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This paper examines the Gaussian maximum likelihood estimator (GMLE) in the context of a general

form of spatial autoregressive and moving average (ARMA) processes with finite second moment. The

ARMA processes are supposed to be causal and invertible under the half-plane unilateral order, but

not necessarily Gaussian. We show that the GMLE is consistent. Subject to a modification to confine

the edge effect, it is also asymptotically distribution-free in the sense that the limit distribution is

normal, unbiased and has variance depending only on the autocorrelation function. This is an analogue

of Hannan’s classic result for time series in the context of spatial processes.
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1. Introduction

Since Whittle’s (1954) pioneering work on stationary spatial processes, the frequency-

domain methods which approximate a Gaussian likelihood by a function of a spectral

density have become popular, while the Gaussian likelihood function itself has been

regarded as intractable in terms of both theoretical exploration and practical implementa-

tion. Guyon (1982) and Dahlhaus and Künsch (1987) established the asymptotic normality

of the modified Whittle maximum likelihood estimators (MLEs) for stationary spatial

processes which are not necessarily Gaussian; the modifications were adopted to control the

edge effect. On the other hand, the development of time-domain methods has been

dominated by the seminal work of Besag (1974) who put forward an ingenious autonormal

specification based on a conditional probability argument. Besag’s proposal effectively

specifies the inverse covariance matrix of a Gaussian process, in which the parameters are

interpreted in terms of conditional expectations.

In this paper we examine the estimator derived from maximizing the Gaussian likelihood

function for spatial processes, which we refer to as the Gaussian maximum likelihood

estimator (GMLE). To study its asymptotic properties, we assume that the data are

generated from a spatial autoregressive and moving average (ARMA) model defined on a

lattice. Under the condition that the process is causal and invertible according to the half-
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plane unilateral order (Whittle 1954), the GMLE is consistent (Theorem 1 below). Subject

to a modification to confine the edge effect, it is also asymptotically normal and unbiased,

with variance depending only on the autocorrelation function. Thus our modified GMLE is

asymptotically distribution-free. The asymptotic normality presented in Theorem 2 below

may be viewed as an analogue of Hannan’s (1973) classic result for time series in the

context of spatial processes, which shows that the limit distribution of the estimator for an

ARMA process is determined by two AR models defined by the AR and MA forms in the

original model; see Theorem 2 below and also Brockwell and Davis (1991, Section 8.8).

Hannan’s proof was based on a frequency-domain argument. He proved the equivalence of a

GMLE and a Whittle estimator and established the asymptotic normality of the latter; see

also Brockwell and Davis (1991, Section 10.8). Our proof largely follows the time-domain

approach of Yao and Brockwell (2005), although the proposed modified GMLE shares the

same asymptotic distribution as the modified Whittle estimator proposed by Guyon (1982)

(see Remark 3 below), which is also the asymptotic distribution of the modified Whittle

estimator proposed by Dahlhaus and Künsch (1987) if the underlying process is Gaussian.

For purely autoregressive processes, our asymptotic results are the same as those derived by

Tjøstheim (1978, 1983).

For a sample from a spatial model, the number of boundary points typically increases to

infinity as the sample size goes to infinity. Therefore the edge effect causes problems. This

is the feature which distinguishes high-dimensionally indexed processes from one-

dimensional time series. Various modifications to reduce the edge effect have been

proposed; see Guyon (1982), Dahlhaus and Künsch (1987) and Section 2.4 below. Both

Guyon (1982) and Dahlhaus and Künsch (1987) adopted a frequency-domain approach,

dealing with Whittle’s estimators for stationary processes defined on a lattice. Our approach

is within the time domain, dealing with GMLEs for the coefficients of ARMA models. Our

edge-effect modification can be readily performed along with prewhitening (Section 2.3

below). By exploring the explicit form of these models, we are able to establish a central

limit theorem (Lemma 9 below) based on an innate martingale structure. Therefore the

regularity conditions imposed by Theorem 2 are considerably weaker than those in Guyon

(1982) and Dahlhaus and Künsch (1987). For example, we only require the process to have

finite second moments, and we do not impose any explicit assumptions on ergodicity and

mixing. However, it remains as an open problem whether the edge-effect modification is

essential for the asymptotic normality or not (see Section 5.1).

Although we only deal with the processes defined in the half-plane order explicitly, the

asymptotic results may be derived for any unilaterally ordered processes in the same

manner. For the sake of simplicity, we only present the results for spatial processes with

two-dimensional indices. The approach may be readily extended to higher-dimensional

cases. In fact, such an extension is particularly appealing in the context of spatio-temporal

modelling since an ARMA form that is useful in practice can easily be formulated in that

context. This is in marked contrast to the case of two-dimensional processes for which a

unilateral ordering is often an artefact which limits potential applications (see Section 5.2

below).

The rest of this paper is organized as follows. In Section 2 we introduce spatial ARMA

models and the conditions for causality and invertibility. The consistency and asymptotic
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normality will be established in Sections 3 and 4, respectively. We conclude with

miscellaneous remarks in Section 5.

We denote by jAj the determinant of a square matrix A, and by kak the Euclidean norm

of a vector a.

2. Models and estimators

2.1. Stationary spatial ARMA processes

Let Z, R, C be the integer, the real number and the complex number spaces, respectively.

We always write s ¼ (u, v) 2 Z2 and i ¼ ( j, k) 2 Z2. We define s . 0 ¼ (0, 0) if either

u . 0 or u ¼ 0 and v . 0, and s ¼ 0 if and only if both u and v are 0. A unilateral order

on a two-dimensional plane is defined as s . (>) i if and only if s� i (>) 0; see Whittle

(1954). This order is often referred to as the half-plane order or lexicographic order.

Another popular unilateral ordering on a two-dimensional plane is the quarter-plane order.

Under the quarter-plane order, s > 0 if and only if both u and v are non-negative; see

Guyon (1995). Although we do not explicitly discuss the models defined in terms of the

quarter-plane order in this paper, we will comment on its properties when appropriate.

We define a spatial ARMA model as

X (s) ¼
X
i2I 1

biX (s� i)þ �(s)þ
X
i2I2

ai�(s� i), (2:1)

where f�(s)g is a white noise process with mean 0 and variance � 2, fbig and faig are AR

and MA coefficients, and both index sets I 1 and I2 contain finite numbers of elements in the

set fs . 0g. In this paper, we consider real-valued processes only. Since we only require

index sets I1 and I2 to be subsets of fs . 0g, specification (2.1) includes both half-plane

and quarter-plane ARMA models (Tjøstheim 1978, 1983) as special cases.

We introduce the back shift operator B � (B1, B2) as follows:

BiX (s) � B
j
1B

k
2 X (u, v) ¼ X (u� j, v� k) ¼ X (s� i), i ¼ ( j, k) 2 Z2:

For z � (z1, z2), write zi ¼ z
j
1z

k
2 . We define

b(z) ¼ 1�
X
i2I1

biz
i, a(z) ¼ 1þ

X
i2I 2

aiz
i: (2:2)

Then model (2.1) can be written as

b(B)X (s) ¼ a(B)�(s): (2:3)

It is well known that a bivariable polynomial can be factored into irreducible factors

which are themselves bivariable polynomials but which cannot be further factored, and these

irreducible polynomials are unique up to multiplicative constants. To avoid ambiguity over

the form of the model, we always assume that b(z) and a(z) are mutually prime in the sense
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that they do not have common irreducible factors although they may still have common

roots (Goodman 1977; Huang and Anh 1992).

The process fX (s)g defined in (2.1) is causal if it admits a purely MA representation

X (s) ¼ �(s)þ
X
i.0

łi�(s� i) ¼ �(s)þ
X1
k¼1

ł0k�(u, v� k)þ
X1
j¼1

X1
k¼�1

ł jk�(u� j, v� k),

(2:4)

where
P

i.0jłij , 1. It is easy to see that a causal fX tg is always weakly stationary with

mean 0 and autocovariance function

ª(i) ¼ EfX (sþ i)X (s)g ¼ � 2
X1
l¼1

X1
m¼�1

ł lmł lþ j,mþk

¼ � 2 ł jk þ
X1
m¼1

ł0mł j,mþk þ
X1
l¼1

X1
m¼�1

ł lmł lþ j,mþk

( )
(2:5)

for i ¼ ( j, k) with j > 1, and ª(�i) ¼ ª(i). In the above expression, ł00 ¼ 1 and ł0m ¼ 0

for all m , 0. Furthermore, a causal process fX (s)g is strictly stationary if f�(s)g are

independent and identically distributed (IID); see (2.4). The lemma below presents a

sufficient condition for the causality.

