
Asymptotic error rates in third-generation

wireless systems

MARTEN J. KLOK

Department of Mathematics, Faculty of Information Technology and Systems, Delft University of

Technology, Mekelweg 4, 2628 CD Delft, Netherlands. E-mail: mklok@ortec.nl

The introduction of the so-called third-generation wireless communication system, also known as

UMTS or IMT-2000, is a large-scale revolution in telecommunications. It uses a technique called code

division multiple access (CDMA). An advanced algorithm to improve the performance of such a

CDMA system is called hard-decision parallel interface cancellation and was studied by van der

Hofstad and Klok for a rather basic model. We extend many of their results to a more realistic model,

where different users transmit at different powers and where additive noise is present.

Keywords: code division multiple access; exponential rate; hard decision parallel interference

cancellation; large-deviation theory

1. Introduction

The third-generation (3G) wireless communication system is currently being rolled out in

Europe. In Japan the 3G system was launched in 2001, while in the USA the process has

been delayed by the mobile providers until 2006 at the earliest. The 3G system is based on

a digital broadband technique called code division multiple access (CDMA). In CDMA, k

users transmit data across a channel simultaneously. In order to do so, each user multiplies

his binary data signal by an individual coding sequence. At the receiver, the signal of the

mth (0 < m < k � 1) user can be retrieved by taking the inner product of the transformed

total signal and the mth coding sequence.

When the coding sequences are orthogonal, all data that does not originate from the mth

user will be annihilated. However, in practice, there will always be interference from the

other users. Therefore, one tries to find techniques to get rid of this interference. The best-

known technique is a maximum likelihood estimator, introduced in Verdú (1986), which

obtains jointly optimal decisions for all users. Unfortunately, this technique is of such high

complexity that it cannot be performed in real time. A more straightforward technique is

called interference cancellation (see Prasad et al. 2000, Chapter 4) and the references

therein. The idea is that we try to cancel the interference due to the other users.

Interference cancellation, especially hard-decision parallel interference cancellation (HD-

PIC), is the most promising and the most practical technique for base-station receivers. In

this paper we will focus on the HD-PIC system. Another practical and promising technique

is soft-decision PIC (SD-PIC), which is studied in van der Hofstad et al. (1999).

In van der Hofstad and Klok (2004) the HD-PIC system for a simple model is
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investigated. In this model it is assumed that all users are equivalent, in the sense that they

have the same characteristics. Furthermore, it is assumed that the only noise in the system

comes from the users themselves, i.e., the received signal is only disturbed by other users in

the system, not by external sources. The probability that a bit is received incorrectly

indicates the quality of the system. Van der Hofstad and Klok focus on the the decay of the

bit error probability as the bandwidth tends to infinity. It turns out that this decay is

exponential with a certain exponential rate. More precisely, as the bandwidth tends to

infinity, we have that minus the logarithm of the bit error probability equals the bandwidth

multiplied by a (strictly positive) exponential rate plus lower-order terms.

We will next describe the results obtained in van der Hofstad and Klok (2004). It has

been shown that when we do not apply interference cancellation, the exponential rate,

denoted by H
(1)
k , equals

H
(1)
k ¼ k � 2

2
log

k � 2

k � 1

� �
þ k

2
log

k

k � 1

� �
,

H
(1)
k ¼ 1

2k
þO 1

k2

� �
, for k ! 1: (1)

For a system where HD-PIC is applied, van der Hofstad and Klok (2004) proved that the rate,

denoted by H
(2)
k , is given by

H
(2)
k ¼ 1

2
ffiffiffi
k

p 1þO 1ffiffiffi
k

p
� �� �

:

This increase from 1=(2k) to 1=(2
ffiffiffi
k

p
) is impressive and implies a significant improvement in

performance and efficiency.

In this paper we will extend these results to more general cases. Rather than assuming

that all users are equivalent, we assume that the signals of different users arrive with

different powers. This is much more realistic, since it incorporates the effect that when a

transmitter is far away from the base station, its signal will be received with a smaller

power than the signal of a user close to the base station. We denote the powers by

P0, P1, . . . , Pk�1. We further abbreviate P ¼
Pk�1

j¼0 Pj. When we investigate the quality of

the system with respect to user 0, the equivalent of k ! 1 turns out to be P=P0 ! 1, i.e.,

the relative total power tends to infinity. In this situation we are able to prove that

H
(1)
k ¼ P0

2P
þO P2

0

P2

� �
and H

(2)
k ¼ 1

2

ffiffiffiffiffi
P0

P

r
þO P0

P

� �
: (2)

This result is very similar to the results obtained above, where k is replaced by P=P0. We

should see P0=P as a signal-to-noise ratio.

Another important extension addressed in this paper is the inclusion of noise from other

(unknown) sources. In practice, it is inevitable that undesirable noise disturbs the system.

For example, transmission of data from users to another base station often results in many

weak signals, interfering with the signals of the base station of interest. This noise is

modelled as a white noise process with intensity � 2, and is often called additive white

Gaussian noise (AWGN). When we take the AWGN into account, we obtain
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H
(1)
k ¼ P0

2(Pþ � 2)
þO P2

0

(Pþ � 2)2

� �
:

However, expecting that H
(2)
k would asymptotically equal 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0=(Pþ � 2)

p
would be too

optimistic, since the AWGN is not cancelled. The result is split into two cases, depending on

whether the noise is dominant or not. In the first scenario, the AWGN is dominant, i.e., � 2 is

large. Then, we show that

H
(2)
k ¼ P0

2� 2
þO P2

0

� 4

� �
:

When � 2 is sufficiently small, different behaviour can be observed. When the powers obey a

certain technical condition (see Section 3 below), we obtain

H
(2)
k ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0

Pþ � 2

r
� � 2

8(Pþ � 2)
þO P0

Pþ � 2

� �
:

The factor P0=(Pþ � 2) is a signal-to-noise ratio, just as P0=P was in (2). The term

� 2=(8(Pþ � 2)) is a correction term, due to the fact that the AWGN is not cancelled. When

the powers do not obey the technical condition, it is not possible to derive the asymptotic

form of the rate. However, we are able to derive a lower bound on the rate:

H
(2)
k >

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0

Pþ � 2

r
� � 2

8(Pþ � 2)
þO P0

Pþ � 2

� �
:

The results in this paper allow investigation of various realistic scenarios. For example,

the case where one user walks away from the base station, so that the power decreases, can

be investigated.

The remainder of this paper is organized as follows. In the next section we will describe

the CDMA model. In Section 3 the results are described in more detail and some examples

are given. Section 4 deals with the asymptotic behaviour of H
(1)
k . In Section 5 the necessary

preparations are made to enable us to prove the results for H
(2)
k . Finally, in Section 6 the

asymptotic behaviour for H
(2)
k is proven.

2. Model description

We consider a system with k users, transmitting binary data. The mth user transmits data

bm ¼ (. . . , bm,�1, bm0, bm1, . . .) 2 f�1, þ1gZ. The data signal bm(t) of the mth user is now

defined as bm(t) ¼ bm , t=T , for 0 < m < k � 1, where for x 2 R, dxe denotes the smallest

integer larger than or equal to x. The variable T represents the bit duration, i.e., it is the

time used to transmit one bit. For each m, 0 < m < k � 1, we have a coding sequence

am ¼ (. . . , am,�1, am0, am1, . . .) 2 f�1, þ1gZ and we put am(t) ¼ am , t=Tc
, where Tc ¼

T=n, for some integer n. The variable Tc is often called the chip duration. The variable n is

the actual number of transmitted bits, and plays a key role throughout this paper. In

practice, the value of n ranges from 30 to 180.

The transmitted coded signal of the mth user is then
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sm(t) ¼ (2Pm)
1=2 bm(t)am(t)cos(øc t), 0 < m < k � 1, (3)

where Pm is the power of the mth user and øc the carrier frequency. We allow the powers to

be different, but we assume that the powers change slowly, so that within one bit-period, the

power is constant. This is known as coarse power control. The factor cos(øc t) can be

understood as follows. It is not desirable to transmit signals in a frequency band around zero.

Multiplying with cos(øc t) results in shifting the frequency to øc and �øc. Thus, for the

transmission of sm(t) a frequency band (�øc � ˜, �øc þ ˜) [ (øc � ˜, øc þ ˜) is

reserved, where the width ˜ depends mainly on n. This holds for every m, so that indeed

all users transmit at the same frequency band.

The code am(t) is known to the transmitter (e.g., the mobile phone of the transmitting

person), the base stations and the receiver (e.g., the mobile phone of the receiving person).

