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We consider the log-likelihood ratio test (LRT) for testing the number of components in a mixture of

populations in a parametric family. We provide the asymptotic distribution of the LRT statistic under

the null hypothesis as well as under contiguous alternatives when the parameter set is bounded.

Moreover, for the simple contamination model we prove, under general assumptions, that the

asymptotic local power under contiguous hypotheses may be arbitrarily close to the asymptotic level

when the set of parameters is large enough. In the particular problem of normal distributions, we

prove that, when the unknown mean is not a priori bounded, the asymptotic local power under

contiguous hypotheses is equal to the asymptotic level.
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1. Introduction

Mixtures of populations are a modelling tool widely used in applications, and the literature

on the subject is vast. For finite mixtures, the first task is to choose the number of

components in the mixture. This problem is very important for many applications (e.g.,

choosing a genetic model for a quantitative trait). It also provides one of several methods

for choosing the number of clusters in a clustering procedure.

A number of estimation and testing procedures have been proposed for this purpose; see

Titterington et al. (1985), Lindsay (1995), McLachlan and Peel (2000), James et al. (2001),

Gassiat (2002) and the references therein. Asymptotic optimality of the log-likelihood ratio

test (LRT) in several parametric contexts is well known. Using the LRT for testing the

number of components in a mixture appears quite natural. Simulation studies show that the

LRT performs well in various situations (see Goffinet et al. 1992). However, the asymptotic

distribution and local power of the test must be evaluated to compare with other known

tests. In this paper, we focus on the asymptotic properties of the LRT for testing whether
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independent and identically distributed (i.i.d.) observations X 1, . . . , X n come from a

mixture of p0 populations in a parametric set of densities F (null hypothesis H0) against a

mixture of p populations (alternative H1), where the integers p0 and p satisfy p0 , p.

Gassiat (2002) gives a rather weak assumption under which the asymptotic distribution of

the LRT statistic is derived in the general situation of testing a small model nested in a

larger one. This result holds under the null hypothesis as well as under contiguous

hypotheses. In Section 2 we explain what remains to be proven in order to apply Gassiat

(2002) to obtain the asymptotic distribution of the LRT statistic for testing H0 against H1

under the null hypothesis as well as under contiguous alternatives, and we prove the results

for the number of components in a mixture of populations in a parametric set with a

possibly unknown nuisance parameter. In this way, we obtain more general results than

previously derived in the case where the parameter set is bounded. Specifically,

• they apply to general sets of parametric families with unknown nuisance parameter;

• the asymptotic distribution under contiguous alternatives is considered.

We also recover known results for mixtures of one or two populations under weaker

assumptions, as well as known results concerning particular parametric families such as

Gaussian or binomial distributions; see Ghosh and Sen (1985), Chernoff and Lander (1995),

Dacunha-Castelle and Gassiat (1997, 1999), Lemdani and Pons (1997, 1999), Garel (2001),

Chen and Chen (2001) and Mosler and Seidel (2001).

In Sections 3 and 4 we study what happens when the set of parameters becomes

increasingly large. For simplicity we restrict our attention to the simplest model: the

contamination model for families of distributions indexed by a single real parameter.

Indeed, roughly speaking, the LRT statistic converges in distribution to half the square of

the supremum of some Gaussian process indexed by a compact set of scores. However,

when this set of scores is enlarged, the covariance of the Gaussian process is close to 0 for

sufficiently distant scores, so that the supremum of the Gaussian process may become

arbitrarily large. Thus one also knows that for unbounded sets of parameters, the LRT

statistic tends to infinity in probability, as Hartigan (1985) first noted for normal mixtures.

Here, we prove that under some extreme circumstances the LRT can have less local power

than moment tests or goodness-of-fit tests. More precisely, let T be [�T , T ] and

F ¼ f f t, t 2 Tg be a parametric set of probability densities on R with respect to the

Lebesgue measure. Using i.i.d. observations X 1, . . . , X n, we consider the testing problem

for the density g of the observations:

H0 : g ¼ f 0 against H1 : g ¼ (1 � �) f0 þ � f t, 0 < � < 1, t 2 T: (1)

We prove the following:

• For general parametric sets F , T ¼ [�T , T ] and T large enough, under contiguous

alternatives, the LRT for (1.1) has asymptotic local power close to the asymptotic level

under some smoothness assumptions; see Theorem 4. A set of assumptions is given for

which Theorem 4 applies in the case of translation mixtures, that is, when

f t(:) ¼ f0(:� t); see Corollary 1. This is done in Section 3.

• When f t is the Gaussian density with mean t and variance 1, we have the normal
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mixture problem. When the set of means is not a priori bounded, that is, T ¼ R, Liu

and Shao (2004) obtained the asymptotic distribution of the LRT under the null

hypothesis by using the strong approximation proved in Bickel and Chernoff (1993).

We prove in Theorem 5 that the asymptotic local power under contiguous alternatives

is equal to the asymptotic level. This result is related to some results of Hall and

Stewart (2004) – our hypotheses are weaker, but we do not determine the exact

separation speed.

Proofs for most of the results in Sections 3 and 4 are detailed in Section 5.

Our opinion is that the main consequence of our results for large or unbounded

parameter sets is that the theoretical asymptotic study of the LRT for mixtures in the

compact case seems to be the more relevant case. Concerning practical applications:

• It is well known that the convergence to the asymptotic distribution is very slow for

mixtures of populations in general. For example, for the very simple skewness test,

Boistard (2003) showed that n ¼ 103 observations are needed to attain the asymptotic

distribution.

• For maximum likelihood estimates and tests, the problem of the speed of convergence

to the asymptotic distribution is very difficult to address because in practice maximum

likelihood estimates are computed through iterative algorithms and are only

approximate – the most famous being the EM algorithm and its variants. All of

these algorithms depend on tuning constants, in particular concerning the stopping rule.

It is shown, for example, in Table 6.3 of McLachlan and Peel (2000), based on results

due to Seidel et al. (2002), that the distribution of the LRT depends heavily on these

tuning constants.

• Recently, some results and software have become available to compute the distribution

of the maximum of Gaussian processes; see Garel (2001), Delmas (2003) and Mecadier

(2005a). In particular, these results show that, if the means are contained in some ‘non-

huge’ set, the asymptotic local power of the LRT under contiguous alternatives is

generally better than that of moment tests or of goodness-of-fit tests. Nevertheless, the

LRT is not uniformly most powerful.

The only practical consequence of our result is the following: if we have a very large

data set and we suspect a possible contamination with very small probability but with large

parameter, then it is better to use a moment test or a goodness-of-fit test than an LRT.

2. Asymptotic distribution of the LRT for the number of
populations in a mixture under null and contiguous
hypotheses

A general theorem in Gassiat (2002) enables us to find the asymptotic distribution of the

LRT for testing a particular model nested in a larger one, under the null hypothesis as well

as under contiguous alternatives. Roughly speaking, the asymptotic distribution is some
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function of the supremum of the isonormal process on a set of score functions. The theorem

holds under a simple assumption on the bracket entropy of an enlarged set. In many

applications, these sets are parameterized by a finite-dimensional parameter. It remains to:

• prove that the assumption on the bracket entropy holds;

• identify the isonormal process with a Gaussian field with real parameters, and reduce

the asymptotic formula by clever computations.

We first recall the general result of Gassiat (2002) and detail its application to the

contamination mixture model. We then state the result for two populations with possibly

unknown nuisance parameter and for contamination mixtures with unknown nuisance

parameters.

Assume one would like to use the LRT for testing H0 : g 2 M0 against H1 : g 2 M,

where g is the generic density of i.i.d. observations X 1, . . . , X n, and M0 � M are sets of

densities with respect to some measure � on Rk (or more generally on some Polish space).