Lemma 1. The process fX tg is causal if

b(z) 6¼ 0, for all jz1j < 1 and jz2j ¼ 1, 1�
X

(0,k)2I1

b0k z
k
2 6¼ 0, for all jz2j < 1,

(2:6)

where z1, z2 2 C. Furthermore, condition (2.6) implies that the coefficients fł jkg defined in

(2.4) decay at an exponential rate, and in particular

jł jk j < CÆ jþjkj for all j > 0 and k, (2:7)

for some constants Æ 2 (0, 1) and C . 0.

Note that (2.7) improves Goodman (1977) which showed ł jk ¼ O(Æ j). Condition (2.6) is

not symmetric in (z1, z2). This is due to the asymmetric nature of the half-plane order under

which the causality is defined; see (2.4). The proof for the validity of (2.4) under condition

(2.6) was given in Huang and Anh (1992); see also Justice and Shanks (1973), Strintzis

(1977) and the references therein. Inequality (2.7) follows from the following simple

argument. Let ł(z) ¼ 1þ
P

i.0łiz
i, where the łi are given in (2.4). Then ł(z) ¼

a(z)=b(z). Due to the continuity of b(�), b(z) 6¼ 0 for all z 2 AE � f(z1, z2) : 1 �
E , jz jj , 1þ E, j ¼ 1, 2g under condition (2.6), where E . 0 is a constant. Thus ł(�) is

bounded on AE, that is, j
P

i.0łiz
ij , 1 for any z 2 AE. Thus ł jkÆ� jÆ�jkj ! 0 as at least

one of j and jkj ! 1.
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Remark 1. (i) Under condition (2.6), inequality (2.7) also holds if we replace ł jk by the

derivative of ł jk with respect to bi or ai. This can be justified by taking derivatives on both

sides of the equation ł(z) ¼ a(z)=b(z), followed by the same argument as above.

(ii) Condition (2.6) also ensures that the autocovariance function ª(�) decays at an

exponential rate, that is, ª( j, k) ¼ O(Æj jjþjkj) as at least one of j jj and jkj ! 1, where

Æ 2 (0, 1) is a constant. To show this, note that for ( j, k) with both j and k non-negative

(other cases are similar), (2.5) can be written as

ª( j, k)=� 2 ¼ ł jk þ
X1
m¼1

ł0mł j,mþk

þ
X1
l¼1

X1
m¼0

ł lmł lþ j,mþk þ
X1
m¼0

ł l,�k�mł lþ j,�m þ
Xk�1

m¼1

ł l,�mł lþ j,k�m

( )
:

By (2.7), all the sums on the right-hand side of the above expression are of order Æ jþk.

(iii) A partial derivative of ª(�) with respect to bi or ai also decays at an exponential rate.

This may be seen by combining (i) with the argument in (ii).

(iv) Condition (2.6) is not necessary for the causality, which is characteristically different

from the case for one-dimensional time series; see Goodman (1977). On the other hand, a

spatial ARMA process defined in term of the quarter-plane order is causal if b(z) 6¼ 0 for

all jz1j < 1 and jz2j < 1 (Justice and Shanks 1973). Under this condition, the auto-

covariance function, the coefficients in an MA(1) representation, and their derivatives

decay exponentially fast.

(v) The process fX tg is invertible if it admits a purely AR representation

X (s) ¼ �(s)þ
X
i.0

jiX (s� i) ¼ �(s)þ
X1
k¼1

j0k X (u, v� k)þ
X1
j¼1

X1
k¼�1

j jk X (u� j, v� k),

(2:8)

where
P

i.0jjij , 1. It is easy to see from Lemma 1 that the invertibility is implied by the

condition

a(z) 6¼ 0, for all jz1j < 1 and jz2j ¼ 1, 1þ
X

(0,k)2I2

a0k z
k
2 6¼ 0, for all jz2j < 1:

(2:9)

Furthermore, under this condition the coefficients fj jkg and their partial derivatives (with

respect to bi or ai) decay at an exponential rate.

(vi) The spectral density function of fX (s)g is of the form

g(ø) ¼ � 2

4�2

���� a(eiø)b(eiø)

����
2

, ø 2 [��, �]2, (2:10)

where ø ¼ (ø1, ø2) and eiø ¼ (eiø1 , eiø2 ). Under conditions (2.6) and (2.9), g(ø) is bounded

away from both 0 and 1, which is the condition used in Guyon (1982). Note that the

condition that g(ø) is bounded away from both 0 and 1 is equivalent to the condition that
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a(z)b(z) 6¼ 0 for all jz1j ¼ jz2j ¼ 1 and (z1, z2) 2 C2. Under this condition equation (2.1)

defines a weakly stationary process which, however, is not necessarily causal or invertible

(Justice and Shanks 1973). Helson and Lowdenslager (1958) showed that the necessary and

sufficient condition for a weakly stationary (but not necessarily ARMA) process fX (s)g
admitting the MA representation (2.4) with square-summable coefficients j jk is that its

spectral density g(�) fulfils the conditionð
[��,�]2

log g(ø)dø . �1: (2:11)

Note that for ARMA processes, (2.11) is implied by (2.6).

2.2. Gaussian maximum likelihood estimators

We denote the elements of I 1 and I 2 in ascending order respectively as

j1 , j2 , . . . , j p and i1 , i2 , . . . , iq:

Let Ł � (Ł1, . . . , Ł pþq)
T ¼ (bj1 , . . . , bj p , ai1 , . . . , aiq )

T. We assume Ł 2 ¨, where ¨ � R pþq

is the parameter space. To avoid some delicate technical arguments, we assume that the

following condition holds.

(C1) The parameter space ¨ is a compact set containing the true value Ł0 as an interior

point. Further, for any Ł 2 ,̈ conditions (2.6) and (2.9) hold.

Given observations fX (u, v), u ¼ 1, . . . , N1, v ¼ 1, . . . , N2g from model (2.1), the

Gaussian likelihood function is of the form

L(Ł, � 2) / � �N j�(Ł)j�1=2 exp � 1

2� 2
XT�(Ł)�1X

� �
, (2:12)

where N ¼ N1N2, X is an N 3 1 vector consisting of the N observations in ascending order,

and

�(Ł) ¼ 1

� 2
var(X),

which is independent of � 2. The estimators which maximize (2.12) can be expressed as

Ł̂Ł ¼ argmin
Ł2¨

[logfXT�(Ł)�1X=Ng þ N�1 logj�(Ł)j], �̂� 2 ¼ XT�(Ł̂Ł)�1X=N : (2:13)

Since we do not assume a special form for the distribution of �(s) and the Gaussian

likelihood is used only as a contrast function, the derived estimators could be referred to as

quasi-MLEs.

2.3. Prewhitening and the innovation algorithm

Gaussian maximum likelihood estimation has been hampered by the computational burden

in calculating both the inverse and the determinant of the N 3 N matrix �(Ł). To overcome
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the burden, some approximation methods have been developed by, for example, Besag

(1975) and Wood and Chan (1994); see also Cressie (1993, Section 7.2). The computational

difficulty has gradually been eased by the increase in computer power available. It is now

feasible to compute genuine Gaussian likelihood functions with N of the order of

thousands. As an example, we state below how the idea of prewhitening via the innovation

algorithm can be used to facilitate the computation for Gaussian likelihood regardless of

whether the underlying process is stationary or not, or whether the data are collected on a

regular grid or not. Prewhitening is an old and very useful idea in time series analysis.

Effectively it is a version of the Cholesky decomposition, and it computes the quadratic

form XT�(Ł)�1X and the determinant j�(Ł)j simultaneously. Our edge-effect correction

method, presented in Section 2.4 below, is based on a representation of the likelihood in

terms of prewhitening.

Denote by X (s1), . . . , X (sN ) the N observations with the indices s j in ascending order.