When a mobile phone user wants a connection, the base station keeps contact with both

mobile phones. The actual conversation can start as soon as the base station has verified

that both mobiles use the correct codes.

The total received signal is given by

r(t) ¼
Xk�1

j¼0

s j(t)þ � n(t), (4)

where n(t) is a white noise process, i.e., it is the derivative of Brownian motion in the

distribution sense, and � > 0. The white noise represents the noisy channels of the users and

all interference of other sources that are not yet taken into account. Therefore, � may depend

on k. In practice the signals do not need to be synchronized, i.e., it is not necessary that all

users transmit using the same time grid. However, for technical reasons we assume that they

do.

To retrieve the data bit bm1, the signal r(t) is multiplied by am(t)cosøc t and then

averaged over [0, T ]. In practice øcTc is large. For simplicity, we pick øcTc ¼ � f c, where

f c 2 N, to obtain

1

T

ðT
0

r(t)am(t)cos(øc t) dt ¼
Pm

2

� �1=2

bm1 þ
Xk�1

j¼0
j6¼m

Pj

2

� �1=2

b j1

1

n

Xn
i¼1

a jiami þ
1

n

Xn
i¼1

ami

�ffiffiffiffiffiffiffiffi
2Tc

p Ni,

(5)

where the Ni are independent standard normal variables. As will be seen from (5), the

decoded signal consists of the desired bit, interference due to the other users, and AWGN. In

the ideal situation the vectors (am1, . . . , am,n) and (a j1, . . . , a j,n), j 6¼ m, would be

orthogonal, so that
Pn

i¼1 a jiami ¼ 0. However, more efficiency can be achieved when non-

orthogonal codes are allowed. In practice, the a-sequences are generated by a random number

generator. To model the pseudo-random sequence a, let Ami, 0 < m < k � 1, i ¼ 1, 2, . . . , n,
be an array of independent and identically distributed (i.i.d.) random variables with

distribution

P(A01 ¼ þ1) ¼ P(A01 ¼ �1) ¼ 1=2: (6)
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Assuming the coding sequences to be random, we model the signal of (5) as

Pm

2

� �1=2

bm1 þ
Xk�1

j¼0
j6¼m

Pj

2

� �1=2

b j1

1

n

Xn
i¼1

AjiAmi þ
1

n

Xn
i¼1

Ami

�ffiffiffiffiffiffiffiffi
2Tc

p Ni: (7)

Note that for each m and j with m 6¼ j, the sequence AjiAmi, i ¼ 1, . . . , n, is an i.i.d.

sequence with mean 0 and so by the strong law of large numbers 1
n

Pn
i¼1 AjiAmi ! 0, almost

surely, for n ! 1. This demonstrates the annihilation of the interference of the other users

for n ! 1.

An estimator for bm1 is given by

b̂b
(1)
m1 ¼ sgnr

Pm

2

� �1=2

bm1 þ
Xk�1

j¼0
j 6¼m

Pj

2

� �1=2

b j1

1

n

Xn
i¼1

AjiAmi þ
1

n

Xn
i¼1

Ami

�ffiffiffiffiffiffiffiffi
2Tc

p Ni

8>><
>>:

9>>=
>>;,

where, for x 2 R, the randomized sign function is defined as

sgnr(x) ¼
þ1, x . 0,

U , x ¼ 0, with P(U ¼ �1) ¼ P(U ¼ þ1) ¼ 1=2:
�1, x , 0:

8<
: (8)

The random variable U is independent of all other random variables in the system and every

time we need the sgnr function another independent trial U is performed. The superscript (1)

indicates that the estimates above are initial estimates. We will see later how we can obtain

better estimates.

In the Introduction, we saw that advanced receivers have been proposed to increase

performance. We focus on the hard-decision procedure, which is described below. In this

procedure, it is assumed that the powers Pj are known. We estimate the data signal s j(t) for

t 2 [0, T ] by (recall (3))

ŝs
(1)
j (t) ¼ (2Pj)

1=2 b̂b
(1)
j1 a j(t)cos(øc t):

Then we estimate the total interference for the mth user in r(t) due to the other users by

(recall (4))

r̂r (1)m (t) ¼
Xk�1

j¼0
j6¼m

ŝs
(1)
j (t):

We use the above to find a better estimate of the data bit bm1:
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b̂b
(2)
m1 ¼ sgnr

1

T

ðT
0

(r(t)� r̂r (1)m (t))am(t)cos(øc t)dt

� �

¼ sgnr
Pm

2

� �1=2

bm1 þ
Xk�1

j¼0
j 6¼m

Pj

2

� �1=2
1

n

Xn
i¼1

AjiAmi

 !
b j1 � b̂b

(1)
j1

� �
þ 1

n

Xn
i¼1

Ami

�ffiffiffiffiffiffiffiffi
2Tc

p Ni

8>><
>>:

9>>=
>>;:

(9)

We are now interested in P(b̂b
(2)
m1 6¼ bm1), which is the probability of a bit error after one stage

of interference cancellation. We will see that this probability is indeed smaller than

P(b
(1)
m1 6¼ bm1), the probability of a bit error without interference cancellation.

2.1. Reformulation of the problem

It is important to observe that as n tends to 1, the interference due to other users will

diminish. However, since T is fixed and var(n�1
P

Ami(�=
ffiffiffiffiffiffiffiffi
2Tc

p
)Ni) ¼ �2=(2nTc) ¼ �2=(2T ),

the AWGN does not vanish. More mathematically,

var
Pm

2

� �1=2

þ
Xk�1

j¼0
j6¼m

Pj

2

� �1=2

b j1

1

n

Xn
i¼1

AjiAmi

8>><
>>:

9>>=
>>; ¼ O(1=n),

while var
1

n

X
Ami

�ffiffiffiffiffiffiffiffi
2Tc

p Ni

 !
¼ O(1): (10)

In practice, the powers are always adjusted in such a way that the AWGN is not dominant. In

our model, we replace Pm by nPm, so that the variance in (10) is also O(1). We further

introduce � 2 ¼ �2=Tc, which is fixed. Together with b2m1 ¼ 1, the signal in (7) becomes

n

2

� �1=2
bm1 P1=2

m þ
Xk�1

j¼0
j 6¼m

P
1=2
j

1

n

Xn
i¼1

b j1Ajibm1Ami þ
1

n

Xn
i¼1

bm1AmiNi

0
BB@

1
CCA,

where (with a slight abuse of notation) (Ni)
n
i¼1 are i.i.d. with Ni � N (0, � 2). We emphasize

that the power adjustment condition above is realistic, especially in a model where

interference cancellation is applied.

Since b j1Aji ¼d A ji and Ni ¼d A0iNi, we can therefore write the probability of a bit error

more conveniently as

P(b̂b
(1)
m1 6¼ bm1Þ ¼ P

b̂b
(1)
m1

bm1

6¼ 1

 !
¼ P(sgnrm(Z

(1)
m ) , 0) ¼ P(Z(1)

m , 0)þ 1

2
P(Z(1)

m ¼ 0),

where Z(1)
m , for 0 < m < k � 1, is defined as
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Z(1)
m ¼ P1=2

m þ
Xk�1

j¼0
j 6¼m

P
1=2
j

1

n

Xn
i¼1

AjiAmi þ
1

n

Xn
i¼1

AmiA0iNi:

We note that when � 2 ¼ 0, the event fZ(1)
m ¼ 0g should be taken into account, while for

� 2 . 0, this events has probability zero, so that P(b̂b
(1)
m1 6¼ bm1) ¼ P(Z(1)

m < 0).

Without loss of generality, we focus on user 0. Therefore, we prefer to introduce the

random variables

X mi ¼ A0i Ami, 1 < i < n, m ¼ 0, . . . , k � 1:

It is straightforward to prove that the matrix (X mi)m¼1,...,k�1,i¼1,...,n has i.i.d. elements and

X 0i ¼ A2
0i ¼ 1 for all i. We obtain

Z(1)
m ¼ P1=2

m þ
Xk�1

j¼0
j 6¼m

P
1=2
j

1

n

Xn
i¼1

X jiX mi þ
1

n

Xn
i¼1

X miNi: (11)

Similarly,

Z(2)
m ¼ P1=2

m þ
Xk�1

j¼0
j 6¼m

P
1=2
j

1

n

Xn
i¼1

X jiX mi(1� sgnr(Z
(1)
j ))þ 1

n

Xn
i¼1

X miNi: (12)

We finally define the exponential rates H
(s)
k , s ¼ 1, 2, as follows:

H
(s)
k ¼ � lim

n!1

1

n
log P(Z(s)

m , 0)þ 1

2
P(Z(s)

m ¼ 0)

� �
: (13)

3. Results and examples

3.1. Results

This paper extends the results for the model without interference cancellation and the one-

stage HD-PIC model of van der Hofstad and Klok (2004) to the model where unequal

powers and AWGN are incorporated. The limit k ! 1 is replaced by (Pþ � 2)=P0 ! 1,

where P ¼
Pk�1

j¼0 Pj. Note that this is quite general, since we no longer require k ! 1.

