where I ¼ ft : H0([t, 1])þ pH1([t, 1]) . 0g. First, the almost sure convergence of the

hazard function is obtained.

Theorem 3.1. Assume that p 2 (0, 1] and let t� ¼ sup I . For any � 2 I,

sup
0< t<�

j ^̧̧ ([0, t])�¸([0, t])j ! 0 as n ! 1, almost surely:

Moreover, if t� =2 I and ¸([0, t�)) , 1, then ^̧̧ ([0, t�)) ! ¸([0, t�)) almost surely.

To prove this theorem, first we consider the case where p replaces p̂p in the definition of
^̧̧ . In this case the functionals of the hazard function are reverse supermartingales in n, as

is shown in the next lemma which extends a statement of Gill (1994). The proof of the

lemma is relegated to the Appendix.

Lemma 3.2. Let p 2 (0, 1] and f > 0 be a Borel-measurable function. Let

¸n, p( f ) ¼
ð

I

f (t)H n0(dt)

H n0([t, 1])þ pH n1([t, 1])
:

Define the � -fields

F n ¼ � (H n0, H n1, H n2) and Bn ¼
_

n<m,1
F m:

Then, for all n,

E[¸n, p( f )jBnþ1] < ¸nþ1, p( f ),

that is, ¸n, p( f ), n > 1 is a positive reverse supermartingale.

Proof of Theorem 3.1. The strong uniform convergence of ^̧̧ ([0, t]) when t 2 [0, �] � I can

be obtained by the delta method (cf. Gill 1989, 1994; see also the proof of Theorem 3.4

below) from the almost sure uniform convergence of H nk([0, t]), k ¼ 0, 1, 2. For the last part

of the theorem, write H0(t�) ¼ H0([t, 1]) and H1(t�) ¼ H1([t, 1]). Let H n0(t�) and
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H n1(t�) be the empirical counterparts of H0(t�) and H1(t�), respectively. Fix some � , t�
and write

j ^̧̧ ((�, t�))�¸((�, t�))j <
����ð

(�, t�)

H n0(dt)

(H n0 þ p̂p H n1)(t�)
�
ð
(�, t�)

H n0(dt)

(H n0 þ p H n1)(t�)

����
þ
����ð

(�, t�)

H n0(dt)

(H n0 þ p H n1)(t�)
�
ð
(�, t�)

H0(dt)

(H0 þ p H1)(t�)

����
¼ : A1 þ A2:

A little algebra gives

A1 <
j p̂p � pj

p̂p

ð
(�, t�)

H n0(dt)

H n0(t�)þ p H n1(t�)
¼ j p̂p � pj

p̂p
¸n, p((�, t�)):

Since p̂p ! p almost surely, we obtain A1 ! 0 almost surely, given that ¸n, p((�, t�))
converges almost surely to a finite constant. Use Lemma 3.2 with f ¼ 1(�, t�) to deduce that

¸n, p((�, t�)) is a reverse supermartingale. Now, by Doob’s supermartingale convergence

theorem, if supnE[¸n, p((�, t�))] is finite, the functional ¸n, p((�, t�)) converges almost surely

to some integrable limit. It is not difficult to see that the limit is in the � -field of asymptotic

permutable events and is therefore a constant by the Hewitt–Savage 0–1 law. More precisely,

the constant is equal to supnE[¸n, p((�, t�))]. Hence, it remains to bound E[¸n, p((�, t�))],
n > 1. Note that ¸n, p((�, t�)) < p�1¸n,1((�, t�)). Next, it can be shown that

E(¸n,1((�, t�))) ¼
ð
(�, t�)

PfH n0(u�)þ H n1(u�) . 0g¸1(du) , ¸1((�, t�)),

where ¸1(du) ¼ fH0(u�)þ H1(u�)g�1 H0(du) (see Lemma A.1 below). Since

¸1(du) < ¸(du), deduce that, for any �, supnE[¸n, p((�, t�))] < p�1¸([0, t�)) , 1. Hence,

A1 ! 0 almost surely uniformly in �. Concerning A2, note that A2 <

¸n, p((�, t�))þ¸((�, t�)) and ¸n, p((�, t�)) converges almost surely to a constant smaller

than p�1¸1((�, t�)). Since ¸1((�, t�)) # 0 as � " t�, deduce that ^̧̧ ([0, t�)) ! ¸([0, t�))
almost surely. h

The strong uniform convergence of the distribution F̂F follows.