Let ‘n(g) ¼
Pn

i¼1 log g(X i) be the log-likelihood. Throughout the paper:

• ºn will denote the LRT statistics defined by ºn ¼ sup g2M ‘n(g) � sup g2M0
‘n(g);

• k � k2 will denote the norm in L2(g0 � �).

• g0 will denote a density in M0 that is the true (unknown) density of the observations.

When studying ‘n(g) � ‘n(g0), functions of the form (g � g0)=g0 appear naturally.

Define two subsets of the unit sphere in L2(g0 � �) of such functions when normalized:

S ¼ (g � g0)=g0

k(g � g0)=g0k2

, g 2 Mnfg0g
� �

and S0 ¼ (g � g0)=g0

k(g � g0)=g0k2

, g 2 M0nfg0g
� �

:

A bracket [L, U ] of length E is the set of functions b such that L < b < U , where L and U

are functions in L2(g0 � �) such that kU � Lk2 < E. Define H[ ],2(S, E) to be the entropy with

bracketing of S with respect to the norm k � k2, as the logarithm of the number of brackets of

length E needed to cover S. To apply the theorem in Gassiat (2002), the only assumption

needed is: ð1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H[ ],2(S, E)

p
dE , þ1: (2)

This assumption implies, in particular, that S is Donsker and that its closure is compact. As

already stated, when M is parameterized, S is also parameterized and smoothness properties

will allow us to verify (2). But, in general, the parameterization will not be continuous

throughout S. The delicate point may be that one needs to find all possible limit points, in

L2(g0 � �), of sequences ((gn � g0)= g0)=k(g n � g0)=g0k2 when k(gn � g0)=g0k2 tends to 0.

The set D (D0) of limit points of sequences (gn � g0)=g0)=k(gn � g0)=g0k2 where

k(g n � g0)=g0k2 tends to 0, g n 2 Mnfg0g (gn 2 M0nfg0g), will be parameterized in such

a way that Lipschitz properties can be used on subsets.

In general, when M0 contains more than one density, D0 � D, and if the

parameterization is smooth enough, it is possible to define a set U in Rk0 3 Rk1 and a

set U0 in Rk0 such that D ¼ fdu, u 2 UgD0 ¼ fd(v,0), v 2 U0g. Define the covariance

function r(:, :) on U3 U by
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r(u1, u2) ¼
ð

du1
du2

g0 d�:

Then, under (2), applying Theorem 3.1 in Gassiat (2002),

2 ºn ¼ sup
u2U

max
1ffiffiffi
n

p
Xn

i¼1

du(X i), 0

( ) !2

� sup
v2U0

max
1ffiffiffi
n

p
Xn

i¼1

d(v,0)(X i), 0

( ) !2

þ oP0
(1),

so that 2 ºn converges in distribution to

sup
u2U

max Z(u), 0f gð Þ2�sup
v2U0

max Z(v, 0), 0f gð Þ2
, (3)

where Z(:) is the Gaussian process on U with covariance r(:, :) and P0 is the joint

distribution of the observations X 1, . . . , X n under the null hypothesis. In the particular case

where M0 is reduced to a single element, a direct application of Corollary 3.1 of Gassiat

(2002) gives that 2 ºn converges in distribution to supu2U(maxfZ(u), 0g)2.

It will be seen in the examples below that r(:, :) is, in general, not continuous

everywhere on the closure of U3 U. Z(:) is not a continuous Gaussian field, though the

isonormal process on D is continuous, so that the suprema involved in (3) are almost surely

finite. In general, r(:, :) is continuous almost everywhere.

It is also proven in Gassiat (2002) that if the densities gn in MnM0 are such that

((gn � g0)=g0)=k(gn � g0)=g0k2 converges to some du0
with

ffiffiffi
n

p k(gn � g0)=g0k2 tending

to a positive constant c, then the distributions (g0 � �)�n and (gn � �)�n are mutually

contiguous, and 2 ºn converges in distribution under this contiguous alternative to

sup
u2U

max Z(u) þ c � r(u, u0), 0f gð Þ2� sup
v2U0

max Z(v, 0) þ c � r((v, 0), u0), 0f gð Þ2: (4)

In general, (3) and (4) reduce to the square of only one supremum, due to the particular

structure of the Gaussian process.

2.1. Contamination mixture

We consider here the contamination mixture model where the parameter t may be

multidimensional: t 2 T, T being a compact subset of Rk such that 0 belongs to the interior

of T. Let k � k and h:, :i denote the Euclidean norm and scalar product in Rk . Again,

M0 ¼ f f 0g, M ¼ g�,t ¼ (1 � �) f 0 þ � f t, 0 < � < 1, t 2 Tf g,

S ¼ dt ¼
( f t � f0)= f0

k( f t � f 0)= f 0k2

, t 2 T

� �
:

We shall use the following assumptions (CM) ensuring smoothness and some non-

degeneracy:

• f t ¼ f0 �-a.e. if and only if t ¼ 0.

• t ! f t is twice continuously differentiable �-a.e. at any t 2 T.
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• There exists � . 0 such that, for all t 2 T with ktk < �, if � 2 Rk is such thatPk
i¼1�i@ f t=@ ti ¼ 0 �-a.e. then � ¼ 0.

• There exists a positive real � and a function B 2 L2( f 0 � �) that upper-bounds all the

following functions:

f t

f 0
,

1

f 0

���� @ f t

@ ti

����, i ¼ 1, . . . , k, t 2 T,

1

f 0

���� @2 f t

@ ti@ t j

����, i, j ¼ 1, . . . , k, t 2 T, ktk < �:

Define now for all non-null s and t in T,

r(s, t) ¼
ð

dsdt f0 d�: (5)

Notice that, in each direction � such that ktk ! 0 with t=ktk ! �, one may extend r(:, :) by

continuity, setting

r(�, t) ¼ r(t, �) ¼
ð

d�dt f 0 d� and ~rr(�, �9) ¼
ð

d�d�9 f 0 d�:

Theorem 1. Assume (CM) and let �n and tn be sequences such that:

• limn!þ1
ffiffiffi
n

p
�nk( f tn

� f 0)= f 0k2 ¼ c for some positive c;

• either tn tends to some t0 6¼ 0 and
ffiffiffi
n

p
�n tends to some positive constant, or tn tends

to 0, and tn=ktnk converges to some limit �.

Then ( f0 � �)�n and [((1 � �n) f0 þ �n f tn
) � �]�n are mutually contiguous, and 2 ºn converges

under ( f 0 � �)�n in distribution to

sup
t2T

maxfZ(t), 0gð Þ2¼ sup
t2T

Z(t)

� �2

,

and under [((1 � �n) f 0 þ �n f tn
) � �]�n to

sup
t2T

maxfZ(t) þ �(t), 0gð Þ2¼ sup
t2T

(Z(t) þ �(t))

� �2

,

where Z(t) is the Gaussian field with covariance r defined by (5) and

�(t) ¼ c � r(t, t0) if tn ! t0 6¼ 0

c � r(t, �) if ktnk ! 0 and tn=ktnk ! �:

�
(6)

Remark. Set m � 0 under ( f 0 � �)�n and m � � under [((1 � �n) f 0 þ �n f tn
) � �]�n. Letting t

to go 0 radially in two opposite directions and using covariance properties in the

neighbourhood of 0, we see that almost surely supt2T(Z(t) þ m(t)) . 0, which justifies the

equalities in the preceding theorem.

A detailed proof of this theorem may be found in Mercadier (2005b). The theorem
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applies, for instance, to translation mixtures, Gaussian mixtures, binomial mixtures (with a

result equivalent to that of Chernoff and Lander 1995) and mixtures in exponential families

(see Mercadier 2005b).