(The order is not important as far as the algorithm presented below is concerned.) Let

X̂X (s1) � 0. For 1 < k , N, let

X̂X (skþ1) ¼ j(k)
1 X (sk) þ . . . þ j(k)

k X (s1) (2:14)

be the best linear predictor for X (skþ1) based on X (sk), . . . , X (s1) in the sense that

EfX (skþ1)� X̂X (skþ1)g2 ¼ min
fł jg

E X (skþ1)�
Xk
j¼1

ł j X (sk� jþ1)

( )2

: (2:15)

It can be shown that the coefficients j(k)
j are the solutions of equations

ª(s l) ¼
Xk
j¼1

j(k)
j ª(s l � s j), l ¼ 1, . . . , k,

and

r(skþ1) � r(skþ1, Ł) �
1

� 2
EfX (skþ1)� X̂X (skþ1)g2 ¼

1

� 2
ª(0)�

Xk
j¼1

j(k)
j ª(s j)

( )
: (2:16)

In the above expressions, ª(i) � ª(i; Ł) ¼ EfX (sþ i)X (s)g. It can also be shown that the

least-squares property (2.15) implies that

cov[fX (skþ1)� X̂X (skþ1)gX (s j)] ¼ 0, 1 < j < k:

Note that X (skþ1)� X̂X (skþ1) is a linear combination of X (sk), . . . , X (s1). Thus X (s1) �
X̂X (s1), . . . , X (sN )� X̂X (sN ) are N uncorrelated random variables. Further, it is easy to see

from (2.14) that X̂X (sk) can be written as a linear combination of X (sk)� X̂X (sk),

. . . , X (s1)� X̂X (s1). We write

X̂X (skþ1) ¼
Xk
j¼1

�kjfX (skþ1� j)� X̂X (skþ1� j)g, k ¼ 1, . . . , N � 1: (2:17)

Let X̂X ¼ (X̂X (s1), . . . , X̂X (sN ))
T. Then X̂X ¼ A(X� X̂X), where
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A ¼

0 0 0 . . . 0 0

�11 0 0 . . . 0 0

�22 �21 0 . . . 0 0

..

. ..
. ..

.
. . . 0 0

�N�1,N�1 �N�1,N�2 �N�1,N�3 . . . �N�1,1 0

0
BBBBBBBBB@

1
CCCCCCCCCA
:

Put X ¼ C(X� X̂X), where C ¼ Aþ IN is a lower-triangular matrix with all main diagonal

elements 1, and IN is the N 3 N identity matrix. Let D ¼ diagfr(s1), . . . , r(sN )g. Then

�(Ł) ¼ 1

� 2
var(X) ¼ CDCT, and j�(Ł)j ¼ jDj ¼

YN
j¼1

r(s j): (2:18)

Hence the likelihood function defined in (2.12) can be written as

L(Ł, � 2) / � �Nfr(s1) � � � r(sN )g�1=2exp � 1

2� 2

XN
j¼1

fX (s j)� X̂X (s j)g2=r(s j)
" #

: (2:19)

The calculation of the inverse and the determinant of �(Ł) is reduced to the calculation of the

coefficients �kj and r(skþ1) defined in (2.17) and (2.16) respectively, which can be easily

done recursively using the innovation algorithm below; see Proposition 5.2.2 of Brockwell

and Davis (1991). We present the algorithm in the form applicable to any (non-stationary)

series fX (s j)g with common mean 0 and autocovariance ª(sk , s j) ¼ EfX (sk)X (s j)g, which
reduces to ª(sk � s j; Ł) for the stationary spatial ARMA process concerned in this paper.

Note that the algorithm is a version of the Cholesky decomposition.

Innovation algorithm. Set r(s1) ¼ ª(s1, s1)=� 2. Based on the cross-recursion equations

�k,k� j ¼ ª(skþ1, s jþ1)=�
2 �

Xj�1

i¼0

� j, j�i�k,k�i r(siþ1)

( )
=r(s jþ1),

r(skþ1) ¼ ª(skþ1, skþ1)=�
2 �

Xk�1

j¼0

�k,k� j
2 r(s jþ1),

compute the values of f�ijg and fr(s j)g in the order �11, r(s2), �22, �21, r(s3), �33, �32, �31,
r(s4), . . . �N�1,N�1, �N�1,N�2, . . . , �N�1,1, r(sN ).

2.4. A modified estimator

In order to establish the asymptotic normality, we propose a modified maximum likelihood

estimator which may be viewed as a counterpart of conditional maximum likelihood

estimators for (one-dimensional) time series processes. Our edge correction scheme depends
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on the way in which the sample size tends to infinity. Condition (C2) specifies that

N ¼ N1N2 ! 1 in one of three ways.

(C2) One of the following three conditions holds:

(i) N1 ! 1, and N1=N2 has a limit d 2 (0, 1);

(ii) N2 ! 1 and N1=N2 ! 1;

(iii) N1 ! 1 and N1=N2 ! 0.

For, n1, n2 ! 1 and n1=N1, n2=N2 ! 0, define

I� ¼
f(u, v) : n1 < u < N1, n2 < v < N2 � n2g, if N1=N2 ! d 2 (0, 1),

f(u, v) : 1 < u < N1, n2 < v < N2 � n2g if N1=N2 ! 1,

f(u, v) : n1 < u < N1, 1 < v < N2g if N1=N2 ! 0:

8<
:

Write I� ¼ ft1, . . . , tN�g with t1 , . . . , tN� . Then N�=N ! 1 under (C2). Based on

(2.19), the modified likelihood function is defined as

L�(Ł, � 2) / � �N�fr(t1) . . . r(tN�)g�1=2 exp � 1

2� 2

XN�

j¼1

fX (t j)� X̂X (t j)g2=r(t j)
" #

: (2:20)

The modified estimators, obtained from maximizing the above, are denoted as ~ŁŁ and ~�� 2.

3. Consistency

Theorem 1. Let f�(s)g � IID(0, � 2) and let condition (C1) hold. Then as both N1 and

N2 ! 1, Ł̂Ł!P Ł0 and �̂� 2 !P � 2. Furthermore, ~ŁŁ!P Ł0 and ~�� 2 !P � 2 provided condition (C2)

also holds.

Proof. We only prove the consistency for Ł̂Ł and �̂� 2. The proof for the consistency of ~ŁŁ and
~�� 2 is similar and therefore omitted.

Note that Ł̂Ł does not depend on � 2; see (2.13). It follows from (2.12) and Lemma 2

below that

1

N
XT�(Ł̂Ł)�1X <

1

N
XT�(Ł0)

�1Xþ � 2

N
logj�(Ł0)j:

By Lemmas 2 and 3 below,

lim sup
N!1

1

N
XT�(Ł̂Ł)�1X < lim

N!1

1

N
XT�(Ł0)

�1X ¼ � 2: (3:1)

For any E . 0, define BN1,N2
¼ fjŁ̂Ł� Ł0j . Eg and B ¼ [k1>1,k2>1f\N1>k1,N2>k2BN1,N2

g.
For any ø 2 B, there exists a subsequence of fN1, N2g, which we also denote by fN1, N2g,
for which Ł̂Ł(ø) � Ł̂ŁN1,N2

(ø) ! Ł 2 ¨ and Ł 6¼ Ł0. By Lemma 4 below, we have for any

E . 0,

1

N
jXT�fŁ̂Ł(ø)g�1X� XT�(Ł)�1Xj < Eª̂ª(0),
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where ª̂ª(0) ¼ N�1
PN

j¼1X
2
sj. Thus

lim sup
N!1

1

N
XT�fŁ̂Ł(ø)g�1X ¼ lim sup

N!1

1

N
XT�(Ł)�1X

provided one of the above two limits exist. Now Lemma 3 and (3.1) imply P(B) ¼ 0. Thus

Ł̂Ł!P Ł0. By Lemma 4 and (3.1) again, �̂� 2 ¼ XT�(Ł̂Ł)�1X=N !P � 2. h

In this paper, we assume that the observations are taken from a rectangle. Theorem 1

requires that the two sides of the rectangle increase to infinity. In fact this assumption can

be relaxed. Theorem 1 still holds if the observations are taken over a connected region in

Z2, and both the minimal length of side of the squares containing the region N1 and the

maximal length of side of the squares contained in the region N2 converge to 1. For

general discussion on the condition of sampling sets, we refer to Perera (2001).