Theorem 3.3. Assume that p 2 (0, 1]. Then

sup
t2 I

jF̂F([0, t])� F([0, t])j ! 0 as n ! 1, almost surely:

Proof. From the first part of Theorem 3.1 and using the delta method, for any � 2 I,

sup
t2[0,�]

jF̂F([0, t])� F([0, t])j ! 0 as n ! 1, almost surely:

As pointed out by Gill (1994), to complete the proof the only difficulty appears when

I ¼ [0, t�) and F([t�, 1]) . 0. In this case, we write
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sup
t2 I

jF̂F([0, t])� F([0, t])j < F̂F((�, t�))þ F((�, t�))þ sup
t2[0,�]

jF̂F([0, t])� F([0, t])j:

Now, by definition, ¸(dt) ¼ F(dt)=F([t, 1]) and ^̧̧ (dt) ¼ F̂F(dt)=F̂F([t, 1]). Deduce that

¸([0, t�)) , 1 and ¸((�, t�)) # 0 as � " t�. On the other hand, deduce that the measure
^̧̧ (dt) is greater than the measure F̂F(dt). Thus, for any � 2 I,

sup
t2 I

jF̂F([0, t])� F([0, t])j < ^̧̧ ((�, t�))þ F((�, t�))þ sup
t2[0,�]

jF̂F([0, t])� F([0, t])j:

By Lemma 3.2, ^̧̧ ((�, t�)) ! ¸((�, t�)), almost surely. Since ¸((�, t�))þ F((�, t�)) # 0 as

� " t�, the proof is complete. h

Remark 4. The proofs of Lemma 3.2 and Theorem 3.1 also apply to the extension of Model

1 considered in Section 2.3. Deduce the strong uniform convergence on I of the

nonparametric estimator of the distribution FTa
.

Remark 5. With p ¼ 1 one recovers the strong uniform convergence result for the Kaplan–

Meier estimator obtained by Stute and Wang (1993); see also Gill (1994). Our alternative

proof is simpler, especially the arguments used for Lemma 3.2.

3.2. Asymptotic normality

Here, the weak convergence of the process
ffiffiffi
n

p
(F̂F � F) with F̂F from Model 1 is derived.

Weak convergence (denoted by ? ) is as in Pollard (1984): D[a, b], the space of cadlag

functions on [a, b], is endowed with the supremum norm and the ball � -field. By the

empirical central limit theorem (e.g., van de Vaart and Wellner 1996),ffiffiffi
n

p
f(H0n, H1n, p̂p)� (H0, H1, p)g ? (G0, G1, N ) (3:1)

in (D[0, 1])2 3 R, where H kn is the cadlag process H nk(t) ¼ H nk((t, 1]), k ¼ 0, 1, 2. The

process (G0, G1) is a tight, zero-mean Gaussian process and, for any t, s > 0, the vector

(G0(t), G1(t), N ) has a zero-mean multivariate normal distribution.

Theorem 3.4. Assume that p 2 (0, 1] and define U (t) ¼ ffiffiffi
n

p
(F̂F([0, t])� F([0, t])), t > 0.

(a) Let � be a point in I . Then U ? G in D[0, �], where G is the Gaussian process

G(t) ¼ �F((t, 1])

ð
[0, t]

dG0(s)

H0(s)þ pH1(s)
þ
ð
[0, t]

G2(s�)

H0(s�)þ pH1(s�)
d¸(s)

( )
and G2 ¼ G0 þ pG1 þ N H1, with G0 and G1 the limit processes in (3.1). The first integral is

defined by integration by parts.

(b) If t� 62 I , but ð
[0, t�)

H0(dt)

fH0(t�)þ pH1(t�)g2
, 1, (3:2)
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then G can be extended to a Gaussian process on [0, t�] and U ? G in D[0, t�].

When t� 62 I , condition (3.2) is equivalent to

FT ([t�, 1]) . 0 and

ð
[0, t�)

FT (dt)

FC([t, 1])
, 1: (3:3)

See Chen and Lo (1997: Section 1) for a discussion on similar conditions in the case of the

Kaplan–Meier estimator. Whether the weak convergence in D[0, t�] still holds when p , 1

and only the second part of (3.3) is satisfied remains an open question.