We prove that the analogue of (1) is

P0

2(Pþ � 2)
< H

(1)
k <

P0

2(Pþ � 2)
þO P2

0

(Pþ � 2)2

� �
, as

P0

Pþ � 2
! 0: (14)

We see that the result holds as long as the ratio between the mean (P
1=2
0 ) and standard

deviation ((Pþ � 2)1=2) of Z
(1)
0 tends to 0. The results are obtained from standard large-

deviation theory together with a Taylor expansion of the moment generating function. For the

HD-PIC model with equal powers and no AWGN, investigated in van der Hofstad and Klok

(2004), a parameter r was introduced to denote the number of errors in the first stage. It was
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shown that typically r ¼ 1
2

ffiffiffi
k

p
errors are made in the first stage, where ‘typically’ means that

bit errors caused by different r are a tiny fraction of the total bit error probability for large n.

For the general model, the analogue of r is R � f1, . . . , k � 1g, the set of users with a

wrongly estimated bit. We further define PR ¼
P

j2R Pj and

r ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pþ � 2

P0

s
� � 2

4P0
:

As seen below, the relevant parameter is not R itself – it turns out that only PR is relevant.

We will prove that when PR ¼ r P0, the probability of a bit error in the second stage is

dominant, i.e., PR ¼ r P0 is typically observed.

The main result of the paper is the following theorem, which is proven in Section 6.

Theorem 3.1. Assume that P0=(Pþ � 2) ! 0.

(i) If r > 0, then

H
(2)
k >

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0

Pþ � 2

r
� � 2

8(Pþ � 2)
þO P0

Pþ � 2

� �
:

Moreover, when

min
R�f1,...,k�1g

���� PR

P0
� r
���� ¼ O Pþ � 2

P0

� �1=4

, (�)

equality is attained:

H
(2)
k ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0

Pþ � 2

r
� � 2

8(Pþ � 2)
þO P0

Pþ � 2

� �
:

(ii) If r < 0, then

P0

� 2
! 0 and H

(2)
k ¼ P0

2� 2
þO P2

0

� 4

� �
:

In the case of equal powers, it is straightforward that r can be approximated with an error of

at most 1/2. For the general case, where we do not have control over the powers, (�) describes
the condition under which r can be approximated closely enough. Due to the increased

variety in possible scenarios for P0, . . . , Pk�1 and � 2, it is hard to find a non-technical

condition that is equivalent to (�). Therefore, the results are illustrated by examples of typical

scenarios in Section 3.2 below.

When we compare Theorem 3.1 with the result for H
(1)
k , given in (14), we conclude that

HD-PIC gives a significant increase in performance for both small and large � 2 (case (i)

and (ii), respectively). In case (i), we see that

H
(2)
k >

1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0

Pþ � 2

r
þO P0

Pþ � 2

� �
,

which is a significant improvement over H
(1)
k ¼ P0=(2(Pþ � 2))þO(P2

0=(Pþ � 2)2). In case
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(ii), we observe that r < 0 implies R ¼ ˘. In other words, typically all interference due to

other users is cancelled successfully.

3.2. Examples

In this subsection, we will give some practical scenarios. We first observe that an increase

in � 2 should result in a decrease in r. Indeed, since Pþ � 2 > P > P0,

@r
@� 2

¼ @

@� 2

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pþ � 2

P0

s
� � 2

4P0

0
@

1
A ¼ 1

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0(Pþ � 2)

p � 1

4P0
< 0:

Therefore, r < 1
2

ffiffiffiffiffiffiffiffiffiffiffi
P=P0

p
.

Furthermore, it is straightforward to show that (P� P0)=P0 >
1
2

ffiffiffiffiffiffiffiffiffiffiffi
P=P0

p
when

P0=(Pþ � 2) is sufficiently small and r > 0. This means that there always exists an R

such that jPR=P0 � rj < 1
2
maxm Pm=P0.

The first example is a typical scenario in 3G mobile networks. In order to avoid users

transmitting data with a relatively high or low power level, the base station ensures that

M�1 < Pj < M for all 0 < m < k � 1, for some M , 1.

Example 3.1. Assume that there exists an M . 0 such that uniformly in k, M�1 < Pj < M

for all 0 < j < k � 1. Then PR=P0 can approximate any value between 0 and (P� P0)=P0
with an error of at most M=2. Thus, once P0=(Pþ � 2) is sufficiently small,

(P� P0)=P0 >
1
2

ffiffiffiffiffiffiffiffiffiffiffi
P=P0

p
> r, and thus r can be approximated with an error of at most

M=2. This implies that (�) is fulfilled.

In Example 3.1, the error minjPR=P0 � rj is bounded from above by the quantity
1
2
max j Pj=P0, and it is shown that this upper bound is sufficiently small. In the next

proposition, a wider class of power scenarios is given.

Proposition 3.2. Denote by � : f1, . . . , k � 1g 7! f1, . . . , k � 1g the function that orders

P1, . . . , Pk, e.g., P�(1) is the smallest interfering power, P�(k�1) the largest. Note that P0 is

discarded. Then (�) is fulfilled if there exists a constant 0 , C , 1 such that, for all m > 1,

Xm�1

j¼1

P�( j)

P0
>

P�(m)

P0
� C

P

P0

� �1=4

: (��)

Proof. We prove the proposition by construction. We approximate r from below by adding

one by one the largest relative powers one by one. Let R denote the obtained set. Take the

unique smallest m ¼ m� such that �(m�) =2 R. By construction

X
m2��1(R)

P�(m)

P0
< r ,

X
m2��1(R)

m.m�

P�(m)

P0
þ

P�(m�)
P0

¼
X

m2��1(R)

P�(m)

P0
þ

P�(m�)
P0

�
Xm��1

m¼1

P�(m)

P0

 !
:
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Condition (��) implies that the last term on the right-hand side is sufficiently small.

Furthermore,
P

m2��1(R) P�(m) ¼
P

m2R Pm, so that (�) holds using this R. h

A (somewhat artificial) example is Pm ¼ 2m�1. In this case (��) is fulfilled (C ¼ 2

suffices), so that (�) is fulfilled by the proposition above. Of course, since every integer can

be written as a sum of powers of 2, we knew in advance that r could be approximated with

an error of at most 1/2. We note that the scenario in Example 3.1 is included in the

proposition.

Finally, we treat a practical example, where the user we are interested in walks away

from the base station, without changing its transmitted power, i.e., the user of interest has a

power tending to zero. This phenomenon is known as the near-far effect. The behaviour of

the receiver in the case of a near-far scenario is considered to be extremely relevant, since

it characterizes the robustness of the receiver against scenarios where extremely low or high

powers cannot be avoided.

Example 3.2. We consider a system where only the desired user is moving. To be more

precise, P1, . . . , Pk�1 and � 2 are fixed and user 0 walks away from the base station, so that

P0 ! 0. When P0 ! 0, clearly P0=(Pþ � 2) ! 0. If � 2 is small but strictly positive, we are

in case (i) of Theorem 3.1 for a while, so that when (�) holds,

H
(2)
k ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0

Pþ � 2

r
1þO P0

Pþ � 2

� �� �
:

However, it is inevitable that at a certain moment r ¼ 0. It is easy to see that this happens

when P0 ¼ � 4=(4(Pþ � 2)). When P0 becomes smaller, we are in case (i) of Theorem 3.1

and thus

H
(2)
k ¼ P0

2� 2
þO P0

2� 2

� �
! 0:

When � 2 ¼ 0, a different situation occurs. It is possible to derive (but not shown here)

that

H
(2)
k >

P�(1)

2P
. 0:

This indicates that the inclusion of AWGN in the model is extremely relevant.

4. Asymptotic behaviour of H
(1)
k

In this section we are interested in the behaviour of P(Z
(1)
0 < 0). Since this probability turns

out to be exponentially small as n ! 1, we will focus on the exponential rate H
(1)
k , defined

in (13). It turns out that analytical formulae cannot be given. Therefore, we only focus on

the asymptotic behaviour when the ratio between desired signal and noise tends to zero, i.e.,

P0=(Pþ � 2) ! 0, where P ¼
Pk�1

j¼0 Pj.

