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A random variable Y is called an independent symmetrizer of a given random variable X if (a) it is

independent of X and (b) the distribution of X � Y is symmetric about 0. In cases where the

distribution of X is symmetric about its mean, it is easy to see that the constant random variable

Y � ÿEX is a minimum-variance independent symmetrizer. Taking Y to have the same distribution as

ÿX clearly produces a symmetric sum, but it may not be of minimum variance. We say that a random

variable X is symmetry resistant if the variance of any symmetrizer, Y, is never smaller than the

variance of X. Let X be a binary random variable: PfX � ag � p and PfX � bg � q, where a 6� b,

0 , p , 1, and q � 1ÿ p. We prove that such a random variable is symmetry resistant if (and only if)

p 6� 1=2. Note that the minimum variance as a function of p is discontinuous at p � 1=2. Dropping

the independence assumption, we show that the minimum variance reduces to pqÿmin( p, q)=2,

which is a continuous function of p.
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1. Introduction

Let X be a given random variable. Given the special place of the Gaussian distribution, it is

of interest to ®nd out what random variable Y , independent of X , makes the distribution of

the sum X � Y close to Gaussian. With no further restriction on Y , the problem does not

make sense, since a Gaussian Y with large variance will make the distribution of X � Y

arbitrarily close to Gaussian in any reasonable sense. However, if the perturbations Y are

subject to

var(Y ) < ó 2, (1)

ó 2 being a given (small) constant, the problem makes sense once the distance from X � Y to

the class of Gaussian random variables is chosen. An easier version of the problem would be

this: ®nd Y, independent of X , with minimum variance such that X � Y is Gaussian.

However, the classical decomposition theorem due to CrameÂr (Lukacs 1970) states that unless

X is itself Gaussian no Y makes X � Y Gaussian. Rather than asking for X � Y to be

Gaussian, one could stipulate that X � Y be within a certain distance of the class of Gaussian

random variables so that the problem again makes sense. However, we have not been able to

obtain any concrete results along these lines.
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Looking for weaker properties than being Gaussian leads to meaningful and non-trivial

problems. We say that a random variable Y is a symmetrizer of a given random variable X

if the distribution of X � Y is symmetric about 0. It is called an independent symmetrizer

if, in addition, it is independent of X . A symmetrizer (or independent symmetrizer) is

called minimum-variance if among all such symmetrizers it has minimum variance.

When the distribution of X is symmetric about its mean, it is easy to see that the

constant random variable Y � ÿEX is a minimum-variance independent symmetrizer, the

minimum variance being zero. In general, taking Y to be independent of X and having the

same distribution as ÿX clearly produces a symmetric sum, but it may not be of minimum

variance. Such a Y provides an upper bound on the variance of a symmetrizer (both

independent and not). We say that a random variable X is symmetry resistant if such a Y is

indeed a minimum-variance independent symmetrizer.

It is interesting to determine which random variables are symmetry resistant. In this

paper, we solve the problem in the case where X is a binary random variable; that is,

PfX � ag � p and PfX � bg � q, where a 6� b, 0 , p , 1, and q � 1ÿ p. In Section 2,

we show that X is symmetry resistant when p 6� 1
2
. Hence, the minimum variance for p 6� 1

2

is pq whereas for p � 1
2

it is 0. It seems interesting that there is this discontinuity as p

varies.

In Section 3, we drop the independence assumption and exhibit a minimum-variance

symmetrizer of a binary random variable having variance pqÿmin( p, q)=2, which is a

continuous function of p.

Section 4 explores the relationship between symmetry resistance and decomposability. We

show that the absense of a symmetric component is not suf®cient to guarantee symmetry

resistance. In a related vein, we show that binomial random variables with parameters n and

p are not symmetry resistant when n > 4 and p is close to 1
2
. We also show that an

independent symmetrizer need not be unique.

The problem of symmetrizing X by an independent random variable Y can be formulated

within the framework of the arithmetic of characteristic functions. Let

f (t) � E exp(itX ), g(t) � E exp(itY ):

The condition that Y is an independent symmetrizer of X is equivalent to the condition that

f (t)g(t) is real for t 2 R: (2)

Finding a minimum-variance symmetrizer Y is then equivalent to ®nding a characteristic

function g subject to (2) with minimum value of

ÿ(g 0(0)� (g9(0))2): (3)

Though the arithmetic of characteristic functions is a well-developed chapter of probability

(Linnik and Ostrovskii 1977), it seems that its methods are not ®t for the problem under

study and instead one needs duality theory of linear programming to obtain sharp bounds.