The proof of part (a) of Theorem 3.4 is postponed to the Appendix. It is based on the

delta method and the weak convergence in (3.1). The proof of (b) is based on the

martingale arguments of Gill (1983) but modified in order to take into account that in

Model 1 when p , 1 the estimator ^̧̧ no longer has an obvious martingale structure (in t),

as the Nelson–Aalen estimator does. The details of the proof of (b) can be found in Patilea

and Rolin (2004) and, for the sake of brevity, are omitted.

3.3. Bootstrapping the product-limit estimator

Theorem 3.4 may be used to obtain confidence intervals and confidence bands for F.

However, the law of the process G(t)=F((t, 1]) being complicated, one may prefer a

bootstrap method in order to avoid having to handle this process in applications. Here, a

bootstrap sample is obtained by simple random sampling with replacement from the set of

observations. Let H�
k , k ¼ 0, 1, 2, denote the bootstrap versions of the subdistributions of

the observed lifetime. Apply equations (2.4)–(2.6) to obtain the bootstrap estimator F̂F�. The
following theorem states that the bootstrap works almost surely for our product-limit

estimator on any interval [0, �] such that H0([�, 1])þ pH1([�, 1]) . 0. This result, for

which the proof is skipped, is a simple corollary of Theorem 3.9.13 of van der Vaart and

Wellner (1996) (see also Theorem 4 of Gill 1989) and is based on the uniform Hadamard

differentiability of the maps involved in the inversion formula of Model 1.

Theorem 3.5. Let � 2 I and let eGG(t) be the limit of
ffiffiffi
n

p fF̂F([0, t])� F([0, t])g=F((t, 1]) in

D[0, �], as obtained from Theorem 3.4. Then, the processffiffiffi
n

p
fF̂F�([0, t])� F̂F([0, t])g=F̂F((t, 1])

converges to eGG in D[0, �] almost surely.

4. Application

By way of illustration, we apply Model 1 to the California high school students data (Table

1). The data are part of a study conducted by the Stanford-Palo Alto Peer Counseling

Program; see Hamburg et al. (1975). In this study, 191 high schools boys were asked

‘When did you first use marijuana?’. The answers were the exact ages, ‘I have used it but
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cannot recall just when the first time was’ and ‘I never used it’. The latent variable T is the

age at first use of marijuana. It is supposed that the observations are independent and

identically distributed (i.i.d.) Turnbull and Weiss (1978) (see also Klein and Moeschberger

1997: Chapter 5) used the double-censorship model of Turnbull (1974) with this data set to

estimate the distribution of T . However, there is no natural interpretation for two censoring

times, that is, the left- and right-censoring lifetimes L and R, with this data set. On

contrary, Model 1 can be easily interpreted as follows: ˜ ¼ 1 if the student recalls the value

of T , and ˜ ¼ 0 otherwise; the variable C is the age of the student at the time of the study.

It is assumed that T and C are independent and the missing values of T are missing

independently of T and the age of the student at interview. Condition FT ([t�, 1]) . 0 in

(3.2) means that some students will never use marijuana.

The distribution F̂FT obtained with Model 1 is reported in Table 2. The value of p̂p is

0:893. Moreover, we provide the estimator FTW
n obtained in Turnbull’s model, as reported in

Klein and Moeschberger (1997: 129). The Kaplan–Meier estimator FKM
n , based only on

uncensored and right-censored observations, is also presented.

Note that FKM
n is quite close to F̂FT and FTW

n due to the small number of left-censored

observations. The fact that, in some sense, Model 1 is a special case of Turnbull’s model

explains the closeness between F̂FT and FTW
n .

Pointwise confidence intervals and confidence bands for the survival probability are rather

Table 1. First use of marijuana: Z j are the distinct observed values of the lifetimes Yi and

Dkj ¼
P

i 1fYi¼Z j ,Ai¼kg, k ¼ 0, 1, 2

Z j 10 11 12 13 14 15 16 17 18 . 18

D0 j (uncensored) 4 12 19 24 20 13 3 1 0 4

D1 j (right censored) 0 0 2 15 24 18 14 6 0 0

D2 j (left censored) 0 0 0 1 2 3 2 3 1 0

Table 2. Survival function estimates for the first use of

marijuana

Z j F̂FT ((Z j, 1]) FTW
n ((Z j, 1]) FKM

n ((Z j, 1])