We denote by b0(�) and a0(�) the polynomials defined as in (2.2) with coefficients

corresponding to the true parameter vector Ł0, and b(�) and a(�) the polynomials

corresponding to Ł. For s ¼ (u, v) with u > 1 and 1 < v , N2, define

As ¼ f(0, k) : k > vg [ f( j, k) : j > u, �1 , k , 1g (3:2)

[ f( j, k) : 1 < j , u, k > v or k , �(N2 � v)g,

and

~jjs ¼ (j01, j02, . . . , j0,v�1, j1,�(N2�v), j1,�(N2�v)þ1, . . . , j1,v�1, j2,�(N2�v), . . . , ju�1,v�1)
T,

(3:3)

js ¼ (j(u,v)
01 , j(u,v)

02 , . . . , j(u,v)
0,v�1, j

(u,v)
1,�(N2�v)j

(u,v)
1,�(N2�v)þ1, . . . , j

(u,v)
1,v�1, j

(u,v)
2,�(N2�v), . . . , j

(u,v)
u�1,v�1)

T:

(3:4)

We use C, C1, C2, . . . to denote positive generic constants, which may be different in

different places. In the remainder of this section, we always assume that the condition of

Theorem 1 holds, that is f�(s)g � IID(0, � 2) and that condition (C1) holds.

Lemma 2. For any Ł 2 ,̈ logj�(Ł)j . 0 and N�1 logj�(Ł)j ! 0.

For its proof, see Lemma 1 of Yao and Brockwell (2005).

Lemma 3. For any Ł 2 ,̈

X�(Ł)�1X=N !P varfa(B)�1b(B)X (s)g > varf�(s)g ¼ � 2,

and the equality holds if and only if Ł ¼ Ł0.

Proof. Let fY (s)g be the process defined by b(B)Y (s) ¼ a(B)e(s) with fe(s)g � IID(0, 1).

Let Y ¼ fY (s1), . . . , Y (sN )gT. Then var(Y) ¼ �(Ł). Let ŶY (1, 1) � 0, and for (u, v) . (1, 1)

let
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ŶY (u, v) �
Xv�1

k¼1

j(u,v)
0k Y (u, v� k)þ

Xu�1

j¼1

Xv�1

k¼�(N2�v)

j(u,v)
jk Y (u� j, v� k) (3:5)

be the best linear predictor of Y (u, v) based on its lagged values occurring on the right-hand

side of the above equation. Then it may be shown that the coefficients fj(u,v)
jk g are determined

by the equations

ª(l, m) ¼
Xv�1

k¼1

j(u,v)
0k ª(l, m� k)þ

Xu�1

j¼1

Xv�1

k¼�(N2�v)

j(u,v)
jk ª(l � j, m� k), (3:6)

for either l ¼ 0 and 1 < m , v, or 1 < l , u and �(N2 � v) < m , v. Let ŶY ¼ fŶY (s1),
. . . , ŶY (sN )gT. It follows from the same argument as in Section 2.3 that Y ¼ C(Y� ŶY), where

C is a N 3 N lower-triangular matrix with all the main diagonal elements 1 (hence its

inverse exists), and �(Ł) ¼ CDCT and j�(Ł)j ¼ jDj, where D ¼ diagfr(s1), . . . , r(sN )g, and

r(s) � r(s, Ł) � EfŶY (u, v)� Y (u, v)g2 (3:7)

¼ ª(0, 0)�
Xv�1

k¼1

j(u,v)
0k ª(0, k)�

Xu�1

j¼1

Xv�1

k¼�(N2�v)

j(u,v)
jk ª( j, k):

Since fY (s)g is invertible, that is,

Y (u, v) ¼ e(u, v)þ
X1
k¼1

j0kY (u, v� k)þ
X1
j¼1

X1
k¼�1

j jk Y (u� j, v� k), (3:8)

it may be shown that

1 ¼ varfe(u, v)g < r(u, v) ! 1, as minfu, v, N2 � vg ! 1, (3:9)

where r is defined in (3.7).

It follows from (3.5) and (3.8) that

M � E e(s)þ
X
i2As

jiY (s� i)� Y (s)þ ŶY (s)

( )2

(3:10)

¼ E
Xv�1

k¼1

(j(u,v)
0k � j0k)Y (u, v� k)þ

Xu�1

j¼1

Xv�1

k¼�(N2�v)

(j(u,v)
jk � j jk)Y (u� j, v� k)

( )2

,

where s ¼ (u, v), i ¼ ( j, k). Let Ys be defined as in (3.18) below. It is easy to see from the

second equation in (3.10) that

M ¼ (jjs � ~jjjjs)
T�s(Ł)(jjs � ~jjjjs) > ºminkjjs � ~jjjjsk2, (3:11)

where ºmin is the minimum eigenvalue of �s(Ł) � var(Ys). By Lemma 5 below and condition

(2.9), ºmin is uniformly (in N ) bounded away from 0 (see also (2.10)). On the other hand, the

first equation in (3.10) implies that
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M < 2E
X
i2As

jiY (s� i)

( )2

þ 2Efe(s)� Y (s)þ ŶY (s)g2

< 2ª(0
X
i2As

jjij
 !2

þ 2fr(s)� 1g < 4ª(0)
X
i2As

jjij
 !2

:

Recalling that s ¼ (u, v), it follows from (3.11) and Lemma 1 that

kjs � ~jjsk2 <
M

ºmin

<
4ª(0)

ºmin

X
i2As

j2
i < C(Æu þ Æv þ ÆN2�v), (3, 12)

which converges to 0 as min(u, v, N2 � v) ! 1, where Æ 2 (0, 1) is a constant.

Now define

~XX (u, v) ¼
Xv�1

k¼1

j(u,v)
0k X (u, v� k)þ

Xu�1

j¼1

Xv�1

k¼�(N2�v)

j(u,v)
jk X (u� j, v� k),

where the coefficients j jk are defined as in (3.5). Let ~XX ¼ f ~XX (s1), . . . , ~XX (sN )gT; then

X ¼ C(X� ~XX) and

1

N
XT�(Ł)�1X ¼ 1

N
(X� ~XX)TD�1(X� ~XX) ¼ 1

N

XN
m¼1

fX (sm)� ~XX (sm)g2=r(sm): (3:13)

It follows from Lemma 1 that for any E . 0, we may choose K . 0 such that

E
X
k.K

jj0k X (0, �k)j þ
X
j.K,or

j,K and jkj.K

jj jk X (� j, �k)j

0
BB@

1
CCA

2

, E: (3:14)

For s ¼ (u, v) with u . K and K , v , N2 � K, let X (s)� ~XX (s) ¼ �1(s)þ �2(s)þ �3(s),
where

�1(s) ¼ X (u, v)�
XK
k¼1

j0k X (u, v� k)�
XK
j¼1

XK
k¼�K

j jk X (u� j, v� k),

�2(s) ¼
Xv�1

k¼1

(j0k � j(u,v)
0k )X (u, v� k)þ

Xu�1

j¼1

Xv�1

k¼�(N2�v)

(j jk � j(u,v)
jk )X (u� j, v� k),

�3(s) ¼ �
X
i2A

jiX (s� i)

with
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A ¼ f(0, k) : K , k > vg [ f( j, k) : K , j > u, �(N2 � v) < k , vg

[ f( j, k) : 1 < j < K, �(N2 � v) < k , �K or K , k > vg:

By (3.14),

Ef�3(u, v)2g < E
X
i2A

jjiX (s� i)j
( )2

, E: (3:15)

On the other hand, it is easy to see from (3.10)–(3.12) that

Ef�2(s)2g ¼ � 2(jjs � ~jjjjs)
T�s(Ł0)(jjs � ~jjjjs) < � 2ºmaxkjjs � ~jjjjsk2 ! 0, (3:16)

where ºmax is the maximum eigenvalue of �s(Ł0). By Lemma 5 and (2.6), ºmax is uniformly

(in N ) bounded from the above by a finite constant. Based on (2.4) and the fact that

fe(s)g � IID(0, � 2), we can show that for any fixed K,

1

N

XN1

u¼Kþ1

XN2�K�1

v¼Kþ1

�1(u, v)
2 !a:s: Ef�1(s)g2: (3:17)

Note that for any fixed K,

1

N

XN
m¼1

fX (sm)� ~XX (sm)g2 ¼
1

N

XN1

u¼Kþ1

XN2�K�1

v¼Kþ1

fX (u, v)� ~XX (u, v)g2 þ O
N1 þ N2

N

� �

holds almost surely. It follows from (3.15)–(3.17) and the Cauchy–Schwarz inequality that

1

N

XN
m¼1

fX (sm)� ~XX (sm)g2 !P Ef�1(s)g2:

