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We present a general and quite simple upper bound for the total variation distance dTV between any

stochastic process (X i)i2ˆ defined over a countable space ˆ, and a compound Poisson process on ˆ.
This result is sufficient for proving weak convergence for any functional of the process (X i)i2ˆ when

the real-valued X i are rarely non-zero and locally dependent. Our result is established after

introducing and employing a generalization of the basic coupling inequality. Finally, two simple

examples of application are presented in order to illustrate the applicability of our results.
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1. Introduction

Let (X i)i2ˆ be a stochastic process with state space R, where ˆ is a countable index set.

The main aim of the present work is to provide simple and effective tools for approximating

the distribution of any functional of (X i)i2ˆ when the real-valued random variables X i,

i 2 ˆ are locally dependent and rarely differ from zero. This situation appears in numerous

applications involving rare and locally dependent events, for example in risk theory, graph

theory, extreme value theory, reliability theory, run and scan statistics and biomolecular

sequence analysis.

In the simplest case when the X i are independent, identically distributed (i.i.d.) binary

(0–1) random variables,
P

i X i follows a binomial distribution, which can be approximated

by a Poisson distribution (when P(X i 6¼ 0) � 0). In the case of dependent X i, two methods

have been mainly used for obtaining Poisson approximation results. The first, initiated by

Freedman (1974) and Serfling (1975), concerns sums of dependent indicators

X 1, X2, . . . , X n (cf. also Serfling 1978; Serfozo 1986). Typically, this approach offers

bounds for the total variation distance between the distribution of the sum of indicatorsP
i X i and an appropriate Poisson distribution. These bounds are expressed in terms of

conditional probabilities of the form P(X ijF i�1) assuming that fX ig are adapted to a

filtration fF ig. The method exploits coupling techniques, but is also related to martingale

theory. For recent developments of this approach we refer to the work of Vellaisamy and

Chaudhuri (1999).

Bernoulli 12(3), 2006, 501–514

1350–7265 # 2006 ISI/BS



The second and most important method for Poisson approximation (for dependent random

variables) is based on an adaptation (by Chen 1975) for the Poisson distribution of Stein’s

technique for normal approximation. This much acclaimed method (referred to as Stein’s

method for Poisson approximation or the Stein–Chen method) is based on the solution of a

difference equation (Stein’s equation) but also exploits coupling techniques. It was refined

and extended by many authors in various directions and applied to a series of problems and

models in diverse research areas. For a complete list of the relevant articles we refer to

Barbour et al. (1992) and Barbour and Chryssaphinou (2001). In recent years, substantial

attention has been drawn to results concerning Poisson process approximation through

Stein’s method. Refer to Arratia et al. (1989) for countable carrier spaces, and to Barbour

and Mansson (2002), Chen and Xia (2004) and the references therein for more general

carrier spaces.

A third way to obtain compound Poisson approximation results similar to those offered

by Stein’s method has recently been proposed by Boutsikas and Koutras (2000) for sums

of integer-valued associated random variables, Boutsikas and Vaggelatou (2002) for sums of

real-valued associated random variables and Boutsikas and Koutras (2001) for sums of

locally dependent random variables. These approaches were based on direct probabilistic

methods, namely, specific dependence concepts, stochastic orders or coupling techniques.

In this paper we present a compound Poisson process approximation result for locally

dependent real-valued random variables. More specifically, we present an upper bound for

the total variation distance dTV between the law of any stochastic process (X i)i2ˆ defined

over a finite or more generally countable space ˆ, and an appropriate compound Poisson

process on ˆ. This bound is small when X i, i 2 ˆ, are locally dependent and

P(X i 6¼ 0) � 0, i 2 ˆ. This result was proved by introducing and exploiting a new coupling

inequality that can be considered as a generalization of the well-known basic coupling

inequality.

It is remarkable that the form of the bound we provide is similar to the bounds offered

by Arratia et al. (1989) using Stein’s method. Their bounds concern the distance between

the law of a sequence of indicators X i and an appropriate Poisson process, and in that sense

our result (which concerns real-valued X i and a compound Poisson process) can be

considered as an extension. It is also worth mentioning that the so-called ‘magic factor’ or

‘Stein factor’ (a factor that decreases as º, the mean of the approximating Poisson

distribution, increases) that appears in the upper bound of many Poisson approximation

results through Stein’s method, cannot be present in our bounds since we use the total

variation distance and a compound Poisson process (cf. Barbour et al. (1992: 203).