10 0.977 0.977 0.978

11 0.906 0.906 0.911

12 0.795 0.794 0.804

13 0.652 0.651 0.669

14 0.517 0.516 0.539

15 0.394 0.392 0.420

16 0.349 0.345 0.375

17 0.315 0.308 0.341

18 0.315 0.308 0.341

. 18 0.000 0.000 0.000
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difficult to obtain in Turnbull’s model (see Wellner and Zhan 1997: Section 6). Such

confidence regions are easily obtained by bootstrapping in our Model 1. In Figure 1 we

provide the bootstrap pointwise confidence intervals for the survival function estimated by

F̂FT . The level is 1� Æ ¼ 0:95 and the confidence interval for F((t, 1]) is defined as

[F̂F((t, 1])� q�1�Æ=2(t)n
�1=2 F̂F((t, 1]), F̂F((t, 1])� q�Æ=2(t)n�1=2 F̂F((t, 1])],

where q�Æ (t) is the bootstrap approximation of the Æ-quantile of the distribution offfiffiffi
n

p fF̂F((t, 1])� F((t, 1])g=F((t, 1]). The number of bootstrap samples used was 5000.

The intervals plotted in Figure 1 are rather wide in the right tail of FT . By analogy with

the confidence intervals and bands proposed for the Kaplan–Meier estimator (e.g., Akritas

1986; Gill 1994), many other confidence intervals and bands for FT together with their

bootstrap versions can be constructed with Model 1. They are based on the asymptotic

behaviour of a weighted process
ffiffiffi
n

p
W (F̂FT � FT ) with W (t), t > 0, a suitable weight

function that depends upon the asymptotic variance of
ffiffiffi
n

p
(F̂FT � FT ). The main difficulty in

constructing such improved intervals and bands in Model 1 is the complicated expression

for the asymptotic variance of
ffiffiffi
n

p
(F̂FT � FT ). Perhaps a rough approximation of this

variance by that obtained in the case p ¼ 1 could be a satisfactory compromise. This issue

requires extensive empirical investigation which we leave for future work.

Let us end this application with some comments suggested by a referee and motivated by

the discrete nature of the data in Table 1. When observations are recorded at a finite set of

time points, the study of the asymptotics of F̂FT defined in (2.7) is much simplified as it

relies on the asymptotics of finite-dimensional vectors of observed frequencies. However,

the asymptotic variance of F̂FT remains quite intricate. Finally, the discrete recording of the

lifetimes may introduce a bias in the estimation of FT . To eliminate this type of

Figure 1. Pointwise confidence intervals for the survival function for the age at the first use of

marijuana.
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discretization bias, which is quite common in survival analysis, one may suppose that some

lifetimes are not observed but lie in an interval. The analysis of such models could be much

more complicated and is beyond our present scope.

Appendix

Proof of Lemma 3.2. To simplify the notation, in this proof we write ¸n instead of ¸n, p.

Define Nn(t) ¼ nH n0([t, 1])þ pnH n1([t, 1]) and write

¸n( f ) ¼
X

1<i<n

f (Yi)1fAi¼0gN n(Yi)
�1:

Next, notice that

Bnþ1 ¼ F nþ1 _
_

nþ2<m,1
� (Ym, Am)

and therefore, by the i.i.d. property of the sample and elementary properties of the

conditional independence (see Florens et al., 1990), we have

E[¸n( f )jBnþ1] ¼ nE[ f (Y1)1fA1¼0gNn(Y1)
�1jH nþ1,0, H nþ1,1, H nþ1,2]:

The � -field generated by H nþ1,0, H nþ1,1 and H nþ1,2 is the sub-� -field of permutable events

in the � -field generated by f(Yi, Ai) : 1 < i < n þ 1g. Hence,

E[¸n( f )jBnþ1] ¼
n

(n þ 1)!

X
�2Pnþ1

f (Y�(1))1fA�(1)¼0gN �
nþ1(Y�(1))

�1,

where Pnþ1 is the set of permutations of n þ 1 elements and

N �
nþ1(Y�(1)) ¼ Nnþ1(Y�(1))� 1fY�( nþ1)>Y�(1),A�( nþ1)¼0g � p1fY�(nþ1)>Y�(1),A�( nþ1)¼1g:

(By definition, 0=0 ¼ 0.) There are (n � 1)! permutations such that �(1) ¼ i and �(n þ 1) ¼ j,

and therefore

E[¸n( f )jBnþ1] ¼
1

n þ 1

X
1<i<nþ1

f (Yi)1fAi¼0g (A:1)