From (3.14),

jEf�1(s)g2 � Efa(B)�1b(B)X (s)g2j , Eþ 2[EEf�1(s)g2]1=2:
Letting K ! 1, we find that

Ef�1(s)g2 ! Efa(B)�1b(B)X (s)g2 ¼ Efa(B)�1b(B)b0(B)
�1a0(B)�(s)g > varf�(s)g:

The required result now follows from (3.13) and (3.9). h

Lemma 4. Let Łk 2 ¨ and Łk ! Ł 2 ¨ as k ! 1. Let E . 0 be any constant (independent

of N ). Then there exists M(E) . 0 such that for all N > 1 and k . M(E),

jxT�(Ł)�1x� xT�(Łk)
�1xj < E, x 2 RN and kxk ¼ 1:

Proof. Let g(ø, Ł) be the the spectral density function defined in (2.10). Condition (C1)

ensures that g(ø, �) is continuous and bounded away from both 0 and 1 on ¨. Hence for

any E9 . 0,

sup
ø2[��,�)2

jg(ø, Ł)� g(ø, Łk)j , E9
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for all sufficiently large k. Note that

ª( j, k) ¼
ð
[��,�)2

ei( jø1þkø2) g(ø1, ø2, Ł)dø1dø2:

Hence

xT�(Ł)y ¼
XN1

j,u¼1

XN2

k,v¼1

xjk yuvª( j� u, k � v)

¼
ð
[��,�)2

g(ø, Ł)
XN1

j,u¼1

XN2

k,v¼1

xjke
i( jø1þkø2) yuve

�i(uø1þvø2) dø1 dø2,

where

x ¼ (x11, x12, x1, N2, x21, . . . , xN1, N2)
T and y ¼ (y11, y12, y1, N2, y21, . . . , yN1, N2)

T:

Under the additional condition kxk ¼ kyk ¼ 1, we now have that

jxTf�(Ł)� �(Łk)gyj

¼
����
ð
[��,�)2

fg(ø, Ł)� g(ø, Łk)g
XN1

j,u¼1

XN2

k,v¼1

xjke
i( jø1þkø2) yuve

�i(uø1þvø2) dø1 dø2

����
<

E9
2

ð
[��,�)2

����XN1

j¼1

XN2

k¼1

xjke
i( jø1þkø2)

����
2

þ
����XN1

n¼1

XN2

v¼1

yuve
�i(uø1þvø2)

����
2

 !
dø1 dø2

¼ E9
2

ð
[��,�)2

XN1

j¼1

XN2

k¼1

x2jk þ
XN1

n¼1

XN2

v¼1

y2uv

 !
dø1 dø2 ¼ 4�2E9:

Lemma 5 below and condition (C1) ensure that for all Ł 2 ¨ and N, the minimum

eigenvalue of �(Ł) is bounded from below by a constant K�1 . 0, where K is independent

of Ł and N . Hence

jxTf�(Ł)�1 � �(Łk)
�1gxj ¼ jxT�(Ł)�1f�(Ł)� �(Łk)g�(Łk)

�1xj

< 4�2E9fjxT�(Ł)�2xj jxT�(Łk)
�2xjg1=2 < 4�2E9K2:

Now the lemma holds by putting E9 ¼ E=(4�2K2). h

Lemma 5. Let fY (s)g be a weakly stationary spatial process with spectral density g(ø). Let

N2 be a positive integer. For s ¼ (u, v) with u > 1 and 1 < v < N2, define

Ys ¼ fY (u, v� 1), Y (u, v� 2), . . . , Y (u, 1), Y (u� 1, N2), Y (u� 1, N2 � 1),

. . . , Y (u� 1, 1), Y (u� 2, N2), . . . , Y (1, 1)gT, (3:18)

and �s ¼ var(Ys). Then for any eigenvalue º of �s,
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inf
ø2[��,�)2

g(ø) <
º

4�2
< sup

ø2[��,�)2
g(ø): (3:19)

Proof. Let

x ¼ (x01, x02, . . . , x0,v�1, x1,�(N2�v), x1,�(N2�v)þ1, . . . , x1,v�1, x2,�(N2�v), . . . , xu�1,v�1)
T

be an eigenvector of �s corresponding to the eigenvalue º and kxk ¼ 1. Let m ¼ infø g(ø)
and M ¼ supø g(ø). Since

covfY (uþ j, vþ k), Y (u, v)g ¼
ð
[��,�)2

ei( jø1þkø2) g(ø1, ø2)dø1 dø2,

we have that

º ¼ xT�sx ¼
ð
[��,�)2

����Xv�1

k¼1

x0ke
ikø2 þ

Xu�1

j¼1

Xv�1

k¼�(N2�v)

xjke
i( jø1þkø2)

����
2

g(ø1, ø2)dø1 dø2

2 [m, M]3

ð
[��,�)2

����Xv�1

k¼1

x0ke
ikø2 þ

Xu�1

j¼1

Xv�1

k¼�(N2�v)

xjke
i( jø1þkø2)

����
2

dø1 dø2

¼ [m, M]3 4�2
Xv�1

k¼1

x20k þ
Xu�1

j¼1

Xv�1

k¼�(N2�v)

x2jk

 !
¼ [4�2m, 4�2M]:

h

Remark 2. (i) Expression (3.19) still holds if we replace (º, g) by ( _ºº, _gg), where _gg and _��s are

derivatives of g and �s with respect to a parameter, and _ºº is an eigenvalue of _��s.

(ii) For an ARMA process, condition (2.6) implies supø g(ø) , 1 and supø _gg(ø) , 1,

and condition (2.9) implies that infø g(ø) . 0.

4. Asymptotic normality

To state the asymptotic normality of the estimator ~ŁŁ obtained from maximizing (2.20), we

let fW (s)g be a spatial white noise process with mean 0 and variance 1. Define

b(B)�(s) ¼ W (s) and a(B)�(s) ¼ W (s): (4:1)

Let � ¼ f�(�j1), �(�j2), . . . , �(�j p), �(�i1), �(�i2), . . . , �(�iq)gT, and put

W(Ł) ¼ fvar(�)g�1: (4:2)

Theorem 2. Let f�(s)g � IID(0, � 2) and conditions (C1) and (C2) hold. Then

N1=2(~ŁŁ� Ł0) !D Nf0, W(Ł0)g.
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Remark 3. In the context of estimating the coefficients of ARMA models, the modified

Whittle estimator proposed by Guyon (1982) shares the same asymptotic distribution as the

modified GMLE ~ŁŁ, which may be seen via an agrument similar to that in Brockwell and

Davis (1991, pp. 386–387).

In the remainder of this section, we assume that the condition of Theorem 2 holds.

Further, we only consider the case of condition (C2)(i) in the derivation below. The two

other cases can be dealt with in a similar manner. We introduce some notation first. For

s =22 SN1,N2
� f(u, v) : 1 < u < N1, 1 < v < N2g, let �XX (s) � Z(s) � 0. For s 2 SN1,N2

, let
�XX (s) ¼ X (s), and

Z(s) � Z(s, Ł) ¼ �XX (s)�
X
i2I1

bi �XX (s� i)�
X
i2I2

aiZ(s� i) (4:3)

¼ �XX (s)�
Xp
l¼1

bj l
�XX (s� j l)�

Xq
m¼1

aim Z(s� im):

Let Y ¼ fX (t1), . . . , X (tN�)gT and Z ¼ fZ(t1, Ł0), . . . , Z(tN� , Ł0)gT. We write, for

1 < l < p and 1 < m < q,

Ul(s) � Ul(s, Ł) ¼ � @ Z(s)

@bj l
and Vm(s) � Vm(s, Ł) ¼ � @Z(s)

@aim
: (4:4)

It is easy to see from (4.3) that

Ul(s) ¼ a(B)�1 �XX (s� j l) and Vm(s) ¼ a(B)�1Z(s� im) ¼ a(B)�2b(B) �XX (s� im): (4:5)

Let X 1 and U1 be N� 3 p matrices with, respectively, X (t l � jm) and Um(t l, Ł0) as the

(l, m)th element, and let X 2 and U2 be N� 3 q matrices with, respectively, X (t l � im) and

Vm(t l, Ł0) as the (l, m)th element. Write X ¼ (X 1, X2) and U ¼ (U1, U2). Let

R ¼ diagfr(t1, Ł0), . . . , r(tN� , Ł0)gT, where r(�) was defined in (3.7).