This is seen most clearly in the example of Section 4.

1014 A. Kagan et al.



2. Independent symmetrizers

In this section, we prove the following result.

Theorem 1. A binary random variable is symmetry resistant if and only if it is not symmetric

about its mean (that is, p 6� 1
2

).

Proof. Applying translation and scaling operations, it is easy to reduce the problem to the

case where X is a Bernoulli random variable; that is, PfX � 1g � p and PfX � 0g � q.

Since the mean value of X � Y must, by symmetry, be zero, it follows that EY � ÿ p.

Thus minimizing the variance of Y is equivalent to minimizing the second moment, EY 2,

which is a linear functional on the space of distributions for Y. Also, the constraints that Y

is independent of X and that X � Y is symmetric about zero are linear constraints on the

space of distributions for Y. Hence, the problem is an in®nite-dimensional linear

programming problem.

We have already mentioned that a random variable Y whose distribution is the same as

that of ÿX symmetrizes X . This random variable has second moment p. To prove that it

minimizes the second moment, we need to show that every symmetrizer has second moment

at least p. In the language of linear programming, we need to exhibit the optimal solution

to the dual problem (Vanderbei 1996) and then use the weak duality theorem to derive the

desired inequality. Suppose we can ®nd a function r de®ned on R that has the following

properties:

(1) r is an odd function: r(ÿy) � ÿr(y), ÿ1, y ,1;

(2) qr(y)� pr(1� y) < y2 ÿ p, ÿ1, y ,1.

Then, for any independent symmetrizer Y of X , we compute as follows:

0 � Er(X� Y )

� qEr(Y )� pEr(1� Y )

� E(qr(Y )� pr(1� Y ))

< EY 2 ÿ p,

where the ®rst equality follows from the facts that r is odd and X � Y is symmetric and the

second from the independence of X and Y . The inequality follows from property (2) of r.

When p � 1
2
, we know that there can be no function r with the properties given above

because we have already given a Y which has zero variance and therefore violates the

inequality derived above. But, for every p 6� 1
2
, we can exhibit such a function. It is de®ned

as follows. First, let h be a sawtooth function de®ned on R by setting

h(y) � y, ÿ1
2

< y < 1
2
,

and then extending to all reals by setting

h(y� 1) � ÿh(y), ÿ1 < y <1:
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The function h is odd. Furthermore, h agrees with the parabolic function y(y� 1) at y � 0

and y � ÿ1, and each curve has the same derivative at these points as well. It therefore

follows from convexity that h(y) < y(y� 1) for all y 2 R. The function r is de®ned by:

r(y) � h(y)

qÿ p
ÿ y:

Clearly, r is odd. It also satis®es the second requisite condition, as the following calculations

show:

qr(y)� pr(1� y) � q
h(y)

qÿ p
ÿ y

� �
� p

h(1� y)

qÿ p
ÿ (1� y)

� �
� h(y)ÿ yÿ p

< y(y� 1)ÿ yÿ p

� y2 ÿ p:

This ®nishes the proof. h

The reader may be wondering how we thought of the correct choice of r. The answer is

that we discretized an interval of the real line and thereby formulated a ®nite-dimensional

linear program as an approximation to the problem. We then used the fourth author's

software, called LOQO (Vanderbei 1994), to solve these discrete approximations and

eventually were able to guess at the correct functional form for r. It is interesting to note

that r is far from unique, since we needed only the properties h(y) � ÿh(y� 1) and the

inequality h(y) < y(yÿ 1) of the odd function h. There are many such examples; the one

given may be the simplest. A standard algorithm for solving ®nite-dimensional linear

programming problems is the simplex method. This method proved of no use in solving this

problem since among the myriad possible solutions it gives an essentially random one.

Hence, we were unable to see the form of r from such solutions. LOQO, on the other hand,

implements an interior-point method and consequently converges to the (uniquely de®ned)

analytic centre of the set of optimal solutions (Vanderbei 1996). From such a `regular'

(smooth) solution it was fairly easy to discover the function r.