2.2. Two populations against a single one

We consider here the case where one wishes to test a single population in the family of

densities f t, t 2 T, T a compact subset of Rk , against a mixture of two such populations:

M0 ¼ f f t, t 2 Tg, M ¼ fg�,t1,t2 ¼ (1 � �) f t1 þ � f t2 , 0 < � < 1, t1 2 T, t2 2 Tg:

We suppose, moreover, that 0 is an interior point of T and that f 0 is the unknown distribution

of the observations (with no loss of generality).

We shall use the following assumptions (TP), ensuring smoothness and some non-

degeneracy:

• (1 � �) f t1 þ � f t2 ¼ f 0 �-a.e. if and only if either � ¼ 0 and t1 ¼ 0 or � ¼ 1 and

t2 ¼ 0 or t1 ¼ 0 and t2 ¼ 0.

• t ! f t is three times continuously differentiable �-a.e. at any t 2 T.

• For all � 2 Rk , for all t 2 T, for all s 2 T, for all r > 0, r( fs � f0Þ þ
Pk

i¼1�i@ft/@ti ¼ 0

�-a.e. if and only if rs ¼ 0 and � ¼ 0; and there exists � ¼ 0 such that, for all t 2 T

with ktk < � if � 2 Rk is such that
Pk

i, j¼1�i� j@
2 f t=@ ti@ t j ¼ 0 �-a.e. then � ¼ 0.

• There exists a function B 2 L2( f 0 � �) that upper-bounds all of the following functions:

f t

f 0
,

1

f 0

���� @ f t

@ ti

����, 1

f 0

���� @2 f t

@ ti@ t j

����, i, j ¼ 1, . . . , k, t 2 T,

1

f 0

���� @3 f t

@ ti@ t j@ t l

����, i, j, l ¼ 1, . . . , k, t 2 T, ktk < �:

Let r(:, :) be as in Section 2.1:

r(s, t) ¼
ð

hs

khsk2

� �
ht

khtk2

� �
f 0 d�,

with ht ¼ ( f t � f 0)= f 0, and Z(:) the associated Gaussian field.

Let W be the k-dimensional centred Gaussian variable with variance � having entries

�i, j ¼
ð

(1= f 0)@ f0=@ ti

k(1= f 0)@ f 0=@ tik2

� �
(1= f0)@ f 0=@ t j

k(1= f 0)@ f 0=@ t jk2

� �
f 0 d�, i, j ¼ 1, . . . , k:

For any t, let C(t) be the k-dimensional vector of covariances of Z(t) and W :

C(t)i ¼
ð

(1= f 0)@ f 0=@ t i

k(1= f 0)@ f 0=@ t ik2

� �
ht

khtk2

� �
f 0 d�, i ¼ 1, . . . , k:

Then S � D, S0 � D0, D ¼ fdt,a,�; t 2 Tnf0g, � 2 Rk , a > 0, a2 þ �T��þ 2a�TC(t) ¼ 1g,

with
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dt,a,� ¼
a( f t � f0)= f0 þ

Pk
i¼1�i(1= f 0)@ f 0=@ ti

ka( f t � f 0)= f 0 þ
Pk

i¼1�i(1= f 0)@ f 0=@ tik2

and D0 ¼ fd0,0,�, �T��j ¼ 1g. Then 2ºn converges under ( f 0 . . . , �)�n in distribution to

sup
a>0, t2T,�2R k

a2þ�T��þ2a�T C(t)¼1

(aZ(t) þ h�, W i)

0
BB@

1
CCA

2

� sup
�T��¼1

h�, W i
� �2

: (7)

Computation shows that this equals

sup
t2T

Z(t) � C(t)T N (t)W

1 þ C(t)T N (t)C(t)

� �2

1 þ C(t)T N (t)C(t)
� � !

,

where N ¼ N (t) ¼ (�� C(t)C(t)T)�1.

Theorem 2. Assume (TP), let �n, tn
1 and tn

2 be sequences such that

((1 � �n) f tn
1
þ �n f tn

2
� f 0)= f 0

k((1 � �n) f tn
1
þ �n f tn

2
� f 0)= f 0k2

tends to some dt0,a0,�0
in D, with limn!þ1

ffiffiffi
n

p
k((1 � �n) f tn

1
þ �n f tn

2
� f 0)= f 0k2 ¼ c for some

positive constant c. Then, ( f 0 � �)�n and [((1 � �n) f tn
1
þ �n f tn

2
) � �]�n are mutually

contiguous, and 2 ºn converges under ( f 0 � �)�n in distribution to

sup
t2T

Z(t) � C(t)T N (t)W

1 þ C(t)T N (t)C(t)

� �2

1 þ C(t)T N (t)C(t)
� � !

,

and under [((1 � �n) f tn
1
þ �n f tn

2
) � �]�n to

sup
t2T

	
aZ(t) þ a0cr(t, t0) þ cC(t)T�0 �

C(t)T N (t)(W þ c��0 þ ca0C(to))

1 þ C(t)T N (t)C(t)

� �2

: 3 1 þ C(t)T N (t)C(t)
� �


,

where Z(t), C(t), N (t) W and � are defined above, and if t0 ¼ 0 then a0 ¼ 0.

Remark. Notice that when t0 ¼ 0 we have d0,a0,�0
¼ d0,0,�0

and hd0,0,�0
, dt,a,�i ¼

cC(t)T�0 þ c��0. This is why one has to take a0 ¼ 0 when t0 ¼ 0 in the last formula of

Theorem 2.

We refer to Mercadier (2005b) for a detailed proof and the description of applications to

particular models.
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2.3. Contamination with unknown nuisance parameter

We consider here the contamination mixture model with some unknown parameter, which is

the same for all populations. A typical example may be that of mixtures of Gaussian

distributions with the same unknown variance, or translation mixtures with the same

unknown scale parameter. We shall assume that the nuisance parameter is identifiable, so

that its maximum likelihood estimator is consistent. This will allow us to reduce the

possible nuisance parameters in the definition of the set S to be in a neighbourhood of the

true unknown one.

Let F ¼ f f t,Æ, t 2 T, Æ 2 Ag be a set of densities with respect to some dominating

measure �, where T is a compact subset of Rk and A is a compact subset of Rh. We

consider here the case where

M0 ¼ f f 0,Æ, Æ 2 Ag, M ¼ g�,t,Æ ¼ (1 � �) f 0,Æ þ � f t,Æ, 0 < � < 1, t 2 T, Æ 2 Af g:

The unknown true distribution of the observations will be f 0,Æ0
. We suppose that (0, Æ0) is an

interior point of T3 A.

We shall use the following assumptions (CMN), ensuring smoothness and some non-

degeneracy:

• (1 � �) f 0,Æ þ � f t,Æ ¼ f 0,Æ0
�-a.e. if and only if Æ ¼ Æ0 and either � ¼ 0 or t ¼ 0.

• (t, Æ) ! f t,Æ is twice continuously differentiable �-a.e. at any (t, Æ) 2 T3 A.

• There exists � . 0 such that, for all � 2 Rh, for all t 2 T, for all Æ 2 A with

kÆ� Æ0k < �, for all r > 0, r( f t,Æ0
� f 0,Æ0

) þ
Ph

i¼1�i@ f0,Æ=@Æi ¼ 0 �-a.e. if and only

if rt ¼ 0 and � ¼ 0, and for all � 2 Rk , ktk < �, kÆ� Æ0k < �,Pk
i¼1�i@ f t,Æ0

=@ ti þ
Ph

i¼1�i@ f 0,Æ=@Æi ¼ 0 �-a.e. if and only if � ¼ 0 and � ¼ 0.