2. Preliminaries

A random element ˛ is a measurable mapping from a probability space (�, F , P) to a

measurable space (E, A). A coupling of two random elements ˛, � from (�1, F1, P1),

(�2, F2, P2) respectively to (E, A) is any random element (˛9, �9) from (�, F , P) to

(E3 E, A�A) such that L(˛) ¼ L(˛9) and L(�) ¼ L(�9) where, as usual, L(˛) denotes
the law of ˛. Loosely speaking, a coupling of ˛, � is any ‘definition’ of ˛, � in the same
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probability space. In order to check how ‘close’ are the laws L(˛), L(�) of two random

elements ˛, � we shall be using the well-known total variation distance

dTV(L(˛), L(�)) ¼ sup
A2A

jP1(˛ 2 A)� P2(� 2 A)j ¼ sup
A2A

jP(˛9 2 A)� P(�9 2 A)j,

which may sometimes be too strong for proving convergence of probability measures

(requiring ‘similarity’ of the two measures in every event, whereas, for example, vague

convergence requires ‘similarity’ in events with non-zero measure boundaries), but on the

other hand it possesses the useful property

dTV(L( f (˛)), L( f (�))) < dTV(L(˛), L(�)), (1)

for every measurable f . Therefore, if L(˛) approximates L(�) with respect to dTV then, with

the same accuracy, the law of any functional of ˛ approximates the law of the same

functional of �.

A well-known result concerning dTV is the so-called basic coupling inequality: for any

coupling ( ˛9, �9) of two random elements ˛, �,

dTV(L(˛), L(�)) < P(˛9 6¼ �9): (2)

The standard way to ensure that the event [˛9 ¼ �9] belongs to the � -algebra F is to restrict

ourselves to state spaces (E, B(E)) that are Polish (i.e. complete and separable metric spaces)

where B(E) denotes the usual Borel � -algebra generated by the open sets in E.

Next, we state two well-known preliminary results – see, for example, Serfling (1978),

Wang (1986, 1989) or Barbour et al. (1992) – that we will need to call upon. In what

follows, whenever dependency or independency of some random elements is mentioned, this

will immediately imply that these are defined over the same probability space. The

following lemma is easily proved by resorting to the basic coupling inequality and the

triangle inequality for dTV.

Lemma 1. Let X1, X2, . . . , Xn and Y1, Y2, . . . , Yn be two collections of random vectors

(Xi, Yi 2 Rk i , i ¼ 1, 2, . . . , n). If the couples (X1, Y1), (X2, Y2), . . . , (Xn, Yn) are

independent then

dTV(L(X1, X2, . . . , Xn), L(Y1, Y2, . . . , Yn)) <
Xn
i¼1

dTV(L(Xi), L(Yi)):

As usual, CP(º, F) denotes the distribution of the random sum
PN

i¼1X i, where

X 1, X2, . . . is a sequence of i.i.d. random variables with common distribution F and N is a

random variable independent of the X i following a Poisson distribution with mean º.
We can now use the above lemma to derive a simple bound for the total variation

distance between the joint distribution of a random vector with independent components and

a compound Poisson product measure. For the proof of this bound we also use the

inequality dTV(L(X ), CP(º, F)) < P(X 6¼ 0)2, º ¼ P(X 6¼ 0), F(x) ¼ P(X < xjX 6¼ 0)

which holds for any real-valued random variable X .
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Proposition 2. If X1, X 2, . . . , X n are independent real-valued random variables, then

dTV L(X),
Yn
i¼1

CP(ºi, Fi)

 !
<
Xn
i¼1

P(X i 6¼ 0)2,

where X ¼ (X 1, X2, . . . , X n), ºi ¼ P(X i 6¼ 0) and Fi(x) ¼ P(X i < xjX i 6¼ 0), i ¼ 1, 2,

. . . , n.

The product measure
Qn

i¼1 CP(ºi, Fi) coincides with the distribution L(Y) of a random

vector Y ¼ (Y1, Y2, . . . , Yn) 2 Rn with independent components where each Yi follows a

CP(ºi, Fi) distribution.

The inequality in Proposition 2, which can be considered a by-product of the basic

coupling inequality, can be used to establish compound Poisson process approximation

results for sequences of independent random variables. Unfortunately, when we look at

cases where the X i may possibly be dependent, the basic coupling inequality cannot help.

In order to obtain similar results for dependent random variables using coupling, it seems

reasonable to try first to find an appropriate generalization of the basic coupling inequality.

This is the aim of the next section.