For this system, where no interference cancellation is applied, the analysis is not difficult.
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However, the proof is set up in such a way that it carries over to the technically more

involved proof regarding H
(2)
k .

Proposition 4.1. As P0=(Pþ � 2) ! 0,

P0

2(Pþ � 2)
< H

(1)
k <

P0

2(Pþ � 2)
þO P2

0

(Pþ � 2)2

� �
:

Proof. Here and throughout this paper, C denotes a strictly positive constant that may

not depend on Pj and � 2. The constant C may change from line to line.

We investigate Z
(1)
0 ¼ 1

n

Pn
i¼1(P

1=2
0 þ

Pk�1
j¼1 P

1=2
j X ji þ Ni). Clearly

1

2
P(Z

(1)
0 < 0) < P(Z

(1)
0 , 0)þ 1

2
P(Z

(1)
0 ¼ 0) < P(Z

(1)
0 < 0),

and at an exponential scale the factor 1=2 vanishes, so that it suffices to investigate

P(Z
(1)
0 < 0). According to Cramér’s theorem (den Hollander 2000, Theorem I.4),

H
(1)
k ¼ sup

t<0

f�log h(t)g, where h(t) ¼ E exp t P
1=2
0 þ

Xk�1

j¼1

P
1=2
j X j1 þ N1

 ! !
:

Since E exN1 ¼ e�
2x2=2 and E e yX11 ¼ cosh y,

�log h(t) ¼ �tP
1=2
0 � � 2 t2=2�

Xk�1

j¼1

log cosh(P
1=2
j t): (15)

Step 1: Lower bound. A simple comparison of the coefficients in the power series reveals that

cosh x < ex
2=2. Indeed, since (2m)! > 2mm! for all m > 0,

cosh t ¼
X1
m¼0

t2m

(2m)!
<
X1
m¼0

(t2)m

2mm!
¼ e t

2=2: (16)

Substitution in (15) leads to a lower bound for the rate:

H
(1)
k > sup

t<0

�P
1=2
0 t � t2

Xk�1

j¼1

Pj þ � 2

 !
=2

( )
(17)

> �P
1=2
0 t � t2

Xk�1

j¼1

Pj þ � 2

 !
=2

( )�����
t¼�P

1=2
0

=(Pþ� 2�P0)

¼ P0

2(Pþ � 2 � P0)
>

P0

2(Pþ � 2)
:

Step 2: Upper bound. To obtain an upper bound, we will define an ellipse E with 0 2 E0, the

interior of E. In order to show that the supremum of �log h(t) (i.e., the infimum of h(t)) is

attained in E0, it is sufficient to show that on @E, the boundary of the ellipse, h(t) . 1. Since

h(0) ¼ 1 and h is convex, we can then conclude that h(t) . 1 outside the ellipse and thus the

supremum is never attained there. Indeed, whenever t =2 E, there exists a unique 0 , Æ , 1

such that Æt 2 @E. From convexity of h and h(Æt) . 1 it follows that
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1 , h(Æt) ¼ h(Æt þ (1� Æ) � 0) < Æh(t)þ (1� Æ)h(0) ¼ Æh(t)þ (1� Æ): (18)

It immediately follows that h(t) . 1. Once we are allowed to restrict t 2 E0, we can prove the

desired upper bound.

We observe that ex > 1þ xþ x2=2þ x3=6 and e y > 1þ y to obtain (recall (15))

h(t) > e tP
1=2
0

þ t2� 2=2E 1þ t
Xk�1

j¼1

P
1=2
j X j1 þ

t2

2

Xk�1

j¼1

PjX j1

 !2

þ t3

6

Xk�1

j¼1

P
1=2
j X ji

 !3
0
@

1
A

¼ e tP
1=2
0

þ t2� 2=2 1þ t2
Xk�1

j¼1

Pj=2

 !
> 1þ tP

1=2
0 þ t2� 2=2)(1þ t2

Xk�1

j¼1

Pj=2

 !

¼ 1� P0

2(Pþ � 2 � P0)
þ Pþ � 2 � P0

2
(t � t�)2 þ P

1=2
0 (P� P0)

2
t3 þ (P� P0)� 2

4
t4,

where t� ¼ �P
1=2
0 =(Pþ � 2 � P0). The terms t3 and t4 turn out to be of no importance. With

the use of a well-chosen ellipse, we can show that they are indeed error terms. We define the

ellipse as

E ¼ t:
Pþ � 2 � P0

2
(t � t�)2 < P0

Pþ � 2 � P0

� �
:

For t 2 E, the triangular inequality yields jtj < (1þ
ffiffiffi
2

p
)P

1=2
0 =(Pþ � 2 � P0). Therefore, on

@E, we have���� P
1=2
0 (P� P0)

2
t3 þ (P� P0)� 2

4
t4
���� < C

P2
0(P� P0)

(Pþ � 2 � P0)3
þ C

P2
0(P� P0)� 2

(Pþ � 2 � P0)4

< C
P2
0

(Pþ � 2 � P0)2
:

We can now conclude that on @E the minimum over h(t) is never attained. Indeed, for t 2 @E,

h(t) > 1� P0

2(Pþ � 2 � P0)
þ P0

Pþ � 2 � P0
� C

P2
0

(Pþ � 2 � P0)2
. 1,

when P0=(Pþ � 2 � P0) is sufficiently small.

When we restrict to t 2 E, we have

h(t) > 1� P0

2(Pþ � 2 � P0)
þ Pþ � 2 � P0

2
(t � t�)2 � C

P2
0

(Pþ � 2 � P0)2
,

and the minimum of the right-hand side is attained at t ¼ t�. This results in

h(t) > 1� P0

2(Pþ � 2 � P0)
� C

P2
0

(Pþ � 2 � P0)2
:

The upper bound for the supremum of �log h(t) is now obtained by observing that
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P0

Pþ � 2 � P0
¼ P0

Pþ � 2
1þO P0

Pþ � 2

� �� �

and �log(1� xþO(x2)) ¼ xþO(x2), x ! 0. h

5. Preparations for H
(2)
k

For a system in which interference cancellation is applied, the proofs will become more

difficult. In this section, we prepare the main ingredients for the proof of Theorem 3.1. We

will follow the outline of the proof of Proposition 4.1 closely. Recall formulae (11) and

(12). Clearly 1� sgnr(�) is either 0 or 2. Thus, user m contributes to Z
(2)
0 if and only if

sgnr(Z(1)
m ) , 0. We write

P(Z
(2)
0 < 0) ¼

X
R�f1,...,k�1g

P(Z
(2)
0 < 0, BR), where BR

¼ max
m2R

sgnr(Z(1)
m ) , 0, min

m2f1,...,k�1gnR
sgnr(Z(1)

m ) . 0

� �
:

One may verify from (8) that

1

2
P(Zm < 0, :) < P(sgnr(Zm) , 0, :) < P(Zm < 0, :)

so that

21�k
X

R�f1,...,k�1g
P max

m2R
Z(1)
m < 0, minm2f1,...,k�1gnR Z

(1)
m > 0, P

1=2
0 þ 2

X
j2R

P
1=2
j

1

n

Xn
i¼1

X ji < 0

 !

< P(Z
(2)
0 < 0) (19)

<
X

R�f1,...,k�1g
P max

m2R
Z(1)
m < 0, minm2f1,... , k�1gnR Z

(1)
m > 0, P

1=2
0 þ 2

X
j2R

P
1=2
j

1

n

Xn
i¼1

X ji < 0

 !
:

Subsequently, we will denote Z
(2)

0 ¼ P
1=2
0 þ 2

X
j2R P

1=2
j n�1

Pn
i¼1 X ji. The bar denotes that

we have knowledge of stage 1 and we have inserted the correct values of the sgnr functions.

We next apply the ‘largest-exponent-wins’ principle – the probability with the smallest

exponential rate will dominate all others (den Hollander 2000, equation (I.2)) – to the

bounds in (19) and find (the factor 21�k vanishes)

H
(2)
k ¼ � lim

n!1

1

n
logP(Z

(2)
0 < 0) ¼ min

R�f1,...,k�1g
H

(2)
k,R, (20)

where

H
(2)
k,R ¼ � lim

n!1

1

n
logP max

m2R
Z(1)
m < 0, minm2f1,...,k�1gnR Z

(1)
m > 0, Z

(2)

0 < 0

� �
:
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Existence of H
(2)
k,R follows from Cramér’s theorem.