• There exists a function B 2 L2( f 0,Æ0
� �) that upper-bounds all of the following

functions:

f t,Æ

f 0,Æ0

,
1

f 0,Æ0

���� @ f t,Æ

@ ti

����, i ¼ 1, . . . , k,
1

f 0,Æ0

���� @ f t,Æ

@Æi

����, i ¼ 1, . . . , h,

(t, Æ) 2 T3 A, kÆ� Æ0k < �,

1

f 0,Æ0

���� @2 f t,Æ

@ ti@ t j

����, i, j ¼ 1, . . . , k,
1

f 0,Æ0

���� @2 f t,Æ

@ ti@Æ j

����, i ¼ 1, . . . , k, j ¼ 1, . . . , h,

1

f 0,Æ0

���� @2 f t,Æ

@Æi@Æ j

����, i, j ¼ 1, . . . , h, (t, Æ) 2 T3 A, kÆ� Æ0k < �, ktk < �:

Then, since the maximum likelihood estimator of parameter Æ is consistent, one only

needs to verify assumption (2) for

S ¼ ((1 � �) f0,Æ þ � f t,Æ � f 0,Æ0
)= f 0,Æ0

k((1 � �) f 0,Æ þ � f t,Æ � f 0,Æ0
)= f0,Æ0

k2

, 0 < � < 1, t 2 T, Æ 2 A, kÆ� Æ0k < �

� �
,

where we restrict our definition to �, t and Æ such that (1 � �) f 0,Æ þ � f t,Æ differs from f 0,Æ0
.

One also has
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S0 ¼ ( f0,Æ � f 0,Æ0
)= f0,Æ0

k( f 0,Æ � f 0,Æ0
)= f 0,Æ0

k2

, 0 < � < 1, Æ 2 A, kÆ� Æ0k < �

� �
:

Define, for (t, r, �, �) 2 T3 Rþ 3 Rh 3 Rk,

Ht,r,�,� ¼ r( f t,Æ0
� f0,Æ0

) þ
Xh

i¼1

�i

@ f 0,Æ0

@Æi

þ
Xk

i¼1

�i

@ f 0,Æ0

@ ti

,

and

dt,r,�,� ¼
Ht,r,�,�= f 0,Æ0

kHt,r,�,�= f 0,Æ0
k2

:

The sets D0 and D can be parameterized as follows:

D0 ¼ d0,0,�,0, � 2 Rh, k�k ¼ 1
� �

,

D ¼ dt,r,�,�, t 2 T, r > 0, � 2 Rh, � 2 Rk , r2 þ k�k2 þ k�k2 ¼ 1
� �

:

Note that because of the existence of the nuisance parameter which is fixed to Æ0, now D
does not contain S.

Again, let

r(s, t) ¼
ð

hs

khsk2

� �
ht

khtk2

� �
f 0,Æ0

d�,

with ht ¼ ( f t,Æ0
� f 0,Æ0

)= f 0,Æ0
, and Z(:) the associated Gaussian field. Note that this process

is the same as that of Section 2.1 if we set f 0 ¼ f0,Æ0
. Furthermore, let W , � and C(t) be the

same as in Section 2.1, replacing @ f 0=@ ti by @ f 0,Æ0
=@ ti.

Let V be the h-dimensional centred Gaussian variable with variance ˆ:

î, j ¼
ð

(1= f0,Æ0
)@ f0,Æ0

=@Æi

k(1= f 0,Æ0
)@ f 0,Æ0

=@Æik2

� �
(1= f 0,Æ0

)@ f 0,Æ0
=@Æ j

k(1= f 0,Æ0
)@ f 0,Æ0

=@Æ jk2

� �
f 0,Æ0

d�, i, j ¼ 1, . . . , h:

For any t, let G(t) be the h-dimensional vector of covariances of Z(t) and V :

G(t)i ¼
ð

(1= f 0,Æ0
)@ f 0,Æ0

=@Æi

k(1= f 0,Æ0
)@ f 0,Æ0

=@Æik2

� �
ht

khtk2

� �
f0,Æ0

d�, i ¼ 1, . . . , h:

Also let S be the covariance matrix of W and V, with entries:

Si, j ¼
ð

(1= f0,Æ0
)@ f 0,Æ0

=@Æi

k(1= f 0,Æ0
)@ f 0,Æ0

=@Æik2

� �
(1= f 0,Æ0

)@ f 0,Æ0
=@ t j

k(1= f 0,Æ0
)@ f 0,Æ0

=@ t jk2

� �
f 0,Æ0

d�,

i ¼ 1, . . . , h, j ¼ 1, . . . , k:

Define the matrices U (t) and N (t) by

U (t) ¼ C(t)T

G(t)

� �
, N (t) ¼ � ST

S ˆ

� �
� U (t)U (t)T

� ��1

:

Theorem 3. Assume (CMN), and let �n, tn and Æn be sequences such that
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((1 � �n) f 0,Æ n
þ �n f tn,Æn

� f 0,Æ0
)= f 0,Æ0

k((1 � �n) f 0,Æ n
þ �n f tn,Æ n

� f0,Æ0
)= f 0,Æ0

k2

tends to some dt0,r0,�0,�0
in D, with limn!þ1

ffiffiffi
n

p
k((1 � �n) f 0,Æn

þ �n f tn,Æ n
�

f 0,Æ0
)= f 0,Æ0

k2 ¼ c for some positive constant c. Then, in the above notation, ( f0,Æ0
� �)�n

and [((1 � �n) f 0,Æ n
þ �n f tn,Æ n

) � �]�n are mutually contiguous, and 2 ºn converges under

( f 0 � �)�n in distribution to

sup
t2T

Z(t) � U (t)T N (t)

1 þ U (t)T N (t)U (t)

W

V

� �� �2

1 þ U (t)T N (t)U (t)
� �" #

þ W

V

� �T
� ST

S ˆ

� ��1
W

V

� �
� V Tˆ�1V ,

and under [((1 � �n) f 0,Æ n
þ �n f tn,Æ n

) � �]�n to

sup
t2T

" 
Z(t) þ cr0 r(t, t0) þ cC(t)T�0 þ cG(t)T�0

� U (t)T N (t)

1 þ U (t)T N (t)U (t)

W þ c��0 þ cr0C(t0)

V þ cˆ�0 þ cr0G(t0)

 !!2

1 þ U (t)T N (t)U (t)
� �#

þ
W þ c��0 þ cr0C(t0)

V þ cˆ�0 þ cr0G(t0

 !T � ST

S ˆ

 !�1
W þ c��0 þ cr0C(t0)

V þ cˆ�0 þ cr0G(t0

 !

�(V þ cˆ�0 þ cr0G(t0))Tˆ�1(V þ cˆ�0 þ cr0G(t0)),

where r0 ¼ 0 when t0 ¼ 0.

For instance, it is easy to apply Theorem 3 to translation mixtures with unknown scale

parameter or Gaussian mixtures with unknown variance, as illustrated in Mercadier (2005b).

3. The LRT for contamination mixtures when the set of
parameters is large

As already stated in the Introduction, the asymptotic distribution of the LRT for compact T

and A can be used in practice for large data sets. In this case, the LRT happens to be more

powerful than moment tests, as shown in Delmas (2003). Nevertheless:

• the distribution is not independent of the location of the null hypothesis inside T;

• for testing one population against two (or p0 against p) the LRT with bounded

parameter is not invariant by translation or change of scale.

Several solutions to the first point exist. Threshold calculation can be conducted under the

‘worst’ form of the null hypothesis (see Delmas 2003) or one can use a ‘Plug-in’, that is, an
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estimate of f 0. It remains the case that results would be nicer if one were able to get rid of

the compactness assumption. This section and the next answer tell us that we cannot do so,

showing that in the simplest case, contamination for translation mixtures on R, the LRT is

theoretically less powerful than moment tests under contiguous alternatives.