3. The generalized coupling inequality

The basic coupling inequality (2) offers a bound for the distance between the laws of two

random elements. It would be more flexible, though, to possess a result concerning the

change in dTV between the laws of two random elements which occurs when we modify

these two elements (e.g. change some of their coordinates). Such a result is offered by the

next lemma which, apart from being of independent interest, is the basic ingredient for the

establishment of our main result.

Lemma 3. If ˛1, ˛2, �1, �2 are four random elements taking values in a Polish space E,

then

jdTV(L(˛1), L(˛2))� dTV(L(�1), L(�2))j

< P(˛91 6¼ ˛29, (˛91, ˛29) 6¼ (�91, �29))þ P(�91 6¼ �29, (˛91, ˛29) 6¼ (�91, �29)), (3)

for any coupling (˛91, ˛29, �91, �29) of ˛1, ˛2, �1, �2.

Proof. Let (˛91, ˛29, �91, �29) be a coupling of ˛1, ˛2, �1, �2, defined over some

probability space (�, F , P and taking values in (E4, B(E4)). For a fixed B 2 B(E) define

the events in F ,

A1 ¼ [˛91 2 B], A2 ¼ [˛29 2 B], A3 ¼ [�91 2 B], A4 ¼ [�29 2 B]:

Denoting by Ac the complement of A, it is easy to see that
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fP(A1)� P(A2)g � fP(A3)� P(A4)g

¼ fP(A1A
c
2)� P(Ac

1A2)g � fP(A3A
c
4)� P(Ac

3A4)g

¼ fP(A1A
c
2)� P(A3A

c
4)g � fP(Ac

1A2)� P(Ac
3A4)g

¼ fP(A1A
c
2(A3A

c
4)

c)� P((A1A
c
2)

cA3A
c
4)g � fP(Ac

1A2(A
c
3A4)

c)� P((Ac
1A2)

cAc
3A4)g

< P(A1A
c
2(A

c
3 [ A4))þ P((A1 [ Ac

2)A
c
3A4)

¼ P(˛91 2 B, ˛29 =2 B, (�91 =2 B or �29 2 B))þ P((˛91 2 B or ˛29 =2 B), �91 =2 B, �29 2 B),

which is bounded from above by c1 þ c2 where

c1 ¼ P(˛91 6¼ ˛29, ˛91 6¼ �91 or ˛91 6¼ ˛29, ˛29 6¼ �29) ¼ P(˛91 6¼ ˛29, (˛91, ˛29) 6¼ (�91, �29)),

c2 ¼ P(�91 6¼ �29, �91 6¼ ˛91 or �91 6¼ �29, �29 6¼ ˛29) ¼ P(�91 6¼ �29, (˛91, ˛29) 6¼ (�91, �29)):

Interchanging ˛1 with �1 and ˛2 with �2, we obtain

fP(A3)� P(A4)g � fP(A1)� P(A2)g < c2 þ c1,

and thus, jfP(A1)� P(A2)g � fP(A3)� P(A4)gj < c1 þ c2. Since kaj � jbk < jaþ bj, for

every a, b 2 R, we conclude that

kP(A1)� P(A2)j � jP(A3)� P(A4)k < c1 þ c2:

Hence, for any B 2 B(E),
jP(˛91 2 B)� P(˛29 2 B)j < jP(�91 2 B)� P(�29 2 B)j þ c1 þ c2,

and

jP(�91 2 B)� P(�29 2 B)j < jP(˛91 2 B)� P(˛29 2 B)j þ c1 þ c2:

Considering the supremum with respect to B on both sides of the above inequalities, we

deduce that

dTV(L(˛1), L(˛2)) < dTV(L(�1), L(�2))þ c1 þ c2,

and

dTV(L(�1), L(�2)) < dTV(L(˛1), L(˛2))þ c1 þ c2,

which completes the proof. h

It is easy to see that Lemma 3 can be considered as a generalization of the basic

coupling inequality (2). Indeed, if (˛91, ˛29) is a coupling of some random elements ˛1, ˛2,

then the inequality in Lemma 3 (considering the coupling (˛91, ˛29, ˛91, ˛91) of

˛1, ˛2, ˛1, ˛1) leads to

dTV(L(˛1), L(˛2)) ¼ jdTV(L(˛1), L(˛2))� dTV(L(˛1), L(˛1))j < P(˛91 6¼ ˛29):
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Similar to the basic coupling inequality, (3) can also be used for bounding the dTV between

the laws of ˛1 and ˛2. This can be accomplished by choosing appropriate auxiliary elements

�1, �2 (more precisely, an appropriate coupling of ˛1, ˛2, �1, �2) so that the upper bound

of (3) is small and dTV(L(�1), L(�2)) can easily be calculated or upper-bounded. This

approach offers increased flexibility in the bounding procedure, due to the presence of two

additional random elements �1, �2 to play with.