Lemma 6. For X̂X (s) as defined in (2.14) and k ¼ 1, . . . , pþ q,

N�1=2

���� @

@Łk

XN�

m¼1

log r(tm)

����þ
����XN

�

m¼1

fX (tm)� X̂X (tm)g2
r(tm)2

@ r(tm)

@Łk

����
( )

Ł¼~ŁŁ

!P 0:

Proof. Let fY (s)g be the same process as defined in the proof of Lemma 3. Write, for

s ¼ (u, v) 2 I�,

ªs � ªs(Ł) ¼ fª(0, 1), ª(0, 2), . . . , ª(0, v� 1), ª(1, �(N2 � v)), ª(1, �(N2 � v)þ 1),

. . . , ª(1, v� 1), ª(2, �(N2 � v)), . . . , ª(u� 1, v� 1)gT:

For jjs defined as in (3.5) (see also (3.4)), it follows from (3.6) that

jjs ¼ ��1
s ªs, (4:6)
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where �s ¼ var(Ys) and Ys is defined as in (3.18). It follows from (3.8) that

1 ¼ ª(0, 0)�
X1
k¼1

j0kª(0, k)�
X1
j¼1

X1
k¼�1

j jkª( j, k) (4:7)

¼ ª(0, 0)�
Xv�1

k¼1

j0kª(0, k)�
Xu�1

j¼1

Xv�1

k¼�(N2�v)

j jkª( j, k)� �s(0, 0),

and for (l, m) 2 Bs � f(0, m) : 1 < m , vg [ f(l, m) : 1 < l , u, �(N2 � v) < m , vg,

ª(l, m) ¼
X1
k¼1

j0kª(l, m� k)þ
X1
j¼1

X1
k¼�1

j jkª(l � j, m� k) (4:8)

¼
Xv�1

k¼1

j0kª(l, m� k)þ
Xu�1

j¼1

Xv�1

k¼�(N2�v)

j jkª(l � j, m� k)þ �s(l, m),

where �s(l, m) ¼
P

i2As
jiª(l � j, m� k) and As is given in (3.2). By (3.7) and (4.7),

r(s) ¼ ªTs ( ~jjjjs � jjs)þ 1þ �s(0, 0), where ~jjjjs is given in (3.3). Thus

@ r(s)

@Łk

¼ @ªTs
@Łk

(~jjs � js)þ ªTs
@(~jjs � js)

@Łk

þ @�s(0, 0)

@Łk

: (4:9)

Write

�s � �s(Ł) ¼ f�s(0, 1), �s(0, 2), . . . , �s(0, v� 1), �s(1, �(N2 � v)), �s(1, �(N2 � v)þ 1),

. . . , �s(1, v� 1), �s(2, �(N2 � v)), . . . , �s(u� 1, v� 1)gT:

Then (4.8) implies that ~jjjjs ¼ ��1
s(ªs � �s). Together with (4.6), we have

@( ~jjjjs � jjs)

@Łk

¼ ���1
s

@�s

@Łk

��1
s �s � ��1

s

@�s
@Łk

: (4:10)

From (4.9) and (4.6), we find that

@ r(s)

@Łk

¼ @ªTs
@Łk

þ jjT
s

@�s

@Łk

� �
( ~jjjjs � jjs)� jjT

s

@�s

@Łk

��1
s �s þ

@�s
@Łk

� �
þ @�s(0, 0)

@Łk

:

Now by the Cauchy–Schwarz inequality,���� @ r(s)@Łk

���� <
����� @ªs@Łk

�����þ C1kjjsk
( )

k ~jjjjs � jjsk þ C2kjjsk k�sk þ
����� @�s@Łk

�����
( )

þ
���� @�s(0, 0)@Łk

����,
(4:11)

where C1, C2 2 (0, 1) are constants. The existence of C1 and C2 is guaranteed by Lemma 5

and Remark 2. Note that
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j�s(l, m)j2 <
X
i2As

j2
i

 ! X
i2As

ª(l � j, m� k)2

( )
:

Since ª(�) decays at an exponential rate (Remark 1(v)), it may be shown thatP
( l,m)2Bs,i2As

ª(l � j, m� k)2 , 1. Hence, for some constant Æ 2 (0, 1),

k�sk2 < C3

X
i2As

j2
i < C4(Æ

u þ Æv þ ÆN2�v): (4:12)

Note Remark 1(vi). We also have that����� @�s@Łk

����� < C5(Æ
u þ Æv þ ÆN2�v): (4:13)

By (3.12) and (4.11), we have that���� @ r(s, Ł)@Łk

���� < C(Ł)fÆ(Ł)u þ Æ(Ł)v þ Æ(Ł)N2�vg,

where C(�) 2 (0, 1) and Æ(�) 2 (0, 1) are continuous. By Lemma 1, there exists a subset

of the sample space A with P(A) . 1� E and k~ŁŁ� Łk , E on A for all sufficiently large

N . Therefore there exist constants C1 2 (0, 1) and Æ1 2 (0, 1) for which

j@ r(s, Ł)=@Łk jŁ¼~ŁŁ < C1(Æu
1 þ Æv

1 þ ÆN2�v
1 ) on A. Since r(s) > 1 for all Ł 2 ¨, we have on

the set A that

1

N1=2

���� @

@Łk

XN�

m¼1

log r(tm)

����
Ł¼~ŁŁ

<
C1

N1=2

XN1

u¼n1

XN2�n2

v¼n2

(Æu
1 þ Æv

1 þ ÆN2�v
1 ) (4:14)

<
C

N1=2
(N2Æ

n1
1 þ N1Æ

n2
1 þ N N2�n2

1 ),

which converges to 0 under condition (C2). Thus

N�1=2

���� @

@Łk

XN�

m¼1

log r(tm)

����
Ł¼~ŁŁ

!P 0:

On the other hand,

N�1=2E

����XN
�

m¼1

fX (tm)� X̂X (tm)g2
t(tm)2

@ r(tm)

@Łk

����
Ł¼~ŁŁ

I(A)

 !

< C1N
�1=2E

XN1

u¼n1

fX (u, v)� X̂X (u, v)g2
t(u, v)2

(Æu
1 þ Æv

1 þ ÆN2�v
1 )

 !

< CN�1=2
XN1

u¼n1

XN2

v¼n2

(Æu
1 þ Æv

1 þ ÆN2�v
1 ) ! 0:
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Thus the required result holds. h

Lemma 7. For k ¼ 1, . . . , pþ q,

N�1=2
XN�

m¼1

���� X (tm)� X̂X (tm)þ Z(tm)

r(tm)

@fX̂X (tm)þ Z(tm)g
Łk

����
�

þ
���� X (tm)� X̂X (tm)� Z(tm)

r(tm)

@fX̂X (tm)� Z(tm)g
Łk

����gŁ¼~ŁŁ !P 0:

Proof. We only prove that

N�1=2
XN�

m¼1

���� X (tm)� X̂X (tm)þ Z(tm)

r(tm)

@fX̂X (tm)þ Z(tm)g
Łk

����
Ł¼~ŁŁ

!P 0,

since the other half may be proved in a similar and simpler manner.

It follows from (4.3) that for s ¼ (u, v) 2 I�,

Z(s) ¼ a(B)�1b(B)X (s)

¼ X (s)�
Xv�1

k¼1

j0k X (u, v� k)�
Xu�1

j¼1

Xv�1

k¼�(N2�v)

j jk X (u� j, v� k) ¼ X (s)� ~jjT
s Xs,

where ~jjs is given in (3.3) and Xs is defined in the same way as Ys in (3.18). Since

X̂X (s) ¼ jT
s Xs,

E
@fX̂X (s)þ Z(s)g

@Łk

� �2

¼ � 2 @(jjs � ĵjjjs)
T

@Łk

�s

@(jjs � ĵjjjs)

@Łk

< C

����� @(jjs � ĵjjjs)

@Łk

�����2:
Note that for any symmetric matrices A1, A2,

xTA1A2A1x < ºmax(A2)kA1xk2 < ºmax(A2)fºmax(A1)g2kxk2,

where ºmax(A) denotes the maximal eigenvalue of A. It follows from (4.10) that the right-

hand side of the above expression is not greater than

C kjjs � ĵjjjsk2 þ k�sk2 þ
����� @�s@Łk

�����
 !