We consider in this section the contamination mixture model (1) with T ¼ [�T , T ] for a

given positive real number T and Lebesgue measure �. We use the notation and results of

Section 2.1. Let �n and tn be sequences such that:

(K1) limn!þ1
ffiffiffi
n

p
�nk( f t n

� f 0)= f 0k2 ¼ c for some positive c;

(K2) either tn tends to some t0 6¼ 0 and
ffiffiffi
n

p
�n tends to some positive constant, or t n

tends to 0, and tn=ktnk converges to some limit �.

Let P�n, t n
¼ (g�n, t n

� �)�n and P0 ¼ ( f 0 � �)�n. To evaluate the asymptotic local power and

the asymptotic level for large values of T , one has to investigate the behaviour of suprema of

the Gaussian processes Z(t) and Z(t) þ m(t) as defined in Theorem 1. Z is the centred

Gaussian process defined in Section 2.1 with covariance given by (5). For simplicity we

consider this process as defined on the whole real line R. We will use assumptions under

which the supremum of Z(:) over [�T , T ] tends to infinity as T tends to infinity, and is

achieved for some t tending to infinity. So the study of this supremum on [0, T ] for large T

can be replaced by the study of the supremum on [1, T ]. The discontinuity of the covariance

function r at 0 will have no effect on the extreme behaviour of the process Z here. We shall

use Azaı̈s and Mercadier (2003) to derive the asymptotic distribution of suprema of Gaussian

processes. Hence, let

M(a, b) ¼ sup
t2(a,b)

(Z(t) þ m(t)): (8)

Because the asymptotic distribution of 2 ºn, under the null hypothesis or under contiguous

alternatives, in Theorem 1 can be written as M(�T , T )2 (taking m(t) ¼ 0 under the null

hypothesis and m(t) ¼ �(t) as defined by (2.5) under contiguous alternatives), we wish to

characterize asymptotic behaviours of M(�T , T ) as T ! þ1.

We therefore introduce further notation and assumptions. Write rij(s, t) instead of

@ iþ j r(s, t)=@ i s@ j t and define

R(t) ¼
ð t

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r11(s, s)

p
ds, at ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log s R(t)

p
, bt ¼ at �

log(�)

at

: (9)

Let V ¼ fV (t) ¼ Z(R�1(t)) þ m(R�1(t)), t 2 Rg be the ‘unit-speed’ transformation of

Z þ m in the sense that the variance of V 9(t) equals 1 for all t in R. We denote by rV

its covariance function.

We shall use the following assumptions (G) on r and �:

(G1) For all t 2 R, r11(t, t) . 0 and lim t!þ1 R(t) ¼ þ1.

(G2) r(s, t)log jR(s) � R(t)j ! 0 as jR(s) � R(t)j ! þ1.

(G3) For all � . 0, supjR(s)�R( t)j.�jr(s, t)j , 1.

(G4) r is four times continuously differentiable and s ! r11(s, s) three times

continuously differentiable. For all ª . 0, rY
01 and rY

04 are bounded on

f(s, t) 2 R2, jsj . ª and jtj . ªg.
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(G5)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log s R(t)

p
�(t) �! t!þ1 0.

Theorem 4. Assume (CM), (G), (K1) and (K2). Define M(�T , T ) by (8) and aT , bT by (9).

Then, as T tends to infinity, aT (M(�T , T ) � bT ) tends in distribution to the Gumbel

distribution when m(t) ¼ 0 as well as when m(t) ¼ �(t). In other words, if cT ,Æ,n is a

sequence of thresholds of the test satisfying

lim
n!þ1

P0 ºn . cT ,Æ,nð Þ ¼ Æ,

then, for any contiguous alternative, the limiting local power of the LRT equals its level:

lim
T!þ1

lim
n!þ1

P�n, t n
ºn . cT ,Æ,nð Þ ¼ Æ:

This theorem says that for T large enough, asymptotically, the LRT cannot distinguish the

null hypothesis from any contiguous alternatives. The theorem is proven in Section 5.

We consider the translation mixture model, where � is the Lebesgue measure and

f t(:) ¼ f 0(:� t):

Let f0 be a density on R satisfying the following assumptions (H), where we denote by f
(i)
0

the derivative of f 0 of order i:

(H1) For all x 2 R, f 0(x) . 0, f 0 four times continuously differentiable, and for all

i ¼ 1, . . . , 4, there exists Ki . 0 such that���� f
(i)
0

f 0

(x)

���� < Ki:

(H2) For all x 2 R,

lim
t!þ1

f 0(x þ t)

f0(t)
¼ lim

t!�1

f 0(x þ t)

f 0(t)
¼ 1:

(H3) There exists M . 0, such that, for all x, t 2 R f 0(x) f 0(t)= f 0(x þ t) < M .

(H4) There exists F 2 L2(º) such that supj tj>1 log jtj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 0(x þ t)

p
< F(x).

(H5) lim t!þ1 log(t)
ffiffiffiffiffiffiffiffiffiffi
f 0(t)

p
¼ 0.

Our result, which is proven in Section 5, is now:

Corollary 1. Assume (H). Then Theorem 4 applies to the translation mixture model.

Remarks.

• Among the possible choices of the thresholds are: the asymptotic threshold given by

Theorem 1, which does not depend on n; and the exact threshold for each n, which

can be calculated by a Monte Carlo method.

• Assumptions (H) are essentially conditions on the tail of f 0. (H4) and (H5) are very

weak and hold for all usual distributions. But (H1)–(H3), though rather weak, are more

restrictive. They hold, for example, if f 0(t) ¼ O(t�Æ) for Æ . 0 as t ! þ1 and
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f 0(t) ¼ O(t��) for � . 0 as t ! �1. For instance, they hold when f 0 is the inverse

of a polynomial, and in particular for the Cauchy density.

• The proof relies on the verification of assumptions of Theorem 4. In particular,

asymptotic behaviours of the covariance r and its derivatives must be checked.

Assumptions (H) only express sufficient conditions under which the asymptotic analysis

is done with some generality. However, though (H2) does not hold for the Gaussian

density, we also verified that Theorem 4 holds for other densities such as the Gaussian

and the normalization of cosh�1(x) in spite of different justifications.

The LRT needs to be compared with other testing procedures such as sample mean or

Kolmogorov–Smirnov testing procedures. Write �i ¼
Ð

xi f 0(x)d�(x). Without loss of

generality, one can assume that �1 ¼ 0. If �2 , þ1 applying Le Cam’s third lemma,

(i.e. Theorem 6.6 of van der Vaart 1998),
ffiffiffi
n

p
X n converges in distribution, as n tends to

infinity, to the Gaussian N (0, �2) under P0 and to the Gaussian N (ª, �2) under P� n, t n
,

where

ª ¼

c

k f 90= f 0k2

, if tn ! 0,

ct0

k( f t0
� f 0)= f 0k2

, if tn ! t0 6¼ 0:

8>><
>>:

Consequently, the asymptotic local power is greater than the level.

Remark that, when no condition of moment is available, other tests can be also proposed.