The proof of Lemma 1 was based on the triangle inequality and the relation

dTV(L(X, Z), L(Y, Z)) ¼ dTV(L(X), L(Y)), X, Y 2 Rk , Z 2 Rr, (4)

which holds when the random vector Z is independent of X and Y (actually only the < part

of the above relation is needed), which in turn can be proved using the basic coupling

inequality (2). Therefore, we cannot use this relation when the random variables involved are

possibly dependent. It would thus be very convenient to possess an analogous result for

dTV(L(X, Z), L(Y, Z)) that holds even when Z is dependent on X, Y. The following

corollary of Lemma 3 offers such a result which is quite flexible since it involves an

arbitrarily chosen random vector Z9.

Corollary 4. For any random vectors X, Y 2 Rk and Z, Z9 2 Rr defined on the same

probability space, we have that

jdTV(L(Z, X), L(Z, Y))� dTV(L(Z9, X), L(Z9, Y))j < 2P(X 6¼ Y, Z 6¼ Z9): (5)

Proof. A direct application of (3) reveals that

jdTV(L(Z, X), L(Z, Y))� dTV(L(Z9, X), L(Z9, Y))j

< P((Z, X) 6¼ (Z, Y), ((Z, X), (Z, Y)) 6¼ ((Z9, X), (Z9, Y)))

þ P((Z9, X) 6¼ (Z9, Y), ((Z, X), (Z, Y)) 6¼ ((Z9, X), (Z9, Y)))

¼ P(X 6¼ Y, Z 6¼ Z9)þ P(X 6¼ Y, Z 6¼ Z9):

h

In the following section we shall exploit the above inequality in order to obtain a

compound Poisson process result for locally dependent sequences.

4. Compound Poisson process approximation using the

generalized coupling inequality

Consider a collection of real-valued random variables X i, i 2 ˆn ¼ f1, 2, . . . , ng, and

assume that for every X i there exist a set of indices Bi � ˆn � fig such that X i is

independent of or weakly dependent on X j, j 2 Bc
i � (ˆn � fig)� Bi. Assume also that the

sets Bi, i 2 ˆn, satisfy the reflexivity condition j 2 Bi , i 2 Bj. The set Bi can be
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considered as the neighbourhood of strong dependence of X i and therefore the set Bi \ î is

the left neighbourhood of strong dependence of X i.

Note that the sets Bi, i 2 ˆn, can be chosen arbitrarily but the next theorem offers better

(smaller) bounds when these sets are chosen so that every X i is independent of or weakly

dependent on all X j outside its neighbourhood.

Let X?
i , i 2 ˆn, be a sequence of independent random variables (also independent of X i,

i 2 ˆn) with the same marginal distributions as X i, i 2 ˆn (i.e. L(X i) ¼ L(X?
i ), i 2 ˆn).

Theorem 5. If X i, i 2 ˆn, is a collection of real-valued random variables and Bi, i 2 ˆn,

denotes their neighbourhoods of strong dependence, then

dTV(L(X1, . . . , X n), L(X?
1 , . . . , X

?
n )) < 2

Xn
i¼2

P (Xb)b2Bi\ î
6¼ 0, X i 6¼ X?

i

� �
þ cX(B), (6)

where

cX(B) ¼
Xn
i¼2

dTV(L((Xb)b2Bc
i\ î

, X i), L((Xb)b2Bc
i\ î

, X?
i )): (7)

Proof. Define the random vectors

Zi ¼ (X1, . . . , X i�1), Zi9 ¼ (X 1 � I(1 =2 Bi), X 2 � I(2 =2 Bi), . . . , X i�1 � I(i� 1 =2 Bi)),

where I(A) ¼ 1 if relation A holds and I(A) ¼ 0 otherwise, that is, Zi9 emerges by replacing

the ‘neighbours’ of X i in Zi with zeros. Applying Corollary 4, we obtain

jdTV(L(Zi, X i), L(Zi, X
?
i ))� dTV(L(Zi9, X i), L(Zi9, X

?
i ))j < 2P(Zi 6¼ Zi9, X i 6¼ X?

i )

¼ 2P((Xb)b2Bi\ î
6¼ 0, X i 6¼ X?

i ),

where 0 ¼ (0, 0, . . . , 0). Note now that

dTV(L(Zi9, X i), L(Zi9, X
?
i )) ¼ dTV(L((Xb)b2Bc

i \ î
, X i), L((Xb)b2Bc

i\ î
, X?

i )),

where the right-hand side is just the left-hand side without the coordinates of Zi9 that are

equal to 0 (i.e. all the coordinates with index j 2 Bi \ î). This follows from the general

equality, dTV(L(X, 0), L(Y, 0)) ¼ dTV(L(X), L(Y)) that holds for every X, Y, which can be

considered as a special case of (4).