For A � f0, . . . , k � 1g we abbreviate PA ¼
X

j2A Pj and P ¼
X

j ¼ 0k�1 Pj. We

define, for R � f1, . . . , k � 1g,

H ¼ P0

2(4PR þ � 2)
þ PR

2(Pþ � 2)
:

Theorem 5.1. For H ! 0,

H
(2)
k,R ¼ H(1þO(H)):

Proof. For A 2 N [ f0g and (t10, t11, . . .) 2 RN, we introduce SA ¼
P

m2A P1=2
m X m1 and

TA ¼
P

m2A t1mX m1. It is useful to observe that

E T 2
A ¼

X
m2A

t21m and E T m
A < cm

X
m2A

t21m

 !m=2

, (21)

for some cm not depending on A. Substituting t1m ¼ P1=2
m leads to bounds of moments of SR.

Similar to the situation with equal powers, we write R0 ¼ f0, . . . , k � 1g and

Rc ¼ R0nR. Further, we define R� ¼ f1, . . . , k � 1gnR, which is in fact an abbreviation

for Rcnf0g.

Step 1: Lower bound. Since for any events A, B, P(A \ B) < P(A), we can discard the event

fminm2R� Z
(1)
m > 0g. This results in

H
(2)
k,R > � lim

n!1

1

n
logP max

m2R
Z(1)
m < 0, Z

(2)

0 < 0

� �
¼ � lim

n!1

1

n
logP

1

n

Xn
i¼1

Y i < 0

 !
, (22)

where, for i ¼ 1, . . . , n, Y i is a (jRj þ 1)-dimensional vector with elements

Y1m,i ¼ P1=2
m þ

Xk�1

j¼0
j6¼m

P
1=2
j X ji X mi þ X miNi, m 2 R,

Y20,i ¼ P
1=2
0 þ 2

X
j2R

P
1=2
j X ji þ Ni,

and where, for a vector x, the statement x < 0 implies that each entry of x is less than or

equal to zero. Since (Y i)
n
i¼1 is i.i.d., we have, according to Cramér’s theorem, that the rate on

the right-hand side of (22) is given by

sup
t<0

f�log h(t)g, where h(t) ¼ E eh t,Y 1i,

with
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Y1m,1 ¼ P1=2
m X m1SR0 þ X m1N1, m 2 R,

Y20,1 ¼ P
1=2
0 þ 2SR þ N1:

We can rewrite the inner product as ht, Y 1i ¼ TRSR0 þ t20P
1=2
0 þ 2t20SR þ N1(TR þ t20), so

that (using the fact that E exN1 ¼ e�
2x2=2)

h(t) ¼ E eTRSR0
þ t20P

1=2
0

þ2 t20SRþ� 2(TRþ t20)
2=2:

Similar to the proof of the lower bound of H
(1)
k , we will make use of the fact that we

can substitute any value for t1m. Therefore, we only consider t in the point t�1m ¼
�P1=2

m =(Pþ � 2) and t�20 ¼ �P
1=2
0 =(4PR þ � 2). Note that for this particular choice of t,

TR ¼ �SR=(Pþ � 2). We write h(t�) ¼ E eYqþYa , where

Yq ¼ � 1

Pþ � 2
S2R �

P0

4PR þ � 2
þ � 2

2

SR

Pþ � 2
þ P

1=2
0

4PR þ � 2

 !2

, (23)

Ya ¼ � 1

Pþ � 2
SRSRc � 2P

1=2
0

4PR þ � 2
SR: (24)

This partition into a quadratic part and an asymmetric part will simplify the proof, because it

turns out that the asymptotic behaviour depends only on the first moment of Yq and the

second moment of Ya.

Using e y ¼ 1þ yþ y2e� y=2 for some � ¼ � y 2 [0, 1] and ex ¼ 1þ xþ x2=2 þ
x3=6þ x4e�x=24 for some � ¼ �x 2 [0, 1], respectively, we write

h(t) ¼ E eYqþYa ¼ 1þ E Yq þ E Y 2
a=2þ e(t), (25)

where

e(t) ¼ E[eYqeYa � 1� Yq � Y 2
a=2] ¼ E[(1þ Yq þ Y 2

qe
�Yq=2)eYa � 1� Yq � Y 2

a=2] (26)

¼ E[(1þ Yq)(1þ Ya þ Y 2
a=2þ Y 3

a=6þ Y 4
ae

�Ya=24)þ Y 2
qe

�YqeYa=2� 1� Yq � Y 2
a=2]

¼ E[Ya þ Y 3
a=6þ Y 4

ae
�Ya=24þ Yq(Ya þ Y 2

a=2þ Y 3
a=6þ Y 4

ae
�Ya=24)þ Y 2

qe
�YqeYa ]:

We use (xþ y)2 < 2(x2 þ y2) to obtain

Yq < � S2R
Pþ � 2

� P0

4PR þ � 2
þ � 2 S2R

(Pþ � 2)2
þ P0

(4PR þ � 2)2

� �

¼ � S2R
Pþ � 2

1� � 2

Pþ � 2

� �
� P0

4PR þ � 2
1� � 2

4PR þ � 2

� �
< 0 almost surely:

Using this, together with �Ya < jYaj and E Ya ¼ E Y 3
a ¼ 0, results in

e(t�) < E Y 4
ae

jYaj=24þ E Yq(Ya þ Y 3
a=6)þ E Y 2

qe
Ya :

Clearly, from E S2R ¼ PR and E SRc ¼ P
1=2
0 ,
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E Yq ¼ � PR

Pþ � 2
� P0

4PR þ � 2
þ � 2

2

PR

(Pþ � 2)2
þ P0

(4PR þ � 2)2

� �

and

E Y 2
a ¼

PR(P� PR)

(Pþ � 2)2
þ 4P0PR

(4PR þ � 2)2
þ 4P

1=2
0

(4PR þ � 2)(Pþ � 2)
P
1=2
0 PR,

so that

1þ E Yq þ
E Y 2

a

2
¼ 1� P0(4PR þ � 2)� � 2P0=2� 2P0PR

(4PR þ � 2)2
� PR(Pþ � 2)� � 2PR=2� PRP=2

(Pþ � 2)2

� P2
R

(Pþ � 2)2
þ 2P0

4PR þ � 2

PR

Pþ � 2
¼ 1�HþO(H2): (27)

Hölder’s inequality and the fact that E jZj p < (E jZjq) p=q, for p < q and any random variable

Z, yield

e(t�)h < (E Y 6
a)

2=3(E e3jYaj)1=3 þ E YqYa þ (E Y 4
q)

1=4(E Y 6
a)

1=2 þ (E Y 4
q)

1=2(E e2Ya)1=2: (28)

Hence, in order to have e(t�) < CH2, it is sufficient to prove that for t ¼ t�, E YqYa < 0,

E e3jYaj and E e2Ya are bounded and that

E Y 4
q < CH4 and E Y 6

a < CH3:

Indeed, it then follows from (28) that e(t�) < CH2 and thus, using (25) and (27), it follows

that

H
(2)
k,R > �log h(t�) > �log(1�HþO(H2)) ¼ H(1þO(H)), (29)

which is the desired result. Thus, the remainder of this proof is focused on proving these five

statements. It is clear that E YqYa < 0, since

E SR ¼ E SRSRc ¼ E S3R ¼ E S3RS
c
R ¼ 0, E S2R ¼ PR > 0, E S2RSRc ¼ PRP

1=2
0 > 0:

By symmetry, we have E e3jYaj < 2E e3Ya . Recall the definition of Ya in (23) and use the

Cauchy–Schwarz inequality on exp(�3(Pþ � 2)�1SRSRc ) and exp(�3(2P
1=2
0 )(4PR þ

� 2)�1SR). This results in

E e3Ya < E exp �6 Pþ � 2
	 
�1

	 

SRSRc

	 
1=2
E exp �12 P

1=2
0 4PR þ � 2

� �
�1

� �
SR

� �1=2
: (30)

In order to prove that the expression above is bounded, the following lemma will be useful.

The proof, which is omitted, is an easy extension of the proof of Lemma 3.3 in van der

Hofstad and Klok, (2004), and is based on (16), together with a weak convergence argument.

Lemma 5.2. Let A1, A2 be disjoint subsets of N [ f0g. Then E e(x=PA1
)SA1

SA2 is uniformly

bounded whenever x2PA2
=PA1

< 1� �, for some fixed � 2 (0, 1).