3
X

1< j 6¼i<nþ1

[Nnþ1(Yi)� 1fY j>Yi,A j¼0g � p1fY j>Yi ,A j¼1g]
�1:

Now
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X
1< j 6¼i<nþ1

[Nnþ1(Yi)� 1fY j>Yi,A j¼0g � p1fY j>Yi,A j¼1g]
�1

¼
X

1< j 6¼i<nþ1

1fY j,Yig þ 1fY j>Yi ,A j¼2g

Nnþ1(Yi)
þ

1fY j>Yi ,A j¼0g

N nþ1(Yi)� 1
þ

1fY j>Yi ,A j¼1g

Nnþ1(Yi)� p

� �

¼ n þ 1

N nþ1(Yi)
� Ri,

where

Ri ¼
1

Nnþ1(Yi)

þ
X

1< j 6¼i<nþ1

1fY j>Yi ,A j¼0g þ 1fY j>Yi ,A j¼1g

Nnþ1(Yi)
�

1fY j>Yi,A j¼0g

Nnþ1(Yi)� 1
�

1fY j>Yi ,A j¼1g

Nnþ1(Yi)� p

� �
:

Use the inequality

a þ b þ 1

a þ 1þ pb
>

a

a þ pb
þ b

a þ 1þ pb � p

with a ¼
P

j 6¼i 1fY j>Yi,A j¼0g and b ¼
P

j6¼i 1fY j>Yi ,A j¼1g and deduce Ri > 0. (Notice that

Nnþ1(Yi) ¼ a þ 1þ bp because the observations Yi involved in equation (A.1) are such that

Ai ¼ 0.) Therefore,

E[¸n( f )jBnþ1] <
X

1<i<nþ1

f (Yi)1fAi¼0gNnþ1(Yi)
�1 ¼ ¸nþ1( f ),

that is, ¸n( f ), n > 1, is a reverse supermartingale. h

Lemma A.1. Let f > 0 be a Borel-measurable function. Let H01(t�) ¼ H0([t, 1])

þ H1([t, 1]) and H n01(t) ¼ H n0([t, 1])þ H n1([t, 1]). Define

¸n,1( f ) ¼
ð

I

f (t)

H n01(t)
H n0(dt) and ¸1( f ) ¼

ð
I

f (t)

H01(t)
H0(dt),

where I ¼ ft : H01(t) . 0g. Then

E(¸n,1( f )) ¼
ð

I

f (t)PfH n01(t�) . 0g¸1(dt) ¼
ð

I

f (t)[1� fH01(t�)gn]¸1(dt):

Proof. Define the measures N n ¼ n(H n0 þ H n1) and N0n ¼ nH n0. The empirical hazard

measure ¸n,1 may be written in the integral form

¸n,1((t, t þ s]) ¼
ð
( t, tþs]

Nn([u, 1])�1N0n(du)

which can be approximated as follows. Let tm,k ¼ t þ (k=2m)s, with 0 < k < 2m, and
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Sm(u) ¼
X

1<k<2m

1fNn(( t m, k�1,1]).0g

Nn((tm,k�1, 1])
1( t m, k�1, t m, k ](u)

and note that

lim
m!1

Sm(u) ¼
1fNn([u,1]).0g
Nn([u, 1])

1( t, tþs](u):

Since Sm(u) < 1, by the dominated convergence theorem,

¸n,1((t, t þ s]) ¼ lim
m!1

ð
( t, tþs]

Sm(u)N0n(du)

¼ lim
m!1

X
1<k<2m

N0n((tm,k�1, tm,k])

N n((tm,k�1, 1])
1fNn(( t m, k�1,1]).0g:

On the other hand, define An((t, t þ s]) ¼
Ð
( t, tþs]

1fNn([u,1]).0g¸1(du) and

Tm(u) ¼
X

1<k<2m

1fNn(( t m, k�1,1]).0g

H01((tm,k�1, 1])
1( t m, k�1, t m, k ](u):

Clearly, limm!1Tm(u) ¼ H �1
01 (u�)1fNn([u,1]).0g1( t, tþs](u). Therefore, if t þ s 2 I , by the

dominated convergence theorem,

An((t, t þ s]) ¼ lim
m!1

ð
( t, tþs]

Tm(u)H0(du)

¼ lim
m!1

X
1<k<2m

H0((tm,k�1, tm,k])