Moreover, using (4) again, we obtain

dTV(L(Zi, X i), L(Zi, X
?
i )) ¼ dTV(L(X 1, . . . , X i), L(X 1, . . . , X i�1, X

?
i ))

¼ dTV(L(X 1, . . . , X i, X , . . . , X
?
n ), L(X1, . . . , X i�1, X

?
i , . . . , X

?
n )):

Therefore, for i ¼ 2, . . . , n,

dTV(L(X 1, . . . , X i, X
?
iþ1, . . . , X

?
n ), L(X1, . . . , X i�1, X

?
i , . . . , X

?
n ))

< 2P (X b)b2Bi\ î
6¼ 0, X i 6¼ X?

i

� �
þ dTV(L((Xb)b2Bc

i\ î
, X i), L((Xb)b2Bc

i\ î
, X?

i )): (8)
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Finally, from the triangle inequality we conclude that

dTV(L(X), L(X?)) <
Xn
i¼1

dTV(L(X 1, . . . , X i, X
?
iþ1, . . . , X

?
n ), L(X1, . . . , X i�1, X

?
i , . . . , X

?
n )),

which, combined with (8), leads to (6) (from Lemma 1, the first term of the above sum

equals 0). h

From the above proof we understand that P (Xb)b2Bi\ î
6¼ 0, X i 6¼ X?

i

� �
¼ 0 when some

Bi \ î ¼ ˘. Now, in order to minimize the upper bound, it is essential that the X i are

rarely non-zero. This situation immediately calls for a compound Poisson approximation

result. Specifically, we state the following theorem.

Theorem 6. If X i, i 2 ˆn, is a collection of real-valued random variables and Bi, i 2 ˆn,

denotes their neighbourhoods of strong dependence, then

dTV L(X),
Yn
i¼1

CP(ºi, Fi)

 !
< 2

Xn
i¼2

P (Xb)b2Bi\ î
6¼ 0, X i 6¼ X?

i

� �
þ
Xn
i¼1

P X i 6¼ 0ð Þ2þcX(B),

where X ¼ (X 1, X 2, . . . , X n), ºi ¼ P(X i 6¼ 0), Fi(x) ¼ P(X i < xjX i 6¼ 0) and cX(B) is

given by (7).

Proof. From Proposition 2 we obtain that

dTV L(X?),
Yn
i¼1

CP(ºi, Fi)

 !
<
Xn
i¼1

P(X i 6¼ 0)2,

where X? ¼ (X?
1 , X

?
2 , . . . , X

?
n ), ºi ¼ P(X i 6¼ 0) and Fi(x) ¼ P(X i < xjX i 6¼ 0). The proof

is now easily completed by involving the triangle inequality and Theorem 5. h

Given that

[(Xb)b2Bi\ î
6¼ 0] \ [X i 6¼ X?

i ] �
[

b2Bi\ î

[Xb 6¼ 0] \ ([X i 6¼ 0] [ [X?
i 6¼ 0]),

we obtain the next corollary which offers a slightly worse but computationally more

convenient bound.

Corollary 7. If X i, i 2 ˆn, is a collection of real-valued random variables and Bi, i 2 ˆn,

denotes their neighbourhoods of strong dependence, then

dTV L(X),
Yn
i¼1

CP(ºi, Fi)

 !
< UB �

Xn
i¼1

X
b2Bi

P Xb 6¼ 0, X i 6¼ 0ð Þ þ P Xb 6¼ 0)P(X i 6¼ 0ð Þð Þ

þ
Xn
i¼1

P X i 6¼ 0ð Þ2 þ cX(B), (9)
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where X ¼ (X 1, X 2, . . . , X n), ºi ¼ P(X i 6¼ 0), Fi(x) ¼ P(X i < xjX i 6¼ 0) and cX(B) is

given by (7).

Remark 1. By employing arguments similar to those used in Arratia et al. (1989: 22), the

above inequality could be extended from the finite carrier space ˆn to an infinite countable

carrier space ˆ for the process (X i)i2ˆ.