We can apply Lemma 5.2 to (30), since both PR=(Pþ � 2) and P0=(4PR þ � 2) are o(1)
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and thus 62P2
R=(Pþ � 2)2 and 122PRP0=(4PR þ � 2)2 are clearly less than or equal to 1� �

when H is sufficiently small, so that E e3jYaj is indeed uniformly bounded. In an identical

manner, E e2Ya is also shown to be uniformly bounded.

Using jxþ yj l < 2 l�1(jxj l þ jyj l) < 2 l�1(jxj þ jyj) l for x, y 2 R, l ¼ 1, 2, . . . , together

with (21), it is straightforward to show that for t ¼ t�,

E Y 4
q < C

1

(Pþ � 2)4
E S8R þ C

P4
0

(4PR þ � 2)4
þ C� 8 E S8R

(Pþ � 2)8
þ P4

0

(4PR þ � 2)8

� �
(31)

< C
P4
R

(Pþ � 2)4
þ C

P4
0

(4PR þ � 2)4
þ C� 8 P4

R

(Pþ � 2)8
þ P4

0

(4PR þ � 2)8

� �

< C
P4
R(1þ � 8=(Pþ � 2)4)

(Pþ � 2)4
þ C

P4
0(1þ � 8=(4PR þ � 2)4)

(4PR þ � 2)4

< C
P4
R

(Pþ � 2)4
þ C

P4
0

(4PR þ � 2)4
¼ O(H4):

Similarly,

E Y 6
a < C

1

(Pþ � 2)6
E S6RE S6Rc þ C

P3
0

(4PR þ � 2)6
E S6R < C

P3
RP

3
Rc

(Pþ � 2)6
þ C

P3
0P

3
R

(4PR þ � 2)6
(32)

< C
P3
R

(Pþ � 2)3
þ C

P3
0

(4PR þ � 2)3
¼ O(H3): (33)

Step 2: Upper bound. For the upper bound, we are not allowed to substitute any value for t1m.

However, similar to the proof of the upper bound of H
(1)
k , we can define an ellipse which

allows us to derive the desired result. In order to do so, we first observe that

E
Yl
i¼1

SAi

 !
> 0, for all l 2 N, Ai � N [ f0g: (34)

We consider

� lim
n!1

1

n
logP max

m2R
Z(1)
m < 0, minm2R� Z

(1)
m > 0, Z

(2)

0 < 0

� �
¼ � lim

n!1

1

n
logP

1

n

Xn
i¼1

Y i 2 D

 !
,

where Y i is a k-dimensional vector with elements

Y1m,i ¼
Xk�1

j¼1

P
1=2
j X jiX mi þ X miNi, 1 < m < k � 1,

Y20,i ¼ P
1=2
0 þ 2

X
j2R

P
1=2
j X ji þ Ni,
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and where D ¼ fs ¼ (s11, . . . , s1,k�1, s20) : s1m < 0 , m 2 R, s1m > 0 , m 2 R�, s20 < 0g.
According to Cramér’s theorem,

� lim
n!1

1

n
logP

1

n

Xn
i¼1

Y i 2 D

 !
¼ sup

t2D

f�log h(t)g, where h(t) ¼ E eh t,Y 1i:

The expectation over N1 is easy, since E exN1 ¼ ex
2� 2=2. Thus,

h(t) ¼ E exp

(Xk�1

m¼1

t1m
Xk�1

j¼1

P
1=2
j X j1X m1

 !
þ t20 P

1=2
0 þ 2

X
j2R

P
1=2
j X j1

 !
:

þ t20 þ
Xk�1

m¼1

t1mX m1

 !2

� 2=2

)
:

We split the exponent into Yq, the quadratic part, and Ya, the asymmetric part. This

division will reduce the number of calculations of moments. This yields

Yqh ¼ t20P
1=2
0 þ TRSR þ � 2(t20 þ TR þ TR�)

2=2, Ya ¼ (2t20SR þ SRc TR)þ SR0TR� ,

(35)

where we have split Ya according to the signs of the elements of t. Similar to (25), we write

h(t) ¼ 1þ E Yq þ E Y 2
a=2þ e(t), (36)

where e(t) is given in (26). Since we can discard all terms that are non-negative almost

surely, (26) reduces to

e(t) > E[Ya þ Y 3
a=6þ Yq(Ya þ Y 2

a=2þ Y 3
a=6þ Y 4

ae
�Ya)=24]:

A straightforward calculation gives

E Yq ¼ t20P
1=2
0 þ

X
m2R

P1=2
m t1m þ � 2

2
t220 þ

X
m2R

t21m þ
X
m2R�

t21m

 !

and (use E S2R0T
2
R� ¼ P

P
m2R� t

2
1m þ

P
m2R�

P
t2R� , l 6¼m P1=2

m P
1=2
l t1m t1 l)

E Y 2
a ¼ 4PR t

2
20 þ PRc

X
m2R

t21m þ 4t20P
1=2
0

X
m2R

P1=2
m t1m

þ P
X
m2R�

t21m þ
Xm2R�

l2R�
l 6¼m

P1=2
m P

1=2
l t1m t1 l þ

X
m2R

P1=2
m t1m

 ! X
m2R�

P1=2
m t1m

 !

> 4PR t
2
20 þ PRc

X
m2R

t21m þ P
X
m2R�

t21m þ
X
m2R�

P1=2
m t1m

 ! X
m2R

P1=2
m t1m

 !
,

where we have used t 2 D to obtain the inequality. The next goal is to write the lower bound
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of h as a sum of squares. It is convenient to introduce some more abbreviations. First of all,

we introduce t�1m and t�20 as

t�1m ¼
� P1=2

m

Pþ � 2
m 2 R,

0 m 2 R�,
t�20 ¼ � P

1=2
0

4PR þ � 2
:

8><
>:

We will prove later on that the minimizers of sup t2Df�log h(t)g converge to t� as H ! 0.

In order to obtain a lower bound for h(t), we observe that

E Yq þ
1

2
E Y 2

a >
X
m2R

P1=2
m t1m þ Pþ � 2 � PR

2

X
m2R

t21m þ Pþ � 2

2

X
m2R�

t21m þ P
1=2
0 t20 (37)

þ 4PR þ � 2

2
t220 þ

X
m2R�

P1=2
m t1m

 ! X
m2R

P1=2
m t1m

 !

¼ Pþ � 2

2

X
m2R

(t1m � t�1m)2 �
X
m2R

Pm

2(Pþ � 2)
� PR

2

X
m2R

t21m þ Pþ � 2

2

X
m2R�

t21m

þ 4PR þ � 2

2
(t20 � t�20)2 �

P0

2(4PR þ � 2)
þ

X
m2R�

P1=2
m t1m

 ! X
m2R

P1=2
m t1m

 !

(the first inequality is only due to the lower bound of E Y 2
a). When we substitute this in (36)

and use H ¼ P0=(2(4PR þ � 2))þ PR=(2(Pþ � 2)), we can rearrange terms to arrive at

h(t) > 1�Hþ Pþ � 2

2

X
m2R

(t1m � t�1m)2 þ
Pþ � 2

4

X
m2R�

(t1m � t�1m)2

þ 4PR þ � 2

2
(t20 � t�20)2 þ e1(t), (38)

where

e1(t) ¼ � PR

2

X
m2R

t21m (39)

þ Pþ � 2

8

X
m2R�

t21m þ E Ya þ
1

2

X
m2R�

P1=2
m t1m

 ! X
m2R

P1=2
m t1m

 !
þ E YqYa

þ Pþ � 2

8

X
m2R�

t21m þ E Y 3
a=6

þ E Yq(Y
2
a=2þ Y 3

a=6þ Y 4
ae

�Ya=24):

This can be seen by comparing all terms with t ji on the right-hand side of (37) and (38)
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together with (39). Note that we have split 1
2
(Pþ � 2)

P
m2R� t

2
1m into three parts, for technical

reasons.

The next step is to introduce an appropriate ellipse E, similarly to the proof of

Proposition 4.1. When we can prove that on (@E) \ D, h(t) . 1, we can conclude that on

E c \ D the minimum is never attained. Indeed, for every x 2 E c \ D, we can find a unique

0 , Æ , 1 such that Æx 2 (@E) \ D. But then, since h(0) ¼ 1 and h is convex, (18) leads to

h(x) . 1. Clearly the minimum is at most 1 (h(0) ¼ 1), so x is never a minimizer. We

define E as

E ¼ t:
X
m2R

Pþ � 2

2
(t1m � t�1m)2 þ

X
m2R�

Pþ � 2

4
(t1m � t�1m)2 þ

4PR þ � 2

2
(t20 � t�20)2 < 2H

( )
:

It is straightforward to prove that for t 2 E,

jt20j < C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H

4PR þ � 2

r
,

X
m2R[R�

t21m < C
H

Pþ � 2
: (40)

We can next bound e1(t). Since we do this using the same techniques as in this proof,

and the derivation will distract the reader from more interesting issues, the proof is

postponed to Appendix A.