H01((tm,k�1, 1])
1fNn(( t m, k�1,1]).0g:

Now, by a well-known property of the multinomial law, the law of N0n((tm,k�1, tm,k]) given

Nn((tm,k�1, 1]) is a binomial with number of trials Nn((tm,k�1, 1]) and parameter

H0((tm,k�1, tm,k])=H01((tm,k�1, 1]). Again by the dominated convergence theorem,

E[¸n,1((t, t þ s])] ¼ E[An((t, t þ s])]:

When t� ¼ sup I does not belong to I , consider t þ s increasing to t� and use the monotone

convergence theorem to deduce E[¸n,1((t, t�))] ¼ E[An((t, t�))]. Finally, by the monotone

class theorem, we obtain the stated result. h

Proof of Theorem 3.4. The inversion formula of Model 1 can be thought of as the

composition of three mappings

(H0, H1, p) 7!j1

(H0, H0 þ pH1) 7!
j2

¸ 7!j3

F, (A:2)

where j2 is the map (x, y) 7! �
Ð
[0,�] (1=y�)dx and j3 is the product-integral mapping

z 7!
Q

[0,�] (1� dz). The notation y� means that we consider the left limits of y. The

Hadamard derivative of the map j1 at (H0, H1, p) is given by (Æ, �, c) 7!
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(Æ, Æþ p�þ c H1). By the delta method (Gill 1989; van de Vaart and Wellner 1996: Section

3.9) applied with j1,ffiffiffi
n

p
f(H0n, H0n þ p̂pH1n)� (H0, H0 þ pH1)g ? (G0, G2),

in (D[0, 1])2, where G2 ¼ G0 þ pG1 þ N H1. The process (G0, G2) is a tight, zero-mean

Gaussian process with covariance structure

EfG0(t)G0(s)g ¼ H0(t _ s)� H0(t)H0(s),

EfG0(t)G2(s)g ¼ H0(t _ s)� H0(t)H0(s)þ H0(t)H1(s)
(1� p)

H02([0, 1])
� p

� �
,

EfG2(t)G2(s)g ¼ H0(t _ s)� H0(t)H0(s)

þ fH0(t)H1(s)þ H0(s)H1(t)g
1� p

H02([0, 1])
� p

� �
þ p2fH1(t _ s)� H1(t)H1(s)g

þ H1(t)H1(s)
p(1� p)

H02([0, 1])
:

Let � be a point in the interval I ¼ ft : H0(t�)þ pH1(t�) . 0g. Let
Ð
jdAj denote the total

variation of the cadlag function t 7! A(t). The map j2 is Hadamard-differentiable on a

domain of the type f(A, B) :
Ð
jdAj < M , B > �g for given M and � . 0, at every point

(A, B) such that 1=B is of bounded variation. If t is restricted to [0, �], then

(H0n, H0n þ p̂pH1n) is contained in this domain with probability tending to one for M > 1

and sufficiently small �. The derivative of j2 at (H0, H0 þ pH1) is given by

(ª, �) 7! �
ð

1

(H0 þ pH1)�
dª�

ð
�

(H0 þ pH1)
2
�
dH0:

(The integrals with respect to functions which are not of bounded variation have to be

understood via partial integration.) Use the delta method again, this time with j2, and deduce

that
ffiffiffi
n

p
( ^̧̧ �¸) ? G3 in D[0, �], where

G3 ¼ �
ð

dG0

(H0 þ pH1)�
�
ð

G2�

(H0 þ pH1)
2
�
dH0: (A:3)

The process G3 is a tight, zero-mean Gaussian process. Its variance is given in Lemma A.5 of

Patilea and Rolin (2004). Finally, apply the delta method with j3 and deduce thatffiffiffi
n

p
(F̂F � F) ? G in D[0, �], where G is a tight, zero-mean Gaussian process defined by
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G(t) ¼ F((t, 1])

ð
[0, t]

F([s, 1])

F((s, 1])
dG3

¼ �F((t, 1])

ð
[0, t]

dG0(s)

H0(s)þ pH1(s)
� F((t, 1])

ð
[0, t]

G2(s�)

H0(s)þ pH1(s)
d¸(s):

(See also van der Vaart and Wellner 1996: Lemma 3.9.30 for the derivative of the product

integration.) The variance of G can be obtained by direct but tedious calculations and is thus

omitted. h
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