Remark 2. It is worth stressing that cX(B) ¼ 0 when each X i is independent of Xb, b 2 Bc
i

(Bi is the neighbourhood of dependence of X i). However, if each X i is ‘weakly’ dependent on

Xb, b 2 Bc
i (Bi is the neighbourhood of strong dependence of X i) then cX(B) could be

bounded from above. For example, if X1, X 2, . . . is a �-mixing sequence of integer-valued

random variables, then on choosing Bi \ î ¼ fi� sþ 1, . . . , i� 1g for some s . 1 and

denoting Y ¼ (Xb)b2Bc
i \ î

¼ (X 1, . . . , X i�s), we deduce that

dTV(L(Y, X i), L(Y, X?
i )) ¼ sup

A

����X
j

P((Y, j) 2 AjX i ¼ j)� P((Y, j) 2 A)f gP(X i ¼ j)

���� < �(s),

where

�(s) ¼ sup
k

fsupfjP(BjC)� P(B)j, C 2 � (X i; i < k), B 2 � (X i; i > k þ s)gg !
s!1

0

(e.g. for a Doeblin irreducible Markov chain, �(s) < abs for some a . 0, 0 < b , 1). In a

similar way we can treat Æ-mixing (strongly mixing) or other types of weakly dependent

sequences.

Remark 3. Theorem 6 or Corollary 7 can be used to prove weak convergence for any function

of the process X. More specifically, from (1) and (9) we conclude that

sup
A2B(R k )

jP( f (X) 2 A)� P( f (Y) 2 A)j ¼ dTV(L( f (X)), L( f (Y))) < UB,

for any measurable function f : Rjˆj ! Rk where Y �
Q

i2ˆ CP(ºi, Fi). If, for example, we

choose f (x) ¼
P

ixi, then it readily follows that

dTV L
X

X i

 !
, CP º,

X ºi
º
Fi

 ! !
< UB,

a generalization of the Khinchine–Doeblin inequality (here º ¼
P

iºi, and UB is given by

(9)). Other choices of f could, for example, be f (x) ¼ (
P

i2C1
xi,
P

i2C2
xi) with C1, C2 � ˆ,

or f (x) ¼ (maxi xi,
P

ixi).

5. Applications

As already mentioned in the Introduction, the bound of Corollary 7 has almost the same

form as the bounds developed with the aid of the Stein–Chen method (see Arratia et al.

1989, 1990, Barbour et al. 1992) for Poisson approximation. Consequently, (9) can almost

Compound Poisson process approximation 509



directly be applied to many of the problems where the Stein–Chen method has been applied

in the past. These models include problems from graph theory, extreme value theory, run

and scan statistics, biomolecular sequence analysis, risk theory, and reliability theory.

Moreover, bound (9) is almost identical to the bounds offered by Boutsikas and Koutras

(2001) for compound Poisson approximation (via the Kolmogorov distance). The same

authors applied these bounds to problems related to scan statistics in risk theory (Boutsikas

and Koutras 2002). Next, we present two simple applications elucidating the techniques

employed when applying Corollary 7.

Example 1 Compound Poisson process approximation for overlapping success runs in i.i.d.

trials. Let fZigi2Z be a sequence of i.i.d. binary trials with P(Zi ¼ 1) ¼ p, P(Zi ¼ 0) ¼ q,

pþ q ¼ 1. We are interested in the appearances of overlapping success runs (runs of 1s) of

length k in trials 1, 2, . . . , n. This model has been studied by many authors in the past; see,

for example, Barbour et al. (1992) and the relevant references therein.

Define X i ¼
Qiþk�1

j¼i Z j, i ¼ 1, 2, . . . , n� k þ 1. The random vector X ¼ (X1, X 2,

. . . , X n�kþ1) 2 f0, 1gn�kþ1 indicates the starting points of the observed overlapping

success runs. In this case X i is dependent only on X i�kþ1, . . . , X iþk�1, and therefore we

can conveniently choose

Bi ¼ fmaxf1, i� k þ 1g, . . . , i� 1, iþ 1, . . . , minfn� k þ 1, iþ k � 1gg:

With the above choice, cX(B) ¼ 0 and since Fi(x) ¼ I(x > 1) we see that

CP(ºi, Fi) � Po(ºi) ¼ Po( pk) (Poisson distribution with parameter pk). From Corollary 7

we readily obtain that

dTV L(X),
Yn�kþ1

i¼1

Po( pk)

 !
< 2

Xn�kþ1

i¼2

Xi�1

b¼maxf1,i�kþ1g
P X b ¼ 1, X i ¼ 1ð Þ þ p2k
� �

þ
Xn�kþ1

i¼1

p2k

< (n� k þ 1) pk 2p
1� pk�1

1� p
þ (2k � 1) pk

� �
,

and therefore L(X) can be approximated by a Poisson process with intensity pk on the carrier

space ˆn when n is large, p is small (k is fixed) and npk ! º (the upper bound is of order

O( p)).