Lemma 5.3. There exists a constant C, not depending on k or R, such that for t 2 E,

e1(t) > �CH2:

Thus, for t 2 E \ D (recall (38)),

h(t) > 1�Hþ Pþ � 2

2

X
m2R

(t1m � t�1m)2 þ
Pþ � 2

4

X
m2R�

(t1m � t�1m)2

þ 4PR þ � 2

2
(t20 � t�20)2 � CH2: (41)

This implies that for t 2 (@E) \ D, and when H is small enough,

h(t) > 1�Hþ 2H� CH2 . 1,

so that the minimum is never attained outside the ellipse. Finally, when t 2 E \ D, it is clear

that the minimum of the right-hand side of (41) is attained at t ¼ t�, implying

H
(2)
k,R < H(1þO(H)). h

6. Proof of Theorem 3.1

According to (20), we have to minimize H
(2)
k,R over subsets R � f1, . . . , k � 1g. If

we followed the naive approach, we would minimize the asymptotic rate

P0=2(4PR þ � 2)þ PR=2(Pþ � 2) over PR, with the result
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H
(2)
k � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0

Pþ � 2

r
� � 2

8(Pþ � 2)
, for

PR

P0
¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pþ � 2

P0

s
� � 2

4P0
:

Note that the last expression precisely equals r. Since PR attains values on some grid,

depending on the individual Pjs, it is not clear that PR=P0 can attain the value r. We show

that under the condition in (i), r can be attained with the right order deviation.

We will split the proof into three steps. In the first step, we show that when H ¼ o(1),

H
(2)
k >

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0

Pþ � 2

r
� � 2

8(Pþ � 2)
þO P0

Pþ � 2

� �
, r > 0,

P0

2� 2
þO P2

0

� 4

� �
, r < 0:

8>>><
>>>:

(42)

In step 2, we prove that H > � does not give a smaller lower bound if P0=(Pþ � 2) is

sufficiently small. Finally, we show that the upper bound of H
(2)
k equals the asymptotic lower

bound, whenever we assume (�) for r > 0.

Step 1: Lower bound when H ¼ o(1). According to Theorem 5.1, there exists an M . 0 such

that when P0=(Pþ � 2) is sufficiently small,

min
R�f1,...,k�1g

H
(2)
k,R > min

R�f1,...,k�1g
H � MH2 > min

PR>0
H� MH2:

Taking the derivative of the right-hand side with respect to PR gives the sufficient and

necessary condition

�4P0

(4PR þ � 2)2
þ 1

Pþ � 2

� �
(1� 2MH) ¼ 0:

When H is sufficiently small, 1� 2MH . 0, so that the optimal PR obeys

PR

P0
¼ max

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pþ � 2

P0

s
� � 2

4P0
, 0

8<
:

9=
; ¼ maxfr, 0g: (43)

The condition of Theorem 5.1 is fulfilled, since for r > 0,

H ¼ P0

2(4PR þ � 2)
þ PR

2(Pþ � 2)
¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0

Pþ � 2

r
� � 2

8(Pþ � 2)
¼ o(1),

while, for r < 0, we obtain from (43) that PR ¼ 0 and thus

H ¼ P0

2� 2
¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0(Pþ � 2)

� 4

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0

Pþ � 2

r
<

1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0

Pþ � 2

r
¼ o(1), (44)

because r < 0 , (P0(Pþ � 2)=� 4)1=2 < 1
2
. This results in the following lower bound:
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H
(2)
k >

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0

Pþ � 2

r
� � 2

8(Pþ � 2)
þO

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0

Pþ � 2

r
� � 2

4(Pþ � 2)

 !2
0
@

1
A, r > 0,

P0

2� 2
þO P2

0

� 4

� �
, r < 0:

8>>>>><
>>>>>:

Step 1 is completed once we have proven that for r > 0,

O
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P0

Pþ � 2

r
� � 2

4(Pþ � 2)

 !2
0
@

1
A ¼ O P0

Pþ � 2

� �
:

This is easy, since we assumed r > 0, so that

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0

Pþ � 2

r
<

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0

Pþ � 2

r
þ r

P0

Pþ � 2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0

Pþ � 2

r
� � 2

4(Pþ � 2)
<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0

Pþ � 2

r
: (45)

We have proven the lower bounds in (42) when H ¼ o(1).

Step 2: H > � does not give smaller lower bound. The goal of this step is to prove that, for

an arbitrary � . 0, H > � implies the lower bounds in (42). This allows us to conclude that

the lower bounds are as desired. Since H > � implies that either P0=(4PR þ � 2) > � or

PR=(Pþ � 2) > �, we can focus on the two cases separately.

We first assume that P0=(4PR þ � 2) > �. Since P(A \ B) < P(A), we can focus on the

second stage alone:

H
(2)
k,R > � lim

n!1

1

n
logP P

1=2
0 þ

X
j2R

2P
1=2
j

1

n

Xn
i¼1

X ji < 0

 !
: (46)

Because this is in fact the situation where a user with power P
1=2
0 suffers from interfering

users in the set R with powers 4Pj and from external noise with intensity � 2, the rate above

is, according to Proposition 4.1, bounded from below by

P0

2(
P

j2R 4Pj þ � 2)
¼ P0

2(4PR þ � 2)
> �=2 >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0

Pþ � 2

r
,

for P0=(Pþ � 2) sufficiently small, because � is fixed.

We will next treat the case PR=(Pþ � 2) > �. To do so, we split according to the largest

power in PR. Suppose we can choose an ~mm 2 R such that P ~mm > 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0(Pþ � 2)

p
. Then,

taking only the event fZ(1)
~mm < 0g into account, the rate is bounded from below by

� lim
n!1

1

n
logP P

1=2
~mm þ

Xk�1

j¼0
j6¼ ~mm

P
1=2
j

1

n

Xn
i¼1

X jiX ~mmi < 0

0
BB@

1
CCA >

P ~mm

2(Pþ � 2)
>

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0

Pþ � 2

r
,

where we have used Proposition 4.1 to obtain the first inequality and P ~mm > 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0(Pþ � 2)

p
to

obtain the second.
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When we cannot choose an ~mm 2 R such that Pm > 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0(Pþ � 2)

p
, all powers

Pm, m 2 R, must obey Pm < 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0(Pþ � 2)

p
for m 2 R. In this case, we can choose an

~RR � R such that

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0(Pþ � 2)

p
< P~RR < 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0(Pþ � 2)

p
:

We observe that, with our usual definition R� ¼ f1, . . . , k � 1gnR,

� lim
n!1

1

n
logP max

m2R
sgnrm(Z

(1)
m ) , 0, min

m2R�
sgnrm(Z

(1)
m ) . 0, sgnr0(Z

(2,H)
0 ) , 0

� �

> � lim
n!1

1

n
logP max

m2 ~RR
sgnrm(Z

(1)
m ) , 0

� �
> � lim

n!1

1

n
logP max

m2 ~RR
Z(1)
m < 0

� �
:

We next use the lower bound in Theorem 5.1 on the scenario with k þ 1 users with powers

0, P2, . . . , Pk , P0 (user 0 has power 0, so fsgnr0(Z
(2,H)

0 ) , 0g does not contribute to the rate),

with the following result:

� lim
n!1

1

n
logP max

m2 ~RR
Z(1)
m < 0

� �
>

P~RR

2(Pþ � 2)
þO

P2
~RR

(Pþ � 2)2

 !
>

P~RR

4(Pþ � 2)

>
4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0(Pþ � 2)

p
4(Pþ � 2)

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P0

Pþ � 2

r
,

when P~RR=(Pþ � 2) is sufficiently small. This is guaranteed for P0=(Pþ � 2) ! 0, because

P~RR=(Pþ � 2) < 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0=(Pþ � 2)

p
¼ o(1).

The result of step 2 is that when H > �, we have H
(2)
k >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0=(Pþ � 2)

p
, which is larger

than the lower bounds in (42), where we use the fact that for r < 0, P0=
(2� 2) < 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0=(Pþ � 2)

p
, according to (44).

Step 3: Upper bound. For the upper bound, we can substitute the optimal PR obtained above.