< C1(Æ
u þ Æv þ ÆN2�v);

see (3.12), (4.12) and (4.13). By the same argument as in the proof of Lemma 6, we may

show that

E
@fX̂X (s)þ Z(s)g

@Łk

����
Ł¼~ŁŁ

I(A)

� �2

< C(Æu þ Æv þ ÆN2�v),

where A is an event with probability close to 1. Now by the Cauchy–Schwarz inequality,
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N�1=2
XN�

m¼1

E

���� X (tm)� X̂X (tm)þ Z(tm)

r(tm)

@fX̂X (tm)þ Z(tm)g
Łk

����
Ł¼~ŁŁ

I(A)

� �2

< N�1=2
XN�

m¼1

E X (tm)� X̂X (tm)þ Z(tm)
� �2

E
@fX̂X (tm)þ Z(tm)g

Łk

����
Ł¼~ŁŁ

I(A)

� �2
" #1=2

< C2

XN1

u¼n1

XN2

v¼n2

(Æu þ Æv þ ÆN2�v)1=2 ! 0:

Thus the required limit holds. h

Lemma 8. N�1UTR�1U !P � 2W(Ł0)�1.

Proof. Within this proof, all Ul(s), Vm(s), Z(s) and r(s) are defined at Ł ¼ Ł0. Let

a0(z)
�1 ¼ 1�

P
i.0 diz

i, and b0(z)=a0(z)
2 ¼ 1�

P
i.0ciz

i. Then the coefficients d jk and

c jk decay at an exponential rate (see (2.7)). It follows from (4.5) that

Ul(s) ¼ a0(B)
�1X (s� j l)þ

X
i2As�j l

diX (s� j l � i) (4:15)

¼ b0(B)
�1�(s� j l)þ

X
i2As�j l

diX (s� j l � i) � ~UUl(s)þ ul(s),

Vm(s) ¼ a0(B)b0(B)X (s� im)þ
X

i2As�im

ciX (s� im � i) (4:16)

¼ a0(B)
�1�(s� im)þ

X
i2As�im

ciX (s� im � i) � ~VVm(s)þ vm(s),

where As is defined in (3.2). By an argument similar to that used for (3.12) we may show that

for s� j l ¼ (�, �) and s� im ¼ (�, �),

Eful(s)
2g < C(Æ� þ Æ� þ ÆN2��), Efv l(s)

2g < C(Æ� þ Æ� þ ÆN2��),

Ej ~UUl(s)ul(s)j < [Ef ~UUl(s)
2gEful(s)

2g]1=2

< CfÆ� þ Æ� þ ÆN2��g1=2 < CfÆ�=2 þ Æ�=2 þ Æ(N2��)=2g

and

Ej ~VVm(s)vm(s)j < [Ef ~VVm(s)
2gEfvm(s)

2g]1=2

< CfÆ� þ Æ� þ ÆN2��g1=2 < CfÆ�=2 þ Æ�=2 þ Æ(N2��)=2g,
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where Æ 2 (0, 1) is a constant. Consequently the (l, m)th element of UT
1R�1U1=N may be

expressed as

1

N

XN�

d¼1

Ul(td)Um(td)=r(td) ¼
1

N

XN�

d¼1

~UUl(td) ~UUm(td)=r(td)þ RN , (4:17)

where E(RN
2) , E for all sufficiently large N , and E . 0 is any given constant (see (4.14)).

Let b0(z) ¼ 1þ
P

i.0hiz
i, td ¼ (Æd , �d) and j l ¼ (ul, v l). Then

~UUl(td) ¼ �(Æd � ul, �d � v l)þ
X1
j¼0

X1
k¼�1

h jk�(Æd � ul � j, �d � v l � k) (4:18)

¼ �(Æd � ul, �d � v l)þ
Xn1
j¼0

Xn1
k¼�n1

h jk�(Æd � ul � j, �d � v l � k)þ ~uul(tk)

¼ U�
l (s)þ ~uul(tk),

say. In the above expressions, we assume that h00 ¼ 1 and h0,�k ¼ 0 for all k . 0. Similar to

(4.17), we may choose n1 sufficiently large such that

1

N

XN�

d¼1

~UUl(td) ~UUm(td)=r(td) ¼
1

N

XN�

d¼1

U�
l (td)

~UU�
m(td)=r(td)þ R�N (4:19)

with E(R�N )2 , E for any given E . 0. Now since f�(s)g are IID, we have that

1

N

XN�

d¼1

U�
l (td)

~UU�
m(td)

¼
Xn1
j1, j2¼0

Xn1
k1,k2¼�n1

h j1,k1 h j2,k2

1

N

XN�

d¼1

�(Æd � ul � j1, �d � v l � v1)�(Æd � um � j2, �d � vm � v2)

!a:s: � 2
Xn1
j¼0

Xn1
k¼�n1

h jk hul�umþ j,v l�vmþk ,

which converges to � 2 cov(�j l , �jm ) as n1 ! 1. Now combining this with (4.17), (4.19) and

the fact that r(s) ! 1, we have

1

N

XN�

d¼1

Ul(td)Um(td)=r(td) !P � 2 cov(�j l , �jm ):

Similar results hold for other elements in UTR�1U=N . Thus the lemma holds. h

Lemma 9. N�1=2UTR�1Z !D N (0, � 4W(Ł0)�1).

Proof. Within this proof, all Ul(s), Vm(s), Z(s) and r(s) are defined at Ł ¼ Ł0. It follows from
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(4.3) and (2.8) that Z(s) ¼ �(s)þ z(s), where z(s) ¼
P

i2As
jiX (s� i) and As is defined in

(3.2). For k ¼ 1, . . . , N�, let

Uk ¼ f ~UU1(tk), . . . , ~UU p(tk), ~VV1(tk), . . . , ~VVq(tk)gT,

uk ¼ fu1(tk), . . . , u p(tk), v1(tk), . . . , vq(tk)gT,

where ~UUl, ~VVm, ul and vm are defined in (4.15) and (4.16). Now

1

N1=2
UTR�1Z ¼ 1

N1=2

XN�

k¼1

(Uk þ uk)
�(tk)þ z(tk)

r(tk)
¼ 1

N1=2

XN�

k¼1

Uk�(tk)=r(tk)þ o p(1):

The last equality may be justified using the same argument as in the proof of Lemma 8.

Define F k to be the � � algebra generated by f�(s) : s , tkþ1g for k ¼ 1, . . . , N� � 1,

and F N� generated by f�(s) : s < tN�g. Then F k�1 � F k , Uk�(tk) is F k-measurable, and

EfUk�(tk)jF k�1g ¼ UkEf�(tk)g ¼ 0:

Therefore fUk�(tk)g are martingale differences with respect to fF kg. Note that r(s) > 1. For

any E . 0 and Æ 2 R pþq,

1

N

XN�

k¼1

E
ÆTUk�(tk)

r(tk)

� �2

IfjÆTUk�(tk)=r(tk)j . N 1=2Eg
����F k�1

( )

<
1

N

XN�

k¼1

E[fÆTUk�(tk)g2 IfjÆTUk�(tk)j . N 1=2Eg

3 fI(jÆTUk j . log N )þ I(jÆTUk j < log N )gjF k�1]

<
� 2

N

XN�

k¼1

(ÆTUk)
2 I(jÆTUk j . log N )þ 1

N

XN�

k¼1

(ÆTUk)
2E[�(tk)

2 Ifj�(tk)j . N1=2E=log Ng]:

The first sum on the right-hand side of the above expression is, for all sufficiently large N ,

smaller than

� 2

N

XN�

k¼1

(ÆTUk)
2 I(jÆTUk j . K)

which converges in probability, via an argument as in the proof of Lemma 8, to an arbitrarily

small constant (by choosing K large enough but fixed). Therefore it converges to 0. In the

same vein, the second sum also converges to 0 in probability. Note that

1

N

XN�

k¼1

ÆTUk�(tk)

r(t t)

� �2

� 1

N

XN�

k¼1

fÆTUk�(tk)g2 !P EfÆTU1�(t1)g2 ¼ � 4ÆTW(Ł0)
�1Æ:

It follows from Theorem 4 of Shiryayev (1984: 511) that
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1ffiffiffiffiffi
N

p
XN�

k¼1

ÆTUk�(tk)=r(t t) !D N (0, � 4ÆTW(Ł0)
�1Æ), for any Æ 2 R pþq:

This leads to the required central limit theorem. h

Proof of Theorem 2. It follows from (2.20) that

M(Ł) � �2� 2 log L(Ł, � 2) ¼ N�� 2 log � 2 þ � 2
XN�

j¼1

log r(t j)þ
XN�

j¼1

X (t j)� X̂X (t j)g2
r(t j)

¼ N�� 2 log � 2 þ � 2
XN�

j¼1

log r(t j)þ
XN�

j¼1

Z(t j)
2

r(s j)
þ
XN�

j¼1

fX (t j)� X̂X (t j)g2 � Z(t j)
2

r(s j)
,

where Z(�) is defined in (4.4). Note that Ł̂Ł is the solution of the equation @M(Ł)=@ŁŁ¼Ł̂Ł ¼ 0.