The above bound cannot be used when we assume that n ! 1, k ! 1 and p is fixed.

Under these conditions, the success runs tend to occur in ‘clumps’ (clusters of adjacent

success runs). The occurrences of these clumps are rare and asymptotically independent

while each clump consists of a random number of overlapping success runs. This situation

readily calls for a compound Poisson approximation result. To achieve this, let

Y1, Y2, . . . , Yn�kþ1 represent the sizes of the clumps started at trials 1, 2, . . . , n� k þ 1

respectively, that is,

Yi ¼ (1� Zi�1)
Xn�i�kþ1

r¼0

Yiþkþr�1

j¼i

Z j, i ¼ 2, 3, . . . , n� k þ 1, Y1 ¼
Xn�k

r¼0

Ykþr

j¼1

Z j:
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Obviously,
Pn�kþ1

i¼1 Yi is equal to
Pn�kþ1

i¼1 X i, the total number of overlapping success runs

within trials 1, 2, . . . , n. Instead of Yi, it is more convenient to use the random variables

Yi9 ¼ (1� Zi�1)
Xk�1

r¼0

Yiþkþr�1

j¼i

Z j, i ¼ 1, 2, . . . , n� k þ 1,

which represent the truncated sizes of clumps (Yi9 < k) starting at positions

1, 2, . . . , n� k þ 1 (to obtain stationarity, we have also allowed the last clumps to extend

further than trial n). When k, n increase while the expected number of runs

(n� k þ 1) pk remains bounded, the processes Y ¼ (Y1, . . . , Yn�kþ1), Y9 ¼ (Y 91, . . . ,
Y 9n�kþ1) rarely differ. This is expressed by the inequality

dTV(L(Y), L(Y9)) < P(Y 6¼ Y9) < P
[n�2kþ1

i¼1

[Zi�1 ¼ 0, Zi ¼ . . . ¼ Ziþ2k�1 ¼ 1]

 !

þ P Z0 ¼ . . . ¼ Zk ¼ 1ð Þ

þ P
[n�kþ1

i¼n�2kþ3

[Zi�1 ¼ 0, Zi ¼ . . . ¼ Znþ1 ¼ 1]

 !

< (n� 2k þ 1)qp2k þ pkþ1 þ pkþ1 1� pk�1
� �

< (n� 2k þ 1)qp2k þ 2pkþ1:

Now, consider Bi \ î ¼ fmaxf1, i� 2k þ 1g, . . . , i� 1g and apply Corollary 7 to obtain

the inequality

dTV L(Y9),
Yn�kþ1

i¼1

CP(ºi, F)

 !

< 2
Xn�kþ1

i¼2

Xi�1

b¼maxf1,i�2kþ1g
P(Yi9 6¼ 0, Yb9 6¼ 0)þ P(Yi9 6¼ 0)P(Yb9 6¼ 0)ð Þ

þ
Xn�kþ1

i¼1

P Yi9 6¼ 0ð Þ2,

where ºi ¼ P(Yi9 6¼ 0) and F(x) ¼ P(Yi9 < xjYi9 6¼ 0), x 2 R (cX(B) ¼ 0). It is easy to

check that

P Yi9 6¼ 0ð Þ ¼ qpk , i ¼ 1, 2, . . . , n� k þ 1,

P Yi9 6¼ 0, Yb9 6¼ 0ð Þ ¼ 0, b ¼ i� k, . . . , i� 1,

P Yi9 6¼ 0, Yb9 6¼ 0ð Þ < q2 p2k , b ¼ i� 2k þ 1, . . . , i� k � 1,

and ºi ¼ qpk , F(x) ¼ 1� px, x ¼ 1, 2, . . . , k. Using the above and the triangle inequality

we obtain
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dTV L(Y),
Yn�kþ1

i¼1

CP(ºi, F)