It is sufficient to prove that this optimal PR can be approximated with small enough

deviation. For r < 0, the claim is trivial, since R ¼ ˘ suffices. Therefore, assume r > 0.

We take R such that PR=P0 � r ¼ �, where, according to (�), j�j < C(Pþ � 2)1=4=P
1=4
0 ,

so that �(P0=(Pþ � 2))1=2 ¼ o(1). When we substitute PR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0(Pþ � 2)

p
=2� � 2=4þ �P0

in H and use the above fact for �, we arrive at
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H ¼ P0

2(4PR þ � 2)
þ PR

2(Pþ � 2)

¼ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0

Pþ � 2

r
1

1þ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0=(Pþ � 2)

p
 !

þ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0

Pþ � 2

r
1þ 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0

Pþ � 2

r !
� � 2

8(Pþ � 2)

¼ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0

Pþ � 2

r
1� 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0

Pþ � 2

r
þO �2

P0

Pþ � 2

� � !

þ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0

Pþ � 2

r
1þ 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0

Pþ � 2

r !
� � 2

8(Pþ � 2)

¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0

Pþ � 2

r
� � 2

8(Pþ � 2)
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0

Pþ � 2

r
O �2

P0

Pþ � 2

� �

¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0

Pþ � 2

r
� � 2

8(Pþ � 2)
þO P0

Pþ � 2

� �
:

Thus, substitution of R such that PR=P0 ¼ rþ � gives

H
(2)
k h < hHþO(H2) ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0

Pþ � 2

r
� � 2

8(Pþ � 2)
þO P0

Pþ � 2

� �

þO
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P0

Pþ � 2

r
� � 2

4(Pþ � 2)
þO P0

Pþ � 2

� � !2
0
@

1
A:

Finally, use (45) on the last order term to obtain the desired equality.

Appendix: Proof of Lemma 5.3

The proof is split into 4 steps. In every step one line of the right-hand side of (39) is

treated and is proved to be non-negative, O(H2) or a combination of those two.

Line 1. This term is bounded as����� PR

2

X
m2R

t21m

���� < C
PR

Pþ � 2
H < CH2, t 2 E,

by (40) and PR=(Pþ � 2) < 2H.

Line 2. Observe that
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E Ya ¼
X
m2R�

P1=2
m t1m and E YqYa ¼ t20P

1=2
0 E Ya þ E TRSRYa þ

� 2

2
E(t20 þ TR þ TR� )

2Ya:

(47)

It is straightforward to prove that

t20P
1=2
0 E Ya þ E TRSRYa ¼ t20P

1=2
0

X
m2R�

P1=2
m t1m

 !
þ

X
m2R

P1=2
m t1m

 ! X
m2R�

P1=2
m t1m

 !

(48)

and

� 2

2
E(t20 þ TR þ TR� )

2Ya ¼
� 2

2
E(t20 þ TR)

2(2t20SR þ SRc TR þ SR0TR�)

þ � 2E(t20 þ TR)TR� (2t20SR þ SRc TR þ SR0TR�)

þ � 2

2
E T2

R�(2t20SR þ SRc TR þ SR0TR�):

Using t 2 D and (34), it follows that E(t20 þ TR)
2SR0TR� > 0. Similarly, other terms with

such combinations of ts can be shown to be non-negative. This leads to

� 2

2
E(t20 þ TR þ TR�)

2Ya (49)

>
� 2

2
E(t20 þ TR)

2(2t20SR þ SRc TR)þ � 2E(t20 þ TR)TR�SR0TR� þ
� 2

2
E T 2

R� (2t20SR þ SRc TR)

¼ 2� 2 t220

X
m2R

P1=2
m t1m þ � 2 t20P

1=2
0

X
m2R

t21m þ � 2 t20P
1=2
0

X
m2R�

t21m

þ � 2

2

X
m2R

P1=2
m t1m

 ! X
m2R�

t21m

 !
,

where the equality can be proven using straightforward calculation of moments. The first two

terms in the line above are of order H2. Indeed, by (40), and jx, yj < kxk kyk,
����2� 2 t220

X
m2R

P1=2
m t1m þ � 2 t20P

1=2
0

X
m2R

t21m

���� < 2� 2 t220 PR

X
m2R

t21m

 !1=2

þ � 2jt20jP1=2
0

X
m2R

t21m

< C

�
� 2 H

4PR þ � 2
PR

H
Pþ � 2

� �1=2

þ � 2 H1=2

(4PR þ � 2)1=2
P
1=2
0

H
Pþ � 2

�
< CH2,

Asymptotic error rates in 3G systems 217



since � 2=(4PR þ � 2) and � 2=(Pþ � 2) are bounded by 1. Thus, according to (47), (48) and

(49), E Ya þ E YqYa is bounded from above by

X
m2R�

t21m

 !
� 2 t20P

1=2
0 þ � 2

2

X
m2R

t21m

 !
þ

X
m2R�

P1=2
m t1m

 !
1þ t20P

1=2
0 þ

X
m2R

P1=2
m t1m

 !
� CH2:

When H is sufficiently small, we bound the second line of (39) as

Pþ � 2

8

X
m2R�

t21m þ
X
m2R�

P1=2
m t1m

 ! X
m2R

P1=2
m t1m

 !
þ E Ya þ E YqYa

> (Pþ � 2)
X
m2R�

t21m

 !
1

8
þ � 2 t20P

1=2
0

Pþ � 2
þ � 2

2(Pþ � 2)

X
m2R

P1=2
m t1m

 !

þ
X
m2R�

P1=2
m t1m

 !
1þ t20P

1=2
0 þ 2

X
m2R

P1=2
m t1m

 !
� CH2

> (Pþ � 2)
X
m2R�

t21m

 !
1

8
� C

� 2

Pþ � 2
H1=2 P

1=2
0

(4PR þ � 2)1=2
� � 2

2(Pþ � 2)
PR

X
m2R

t21m

 !1=2
0
@

1
A

þ
X
m2R�

P1=2
m t1m

 !
1� CH� 2 PR

X
m2R

t21m

 !1=2
0
@

1
A� CH2

> (Pþ � 2)
X
m2R�

t21m

 !
1

8
� CH

� �
þ

X
m2R�

P1=2
m t1m

 !
1� CHð Þ � CH2 > �CH2,

where we have again used jhx, yij < kxk kyk and t1m > 0 for m 2 R�.

Line 3. Working out the terms of Y 3
a, and observing that E(2t20SR þ SRc TR)

2SR0TR� > 0 and

E S3R0T
3
R� > 0 by (34), (35) and the fact that t 2 D, leads to

E Y 3
a > E(2t20SR þ SRc TR)

3 þ 3E(2t20SR þ SRc TR)S
2
R0
T2

R� :

By symmetry arguments, the first term on the right-hand side above equals 0. When H is

sufficiently small, the second term, together with the remaining term on the third line of (39),

is bounded using Cauchy–Schwarz, yielding
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Pþ � 2

8

X
m2R�

t21m þ 1

2
E(2t20SR þ SRc TR)S

2
R0
T2

R�

>
Pþ � 2

8

X
m2R�

t21m � 1

2
E(2t20SR þ SRc TR)

2
	 
1=2

E S8R0

� �1=4
E T8

R�
	 
1=4

>
Pþ � 2

8

X
m2R�

t21m � C 4PR t
2
20 þ P

X
m2R

t21m þ 4t20P
1=2
0 P

1=2
R

X
m2R

t21m

 !1=2
0
@

1
A

1=2

P
X
m2R�

t21m

>
Pþ � 2

8

X
m2R�

t21m � CH1=2P
X
m2R�

t21m > 0,

where we have used (40) to obtain the third inequality.

Line 4. Finally, whenever we can prove E Y 2
q < CH2, E Y 6

a < CH3 and E e�12Ya is bounded,

it follows from Hölder’s inequality that E YqY
2
a ¼ O(H2), E YqY

3
a ¼ O(H2) and

E YqY
4
ae

�Ya ¼ O(H2). This can be done easily using Cauchy–Schwarz, (xþ y) l <

2 l�1(x l þ y l) for Lemma 5.2, and (21) and (40).
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Prasad, R., Mohr, W. and Konhäuser, W. (2000) Third Generation Mobile Communication Systems.

Boston: Artech House.

van der Hofstad, R. and Klok M.J. (2004) Improving the performance of the third generation wireless

communication systems. Adv. Appl. Probab., 36, 1046–1084.

van der Hofstad, R., Hooghiemstra G. and Klok M.J. (1999) Large deviations for code division

multiple access systems. SIAM J. Appl. Math., 62, 1044–1065.
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