For 1 < k < p, the equality @M(Ł)=@bj k jŁ¼Ł̂Ł ¼ 0 leads to

0 ¼
XN�

m¼1

Z(tm, Ł̂Ł)Uk(tm, Ł̂Ł)

r(tm, Ł̂Ł)
þ 	k (4:20)

¼
XN�

m¼1

X (tm)�
Xp
‘¼1

b̂bj‘X (tm � j‘)�
Xq
‘¼1

âai‘ Z(tm � i‘, Ł0)

( )
Uk(tm, Ł0)
r(tm, Ł0)

þ �T
k(Ł̂Ł� Ł0)þ 	k ,

where

	k ¼
� 2

2

@

@bj k

XN�

m¼1

log r(tm)�
1

2

XN�

m¼1

fX (tm)� X̂X (tm)g2
r(tm)2

@ r(tm)

@bj k

 

� 1

2

XN�

m¼1

X (tm)� X̂X (tm)þ Z(tm)

r(tm)

@fX̂X (tm)þ Z(tm)g
@bj k

�

þ X (tm)� X̂X (tm)� Z(tm)

r(tm)

@fX̂X (tm)� Z(tm)g
@bj k

�!
Ł¼Ł̂Ł

,

�k ¼
XN�

m¼1

Uk(tm, Ł0)
r(tm, Ł0)

Xq
‘¼1

ai‘ ,0U(tm � i‘, Ł0)þ
XN�

m¼1

Z(tm, Ł0)
@

@Ł
Uk(tm)

r(tm)

� �
Ł¼Ł0

þOp(NkŁ̂Ł� Ł0k),

(4:21)

where ai‘ ,0 denotes the true value of ai‘ , and U(s) ¼ fU1(s), . . . , U p(s), V1(s), . . . , Vq(s)gT.
Similarly, the equation @M(Ł)=@ai k jŁ¼Ł̂Ł leads to
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0 ¼
XN�

m¼1

X (tm)�
Xp
‘¼1

b̂bj‘X (tm � j‘)�
Xq
‘¼1

âai‘ Z(tm � i‘, Ł0)

( )
Vk(tm, Ł0)
r(tm, Ł0)

þ �T
pþk(Ł̂Ł� Ł0)þ 	 pþk , (4:22)

where

	 pþk ¼
� 2

2

@

@ai k

XN�

m¼1

log r(tm)�
1

2

XN�

m¼1

fX (tm)� X̂X (tm)g2
r(tm)2

@ r(tm)

@ai k

 

� 1

2

XN�

m¼1

X (tm)� X̂X (tm)þ Z(tm)

r(tm)

@fX̂X (tm)þ Z(tm)g
@ai k

�

þ X (tm)� X̂X (tm)� Z(tm)

r(tm)

@fX̂X (tm)� Z(tm)g
@ai k

�!
Ł¼Ł̂Ł

,

�pþk ¼
XN�

m¼1

Uk(tm, Ł0)
r(tm, Ł0)

Xq
‘¼1

ai‘,0U(tm � i‘, Ł0)

þ
XN�

m¼1

Z(tm, Ł0)
@

@Ł
Vk(tm)

r(tm)

� �
Ł¼Ł0

þOp(NkŁ̂Ł� Ł0k): (4:23)

Now it follows from (4.20) and (4.21) that

UTR�1X Ł̂Ł ¼ UTR�1Y þ AT(Ł̂Ł� Ł)þ �, (4:24)

where � ¼ (	1, . . . , 	 pþq)
T and A is a ( pþ q)3 ( pþ q) matrix with �k as its kth column.

Note that Y � XŁ0 ¼ Z and

U ¼ X �
Xq
‘¼1

ai‘ ,0

U(t1 � i‘, Ł0)T

..

.

U(tN� � i‘, Ł0)T

0
B@

1
CA:

By (4.24), (4.20) and (4.22), we have

UR�1U(Ł̂Ł� Ł0) ¼ UR�1Z þ AT
1 (Ł̂Ł� Ł0)þ �,

where A1 is a ( pþ q)3 ( pþ q) matrix with the sum of the last two terms on the right-hand

side of (4.21) as its kth column for k ¼ 1, . . . , p, and the sum of the last two terms on the

right-hand side of (4.23) as its ( pþ k)th column for k ¼ 1, . . . , q. Hence

N1=2(Ł̂Ł� Ł0) ¼ fUR�1U=N � AT
1=Ng�1N�1=2(UR�1Z � �)

¼ fUR�1U=Ng�1N�1=2UR�1Z þ o p(1):

The last equality follows from the fact that N�1=2� !P 0 and A1=N !P 0. The former is
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guaranteed by Lemmas 6 and 7, and the latter follows from Theorem 1 and an argument

similar to that in the proof of Lemma 8. Now the theorem immediately follows from Lemmas

8 and 9. h

5. Final remarks

5.1. Edge effect correction

So far the asymptotic normality of the estimators for stationary spatial processes has been

established via different edge-effect corrections; see Guyon (1982), Dahlhaus and Künsch

(1987) and also Theorem 2 above. Whether such a correction is essential for the asymptotic

normality of the GMLE remains as an open problem, although we think that the answer

should be negative. However, it seems to us that an edge-effect correction would be

necessary to ensure that the GMLE has the simple asymptotic distribution stated in

Theorem 2, which is distribution-free.

For Gaussian processes, Guyon (1982: 101) showed that his estimator is asymptotically

efficient in a certain sense. Note that in the context of estimating coefficients of a spatial

Gaussian ARMA process, Guyon’s estimator, Dahlhaus and Künsch’s estimator and our

modified GMLE share the same asymptotic distribution as stated in Theorem 2. However,

as far as we can see, Guyon’s efficiency does not imply that these estimators will share the

same asymptotic distribution with the genuine (Gaussian) MLE. This requires, in addition to

what has been proved in Guyon (1982), the necessary condition

(N1N2)
�1=2

����� @

@Ł
fl(Ł)� l�(Ł)g

�����Ł¼Ł0 !P 0,

where l(�) denotes the log Gaussian likelihood function and l�(�) denotes the approximation

from which the estimator is derived. From the derivation in Section 4, the above limit seems

unlikely to hold for, at least, our edge-effect-corrected likelihood. (Note that the Whittle

likelihood for spatial processes automatically suppresses the inhomogeneity at the boundary

points up to a non-negligible order.) It will be interesting to see the form of the asymptotic

distribution of the MLE without any edge-effect correction, which, to our knowledge, is

unknown at present.

5.2. Spatio-temporal ARMA models

A serious drawback of spatial ARMA models is the artefact due to the enforced unilateral

order, which rules out some simple and practical models from the class (see, for example,

Besag 1974). In fact, the half-plane ordering is only appropriate for a few applications such

as line-by-line image scanning. Such a drawback may disappear naturally in the context of

spatio-temporal modelling. To this end, let X t(s) denote the variable at time t and location

s. Now the index (t, s) is three-dimensional. Under Whittle’s half-plane unilateral order, the

model
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X t(s) ¼
Xp
‘¼1

X
i2I ‘

b‘,iX t�‘(s� i)þ � t(s)þ
Xq
‘¼1

X
i2J ‘

a‘,i� t�‘(s� i)

is legitimate for any subsets I ‘ and J ‘ of Z
2, since X t(s) depends only on its ‘lagged’ values,

� t(s) and the ‘lagged’ values of � t(s). By letting I ‘ and J ‘ contain, for example, (0, 0) and

its four nearest neighbours, the model is of practical use and can be employed to model real

data over space and time. This is in marked contrast to the spatial models (2.1) in which I 1

and I2 must be subsets of fs . 0g. The asymptotic theory developed in this paper may be

readily extended to deal with the above model.
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