Define Fn, the random distribution function, and F0, the distribution function associated

with f0. Let I denote the identity function on [0, 1] and let U be a Brownian bridge on

[0, 1]. Let k � k1 denote the supremum norm. The natural normalization of Fn leads to the

definition of the Kolmogorov–Smirnov statistic Kn ¼ ffiffiffi
n

p kFn � F0k1 and the Cramér–von

Mises statistic W2
n ¼

Ðþ1
�1 n[Fn(x) � F0(x)]2 dF0(x). Set, on [0, 1],

˜(x) ¼ ª lim
n!þ1

F0 F�1
0 (x) � tn

� �
� x

tn

,

where tn is the translation parameter of the alternative. Hence ˜ depends on the asymptotic

behaviour of tn. Then Kn converges in distribution, as n tends to infinity, to kUk1 under P0

and kUþ ˜k1 under P� n, t n
, and W2

n converges in distribution, as n tends to infinity, toÐ 1

0
U2 dI under P0 and

Ð 1

0
(Uþ ˜)2 dI under P�n, t n

. See Shorack and Wellner (1986) for a

version of theses convergences. Simulations show that, in both cases, the distribution under

P�n, t n
is stochastically greater than that under P0. Consequently the asymptotic local power is

greater than the level.
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4. Asymptotic distribution of the LRT for Gaussian
contamination mixtures with unbounded mean under

contiguous alternatives

Theorem 5. Consider T ¼ R (no prior upper bound) and the testing problem (1) with

f t(x) ¼ 1ffiffiffiffiffiffi
2�

p exp � (x � t)2

2

� �
:

Set g0 ¼ f 0 and g�, t ¼ (1 � �) f 0 þ � f t, 0 < � < 1, t 2 T. Let �n and tn be sequences such

that limn!þ1
ffiffiffi
n

p
�n tn ¼ ª 2 R and limn!þ1 tn ¼ t0 2 R. Note that t0 can be equal to 0. ºn

is now given by:

ºn ¼ sup
�2[0,1], t2R

Xn

i¼1

log 1 þ � exp tX i �
t2

2

	 

� 1

� �� �
:

Then as n tends to infinity, 2ºn � log s log n þ log(2�2) tends in distribution to the Gumbel

distribution under P0 as well as under P� n, t n
for any ª and t0. In other words, let us define

as rejection values the region ºn . cÆ,n with

lim
n!þ1

cÆ,n � log s log n þ log(2�2)
� �

¼ 1

2
G1�Æ, (10)

where G1�Æ is the 1 � Æ fractile of the Gumbel distribution. We have, by definition,

lim
n!þ1

P0 ºn . cÆ,nð Þ ¼ Æ: (11)

Then, for any ª and t0, the limit local power of the LRT is

lim
n!þ1

P�n, t n
ºn . cÆ,nð Þ ¼ Æ:

The theorem says that, asymptotically, the LRT cannot distinguish the null hypothesis from

any contiguous alternative. This is true if we use asymptotic thresholds (equality for all n in

(10)) as well as exact thresholds (equality for all n in (11)). Indeed, this has to be compared

with other testing procedures such as moment testing procedures. For example, if X n is the

sample mean, applying Le Cam’s third lemma,
ffiffiffi
n

p
X n converges in distribution, under P� n, t n

as n tends to infinity, to the Gaussian N (ª, 1). Thus the test based on the statistic
ffiffiffi
n

p
X n has

an asymptotic local power that is strictly greater than the level. As mentioned in the

Introduction, this makes sense in practice only for very large data sets.

Proof of Theorem 5. The separation of the hypotheses is greater when ª 6¼ 0. Using Lemma

14.31 of van der Vaart (1998), it is easy to see that this is the only case to consider.

Moreover, by symmetry, we can suppose also that ª . 0. Let us introduce the empirical

process Sn defined by

Sn(t) ¼ 1ffiffiffi
n

p
Xn

i¼1

exp[tX i � t2] � exp � t2

2

� �� �
:
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Liu and Shao (2004: Theorem 1) recall results obtained by Bickel and Chernoff (1993) on the

process Sn:

sup
t2R

Sn(t) ¼ sup
j tj2A2, n

Sn(t) þ oP0
(1), (12)

where A2,n ¼ [Æn, �n], Æn ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log s log s log n

p
and �n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n=2

p
� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log s log n

p
.

Through the proof of their Theorem 2, Liu and Shao (2004) state that

2 ºn ¼ sup
t2R

Sn(t)2 þ oP0
(1):

Combined with (12), the last equality becomes

2 ºn ¼ sup
j tj2A2, n

Sn(t)2 þ oP0
(1):

Let us denote by ~PP0 Bickel and Chernoff’s (1993) extension of P0 by Hungarian

construction. According to their formula (39), we obtain

2 ºn ¼ sup
j tj2A2, n

S0(t)2 þ o~PP0
(1) (13)

where S0 is the zero-mean non-stationary Gaussian process with covariance function

r(s, t) ¼ exp � (s � t)2

2

	 

� exp � s2

2
� t2

2

	 

:

In their paper, Bickel and Chernoff remark that this process is very close to a stationary

process, namely ~SS0. Because we need it later, we will use another method here. We define the

standardized version of S0,

Y0(t) ¼ S0(t)ffiffiffiffiffiffiffiffiffiffiffiffiffi
r(t, t)

p ¼ S0(t)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e� t2

p ,

in order to be able to apply the normal comparison lemma (Li and Shao 2002: Theorem 2.1).

Y0 is a zero-mean non-stationary Gaussian process, with unit variance and covariance

function

r(s, t) ¼ exp(st) � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp(s2) � 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp(t2) � 1

p : (14)

We have

0 < sup
j tj2A2, n

jY0(t) � S0(t)j < sup
j tj2A2, n

(1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r(t, t)

p
) sup
j tj2A2, n

jY0(t)j:

Now the function r satisfies the conditions of Corollary 1 of Azaı̈s and Mercadier (2003).

Consequently we know the exact order of the maximum: supj tj2A2, n
jY0(t)j ¼

O~PP0
((log s log n)1=2). This last equation can also be deduced from standard results on the

maximum of stationary Gaussian processes using the process ~SS0 introduced by Bickel and

Chernoff (1993).
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On the other hand, the maximum of 1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r(t, t)

p
on A2,n is obtained at Æn. This permits

us to write

0 < sup
j tj2A2, n

jY0(t) � S0(t)j < O~PP0
((log s log n)1=2�4):

Finally, this approximation allows us to replace S0 by Y0 in (4.4) to obtain

2 ºn ¼ sup
j tj2A2, n

Y0(t)2 þ o~PP0
(1): (15)

With the same idea as before, we define

Yn(t) ¼ Sn(t)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e� t2

p :

For all t0 and all ª, using arguments close to those that lead to formula (7) in Gassiat (2002),

we have

log
dP�n, t n

dP0

(X1, . . . , X n) ¼ C(ª, t0)Yn(tn) � C(ª, t0)2

2
þ oP0

(1) (16)

with

C(ª, t0) ¼
ª, if t0 ¼ 0;

ª

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e t2

0 � 1
p

t0

, if t0 . 0:

8><
>:

Since ª can be supposed positive, t0 is positive. Using formula (39) of Bickel and Chernoff

(1993), we can replace Yn by Y0 to obtain

log
dP� n, t n

dP0

X 1, . . . , X nð Þ ¼ C(ª, t0)Y0(tn) � C(ª, t0)2

2
þ o~PP0

(1): (17)

We next use the following lemma, the proof of which is given in Section 5.

Lemma 1. For all t0, 2 ºn � log s log n þ log(2�2) and log
dP� n , t n

dP0
X 1, . . . , X nð Þ are

asymptotically independent under P0.