 !
< 2(n� k)(k � 1)q2 p2k þ 2(n� k)(2k � 1)q2 p2k

þ (n� k þ 1)q2 p2k þ (n� 2k þ 1)qp2k þ 2pkþ1

< ºpk(1þ (6k � 3)q)þ 2pkþ1,

where º ¼ (n� k þ 1)qpk . Obviously, if n, k ! 1 so that (n� k þ 1)qpk ! º0 2 (0, 1)

then the upper bound vanishes and the law of the clump process Y can be approximated by a

compound Poisson process (the convergence rate being of order O(kpk)). Therefore,

according to Remark 3 above, we can obtain weak convergence results (as n, k ! 1) for any

functional f (Y) of the process Y. For example, choosing f (y) ¼
P

yi, the distance

dTV L(
P

Yi), CP(º, F)ð Þ is bounded above by the same quantity ºpk(1þ (6k � 3)q) þ 2pkþ1

and, therefore,
P

Yi (the total number of overlapping success runs) follows asymptotically (as

n, k ! 1) a compound Poisson with geometric compounding distribution (Pólya–Aeppli

distribution). Note, though, that for this special case better bounds can be obtained via the

Stein–Chen method that include the so-called ‘magic factor’ – see, for example, Barbour et

al. (2001).

Example 2 Compound Poisson process approximation for the total excess amount above a

high threshold for moving sums of i.i.d. random variables. In this example we are interested

in the exceedances of the moving sum (r-scan process)

Si ¼
Xiþr�1

j¼i

X j, i ¼ 1, 2, . . . , n� r þ 1,

above a threshold b, where X 1, X2, . . . , X n is a sequence of i.i.d. non-negative unbounded

random variables with a common distribution function F. More specifically we are interested

in the process of excess values (‘peaks over threshold b’)

Yi ¼ maxfSi � b, 0g, i ¼ 1, 2, . . . , n� r þ 1:

Obviously, the Yi are locally dependent and if we choose b to be ‘high’ (so that the Yi are

rarely non-zero) then it is clear that the process of excess values Y can be approximated by

an appropriate compound Poisson process. Dembo and Karlin (1992) studied the number of

exceedances
Pn�rþ1

i¼1 I(Si . b) and proved (using the Stein–Chen method) that, under

appropriate conditions, the number of exceedances converges to a Poisson distribution.

In a more general set-up, Rootzén et al. (1998) considered strongly mixing stationary

sequences fX ig and offered results pertaining to the asymptotic distribution of tail array

sums of the general form
P

ł(X i � b) for a class of real functions ł (which includes the

case ł(x) ¼ maxf0, xg considered above). They proved that, under appropriate conditions,

tail array sums converge to a compound Poisson distribution (for very high levels of b).

Note, though, that their approach does not provide any bounds or convergence rates, and the

parameters of the limiting CP(º, G) were not explicitly described.

Boutsikas and Koutras (2001) proved that the sum of excess values converges to a
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compound Poisson distribution. Here, following essentially the same steps, we employ

Corollary 7 to obtain a compound Poisson process approximation for the law of the process

of excess values Y ¼ (Yi)i2ˆn� rþ1
. As in Boutsikas and Koutras (2001), we first choose the

left neighbourhoods of dependence Bi \ î ¼ {max{i � r + 1,1}, . . . , i � 1} and then

apply Corollary 7 to obtain

dTV L(Y),
Yn�rþ1

i¼1

CP(ºi, Gb)

 !
< 2º

Xr
m¼2

P(Sm . bjS1 . b)þ 2ºr(1� F (r)(b)) :¼ º�(r, b),

(10)

where ºi ¼ P(Si . b) ¼ (1� F (r)(b)), º ¼ (n� r þ 1)(1� F (r)(b)) and F (m) denotes the

m-fold convolution of F. The compounding distribution Gb is given by the expression

Gb(x) ¼ P(Si < xþ bjSi . b) ¼ 1� 1� F (r)(bþ x)

1� F (r)(b)
, x > 0:

It can be shown (see Theorem 3 of Dembo and Karlin 1992) that E(r, b) ! 0 for any fixed r,

provided that for each constant K . 0,

1� F(b� K)

1� F (2)(b)
! 0 as b ! 1: (11)

According to Dembo and Karlin (1992), condition (11) holds for any distribution F which is

a finite or infinite convolution of exponentials of any scale parameters or has a log-concave

density. Therefore, if the common distribution F of the X i satisfies (11) then the law of the

process Y of excess values can be approximated by a compound Poisson process and, as in

the previous cases, we may establish weak convergence for any functional of the process Y.

For example, we can obtain that the sum of excess values
Pn�rþ1

i¼1 Yi converges to a

compound Poisson distribution CP(º, G) with a convergence rate given by (10) provided that

n, b ! 1 (r is fixed) so that n(1� F (r)(b)) ! º 2 (0, 1) and Gb(x) ! b!1G(x).
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