Then, having proved Lemma 1, the theorem follows from Le Cam’s third lemma. The proof

of Lemma 1 relies on a suitably chosen discretization, following ideas in Azaı̈s and

Mercadier (2003), and an application of the normal comparison lemma as refined in Li and

Shao (2002). h

5. Proofs

Proof of Theorem 4. Set uT ,x ¼ x=aT þ ~bbT and M V (a, b) ¼ sup t2(a,b)Vt for V the unit-speed

transformation of Z þ m. We have:
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P M(�T , T ) < uT ,xð Þ ¼ P M V �R(T ), R(T )ð Þ < uT ,x

� �
:

Now, applying Proposition 4 of Azaı̈s and Mercadier (2003) with p ¼ 2, D1 ¼
(�R(T ), �

ffiffiffiffiffiffiffiffiffiffi
R(T )

p
) and D2 ¼ (

ffiffiffiffiffiffiffiffiffiffi
R(T )

p
, R(T )), we obtain

P M V (D1 [ D2) < uT ,x

� �
¼ P M V (D1) < uT ,x

� �
P M V (D2) < uT ,x

� �
þ o(1):

Remark that in Azaı̈s and Mercadier (2003) sizes of intervals are defined as functions of

the level; here the opposite is the case. Furthermore, repeated application of Corollary 1 of

Azaı̈s and Mercadier (2003) enables us to state for � ¼
ffiffiffiffiffiffiffiffiffiffi
R(T )

p
and � ¼ R(T ) the conver-

gence of a�(M V (0, �) � b�) and a�(M V (��, 0) � b�) to the Gumbel. It follows that

M V (�
ffiffiffiffiffiffiffiffiffiffi
R(T )

p
,
ffiffiffiffiffiffiffiffiffiffi
R(T )

p
) is stochastically negligible compared with M V �R(T ), R(T )ð Þ and

also that M(0,
ffiffiffiffiffiffiffiffiffiffi
R(T )

p
) (M(�

ffiffiffiffiffiffiffiffiffiffi
R(T )

p
, 0)) is stochastically negligible compared with

M V (0, R(T )) (M V �R(T ), 0)ð ). Taking the foregoing together, we obtain

P(M V (�R(T ), R(T )) < uT ,x)

¼ P(M V (0, R(T )) < uT ,x)P(M V (�R(T ), 0) < uT ,x) þ o(1),

as T tends to infinity, and which becomes

P M(�T , T ) < uT ,xð Þ ¼ P M(0, T ) < uT ,xð ÞP M(�T , 0) < uT ,xð Þ þ o(1)

when we return to the initial process Z þ m.

Let G(x) ¼ exp(�exp(�x)) denote the distribution function of the Gumbel. Corollary 1 of

Azaı̈s and Mercadier (2003) yields, as T tends to infinity,

P(M(0, T ) < uT ,x) ¼ P(aT (M(0, T ) � ~bbT ) < x) þ o(1)

¼ P(aT (M(0, T ) � bT ) < x þ log(2)) þ o(1)

¼ G(x þ log(2)) þ o(1):

Since the same equality holds on (�T , 0), one can conclude that

P(M(�T , T ) < uT ,x) ¼ G(x þ log(2))2 þ o(1) ¼ G(x) þ o(1):

Proof of Corollary 1. The proof relies on the verification of assumptions of Theorem 4,

beginning with (CM). Since f 0 is continuous and positive, for any T,

inf t2[�T ,T ] f0(t) ¼ �T . 0. Using (H3), for all t 2 [�T , T ] and x 2 R,���� f t � f 0

f 0

(x)

���� < sup
x2R

���� f 0(x � t) f 0(t)

f 0(x)

���� 1

f 0(t)
þ 1 <

M

�T

þ 1,

and using (H1) and (H3), ���� f 9t

f 0

(x)

���� < K1

M

�T

,

���� f 0t

f 0

(x)

���� < K2

M

�T

:

Let us now prove assumptions (G). Set
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N (s, t) ¼
ð

f 0(x � t) f 0(x � s)

f 0(x)
d�(x):

Differentiation of r, for s and t in Rnf0g, is a consequence of that of N (s, t). Now, for any

integers i < 4 and j < 4, using (H1) and (H3),

f
(i)
0 (x � t) f

( j)
0 (x � s)

f 0(x)
< Ki K j

f0(x � t) f0(x � s)

f 0(x)
< Ki K j M

2 f0(x)

f 0(t) f 0(s)

and f0(t) f 0(s) is positively lower-bounded on the neighbourhood of any (s0, t0), which proves

that N is differentiable at any (s, t) 2 (Rnf0g)2 with

@ iþ j N

@ i t @ j s
(s, t) ¼ (�1)iþ j

ð
f

(i)
0 (x � t) f

( j)
0 (x � s)

f0(x)
d�(x):

We first prove (G1). We have, for t 6¼ 0,

r11(t, t) ¼

k f 90(:� t)= f 0(:)k2
2k( f 0(:� t) � f 0(:))= f 0(:)k2

2 � h f 90(:� t)= f 0(:), ( f 0(:� t) � f 0(:))= f 0(:)i2ð Þ2

k( f 0(:� t) � f 0(:))= f 0(:)k4
2

which is positive by the Cauchy–Schwarz inequality. Now,

lim
t!þ1

r11(t, t) ¼

Ð
f 9

2

0 d�

ð
f 2

0 d��
ð

f 0 f 90 d�

� �2

ð
f 9

2

0 d�

� �2
:

Indeed, define the functions

A(t) ¼
ð

f 2
0(x)

f 0(x þ t)
d�(x), B(t) ¼

ð
f 9

2

0 (x)

f 0(x þ t)
d�(x), C(t) ¼

ð
f0(x) f 90(x)

f 0(x þ t)
d�(x):

Then write the function r11 in the following form:

r11(t, t) ¼ B(t) f 0(t) A(t) f0(t) � f 0(t)ð Þ � C(t) f 0(t)ð Þ2

A(t) f 0(t) � f 0(t)ð Þ2
:

By virtue of (H1) and (H3), the integrands of Af 0, Bf 0 and Cf 0 are respectively dominated by

M f 0(x), K2
1 M f 0(x), and K1 M f 0(x). By application of (H2) and the Lebesgue theorem, we

conclude the proof of (G1) using the fact that A(t) f 0(t), B(t) f 0(t), C(t) f 0(t) converge

respectively to ð
f 2

0(x) d�(x),

ð
f 9

2

0 (x) d�(x),

ð
f 0(x) f 90(x) d�(x):

Thus for a positive constant R,

R(t) � t!þ1R t: (18)

We turn now to (G2). Considering (18), we need to prove that
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lim
js� tj!þ1

r(s, t)log js � tj ¼ 0: (19)

Using (H3),

f0(t) f 2
0(x)

f0(x þ t)
< M f 0(x),

so that using (H2),

lim
t!þ1

ð
f 0(t) f 2

0(x)

f 0(x þ t)
d�(x) ¼

ð
f 2

0(x)d�(x),

and there exists a constant C such that, for js � tj large enough,

r(s, t) < C

ð ffiffiffiffiffiffiffiffiffiffi
f 0(t)

p ffiffiffiffiffiffiffiffiffiffi
f 0(s)

p f 0(x � t) f 0(x � s)

f 0(x)
d�(x):

Then, using (H3),

r(s, t) <

ð
C M

ffiffiffiffiffiffiffiffiffiffiffi
f0(x)

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 0(x þ s � t)

p
d�(x):

But according to (H5), for any x 2 R,

lim
js� tj!þ1

log js � tj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0(x þ s � t)

p
¼ 0,

and so one may apply the Lebesgue theorem using (H4) to obtain (19).

To prove (G5), we observe that it is a consequence of (G2) and formula (6) giving �(t).

Moving on to (G3), using (18) and r11 . 0, one only needs to prove that, for any � . 0,

sup
js� tj.�

jr(s, t)j , 1: (20)

First of all, r(s, t) is a continuous function of (s, t) and jr(s, t)j , 1 if s 6¼ t by the Cauchy–

Schwarz inequality. Thus for any � . 0, for any compact set K,

sup
js� tj.�, t2K,s2K

jr(s, t)j , 1:

On the other hand, because of (G2) for js � tj sufficiently large, r(s, t) is bounded away from

1, so we may suppose that js � tj is bounded. Suppose that there exists sn and tn such that

jsn � tnj is bounded, jsn � tnj . � and r(sn, tn) ! 1. By compactness it would be possible to

choose subsequences sj(n) and tj(n) such that sj(n) � tj(n) ! c. But using the same tricks as

before (using (H2), (H3) and the Lebesgue theorem),

lim
n!þ1

r(sj(n), tj(n)) ¼

ð
f 0(x) f 0(x þ c)d�(x)ð

f 2
0(x)d�(x)

:

Since jcj > � . 0, this value differs from 1. Hence we obtain a contradiction with

assumptions made on sequences sn and tn and (20) is true.
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Finally we round off the proof of (G4), having already dealt with the first part. We use

the same arguments to prove that s 7! r11(s, s) is three times continuously differentiable.

Now, this last regularity asociated with (18) allows us to reduce our study to that of

functions r01 and r04.

The first derivative r01(s, t) can be written as:

�h f 90(:� t)= f 0, ( f0(:� s) � f 0)= f 0i2

k( f 0(:� s) � f0)= f0k2k( f0(:� t) � f0)= f0k2

þh( f 0(:� t) � f 0)= f 0, ( f 0(:� s) � f 0)= f 0i f0
h f 90(:� t)= f 0, ( f 0(:� t) � f 0)= f 0i f0

k( f 0(:� s) � f0)= f0k2k( f0(:� t) � f0)= f0k3
2

:

Then the Cauchy–Schwarz inequality leads to

jr01(s, t)j < 2
k f 90(:� t)= f 0k2

k( f0(:� t) � f0)= f0k2

:

This upper bound is a continuous function on t. By making f 0(t) appear, it is easily seen that

it converges, as t tends to infinity, to

2

ð
f 9

2

0 d�ð
f 2

0 d�
:

Moreover, for any � . 0, the denominator is lower-bounded on D� ¼ f(s, t), s 2 R, jtj . �g.

Consequently, for any � . 0, (s, t) 7! r01(s, t) is bounded on R2nD�.

Using easy but tedious computations and the Cauchy–Schwarz inequality once more, we

have

jr04(s, t)j <
X
i>1

X
j>1

Q4
k¼1 k f

(k)
0 (:� t)= f 0kÆijk

2

k( f 0(:� t) � f 0)= f 0ki
2

,

where the sums on i and j are finite and where, for any i and j,
P4

k¼1Æijk ¼ i. Previous

arguments apply again and permit us to assert that for any � . 0 the function

(s, t) 7! r04(s, t) is bounded on R2nD�. h

Proof of Lemma 1. First, we set cn ¼ (log s log n)1=2 and we recall that A2,n ¼ [Æn, �n] with

Æn ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log s log s log n

p
and �n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n=2

p
� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log s log n

p
.

From to (15) and (17), we need to prove that sup t2A2, n
(Y0(t) � cn) and Y0(t0) are

asymptotically independent. To this end, we consider the discretized process

fY0(qn k), k 2 Zg with a discretization step qn depending on n in a sense which must be

defined. Let us gather the discretized points of A2,n in A
q n

2,n ¼ fd1, . . . , d N(n)g.

By triangular inequalities and simplifications we have, for any x and y,
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����P sup
t2A2, n

Y0(t) � cn < x; Y0(t0) < y

 !
� P( sup

t2A2, n

Y0(t) � cn < x)P(Y0(t0) < y)

����
< 2P sup

d2A
q n
2, n

Y0(d) � cn < x; sup
t2A2, n

Y0(t) � cn . x

 !
(21)

þ
����P sup

d2A
q n
2, n

Y0(d) � cn < x; Y0(t0) < y

 !
� P sup

d2A
q n
2, n

Y0(d) � cn < x

 !
P Y0(t0) < yð Þ

����:
The task is now to prove that for fixed x and y each component of the upper bound converges

to 0.

We define the following modification of the function r:

~rr(t0, t) ¼ 0, when t 2 A
q n

2,n, t 6¼ t0,

~rr(s, t) ¼ r(s, t), for s, t 2 A
qn

2,n:

Note that under the Gaussian distribution defined by ~rr, the value of the process at t0 is

independent of the values of the process at other locations whose distributions do not change.

This proves that ~rr is a covariance function. We define 	(t) ¼ supu,ju� t0j. tjr(u, t0)j. From (14)

we have

	(t) ¼ O exp � t2

2

� �� �
:

We restrict our attention to ns such that cn . 2jxj and 	(Æn) , 1
2

so that

(x þ cn)2

2(1 þ 	(Æn))
>

c2
n

12
:

The normal comparison lemma (Li and Shao 2002: Theorem 2.1) gives bounds on terms of

the type

P Y1 < u1, . . . , Yn < unð Þ � P ~YY1 < u1, . . . , ~YYn < un

� �
,

where Y and ~YY are two centred Gaussian vectors with the same variance and possibly

different covariances rij and ~rrij, i, j ¼ 1, . . . , n. It says that

P Y1 < u1, . . . , Yn < unð Þ � P ~YY1 < u1, . . . , ~YYn < un

� �
<

1

2�

X
1<i, j<n

arcsin(rij) � arcsin(~rrij)
� �þ

exp �
u2

i þ u2
j

2(1 þ rij)

 !
, (22)

where zþ ¼ max z, 0f g, rij ¼ max jrijj, j~rrijj
� �

. Let Const. represent a generic positive

constant. Since arcsin(x) < x�=2 for 0 < x < 1, applying inequality (22) in both directions to

the vector Y0 with covariance r and to the vector ~YY0 with covariance ~rr corresponding to the

points belonging to ft0g [ A
q n

2,n, we obtain:
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����P sup
d2A

q n
2, n

Y0(d) � cn < x; Y0(t0) < y

 !
� P sup

d2A
q n
2, n

Y0(d) � cn < x

 !
P Y0(t0) < yð Þ

����
< Const:

X
d2A

q n
2, n

jr(d, t0)j exp � (x þ cn)2 þ y2

2 1 þ jr(d, t0)jð Þ

� �

< Const:
X

d2A
q n
2, n

jr(d, t0)j exp � c2
n

12

� �

<
Const:

qn

exp � c2
n

12

� �ðþ1

Æ n�q n

	(t)dt ¼ Const

qn

exp � c2
n

12

� �
,

which tends to zero if, for example, qn ¼ (log s log n)�Ł if Ł . 0.

To deal with the first term of (21), we denote by Uz and U q n
z the point processes of up-

crossings of level z for Y0 and its qn-polygonal approximation (linear interpolation),

respectively. For any subset B of R,

Uz(B) ¼ #ft 2 B, Y0(t) ¼ z, Y 90(t) . 0g

U qn

z (B) ¼ #fl 2 Z, qn(l � 1) 2 B, qn l 2 B, Y0(qn(l � 1)) , z , Y0(qn l)g:

Set � to be the standard Gaussian distribution function and � ¼ 1 ��. Then

P sup
d2A

q n
2, n

Y0(d) � cn < x; sup
t2A2, n

Y0(t) � cn . x

 !

< P(Y0(Æn) . x þ cn) þ P(Y0(Æn) < x þ cn, Uxþcn
(A2,n) > 1, U

q n

xþcn
(A2,n) ¼ 0)

< �(x þ cn) þ E(Uxþcn
(A2,n) � U

qn

xþc n
(A2,n)),

where the last upper bound is a result of the Markov inequality. The first term above tends

trivially to zero, as for the second if we set qn ¼ log s log nð Þ�Ł
with Ł . 1

2
, Condition (U7)

of Lemma 2 of Azaı̈s and Mercadier (2003) is met. It is easy to check that because

E Uxþcn
(A2,n)ð Þ is bounded we are in the condition of application of that lemma and

E(Uxþc n
(A2,n) � U

q n

xþcn
(A2,n)) ¼ o(1):

h
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