The reader may also feel that a simpler proof should exist given that X is assumed to

take on only two values. In particular, one might expect that it would be possible to restrict

the search to random variables Y that only take on a ®nite number of values (by invoking,

say, CaratheÂodory's theorem (Vanderbei 1996). This, of course, would simplify the problem,

but we were unable to justify such a restricted search.

Finally, we note that as p tends to 1
2
, r has no limit.

3. Dependent symmetrizers

In this section, we ®nd the minimum-variance symmetrizer when Y is allowed to depend on

X . One could take Y � ÿX , noting that this symmetrizes X since X � Y � 0, but this Y
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again has variance pq. The following theorem asserts that there is a dependent symmetrizer

whose variance is less than pq.

Theorem 2. Allowing dependence between a binary random variable and its symmetrizer, the

minimum-variance symmetrizer has variance pqÿmin( p, q)=2.

Note that in this dependent case, the minimizing variance is continuous in p. Why it

should be continuous in the dependent case but discontinuous in the independent one seems

a bit of a mystery.

Proof. We assume without loss of generality that p > q, and consider a three-point sample

space, Ù � fù1, ù2, ù3g, with the following assigned probabilities:

P(ù1) � P(ù2) � q, P(ù3) � pÿ q � 1ÿ 2q:

On this space we de®ne random variables X and Y as follows:

X (ù1) � 1, Y (ù1) � ÿ1
2
,

X (ù2) � 0, Y (ù2) � ÿ1
2
,

X (ù3) � 1, Y (ù3) � ÿ1:

It is easy to check that X takes values 1 and 0 with probabilities p and q, respectively, and

that Z � X � Y is symmetric. Indeed,

Z(ù1) � 1
2

Z(ù2) � ÿ1
2

Z(ù3) � 0:

Also, the variance of Y is easily seen to be pqÿmin( p, q)=2. All that remains is to show

that any symmetrizer must have a variance at least this large.

To show one cannot do better, we will use a linear programming argument similar to the

one before. We start by assuming the existence of an odd function, r, satisfying the

following two inequalities:

r(z) < z2 � 1
2

and r(z) < (zÿ 1)2 ÿ 1:

Using these inequalities, we see that

r(X � Y ) � r(Y )1X�0 � r(1� Y )1X�1

< (Y 2 � 1
2
)1X�0 � (Y 2 ÿ 1)1X�1

� Y 2 ÿ 1X�1 � 1
2
1X�0:

Taking expectations, we see that

0 � Er(X � Y ) < EY 2 ÿ p� q=2,
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where, as before, the equality follows from the symmetry of X � Y and the oddness of r.

Hence, the second moment of Y is at least pÿ q=2, from which it follows that

var(Y ) > pÿ q=2ÿ p2 � pqÿ q=2 � pqÿmin( p, q)=2:

To complete the proof, we only need to exhibit a function r with the desired properties.

It is easy to check that the following function works:

r(z) � z(jzj ÿ 2): h

4. Decomposition

Let var(X ) ,1. A simple necessary condition for X to be symmetry resistant is that X has

no symmetric component, that is, X cannot be represented as

X � U � V ,

with U and V independent and U symmetric about 0, since in that case ÿV would be a

symmetrizer. Note that V is allowed to be degenerate; in this respect our notion of

decomposability differs from the usual one that does not allow degenerate random variables.

A binary random variable X with p 6� 1
2

has no symmetric component. If, on the other hand,

it takes values a and b with equal probability then X has a symmetric component

U � X ÿ (a� b)=2.

Looking for symmetric components of X falls within the framework of the arithmetic of

characteristic functions. Unfortunately, the absence of a symmetric component in X is not

suf®cient for its being symmetry resistant:

Theorem 3. There exist symmetry non-resistant random variables that have no symmetric

components.

Proof. The proof is by construction of an example. Suppose that X has the following

distribution:

PfX � 0g � 4
9
,

PfX � 1g � 0,

PfX � 2g � 3
9
,

PfX � 3g � 2
9
:

If Y is independent of X and takes values ÿ1 and ÿ2 with probability 2
3

and 1
3
, respectively,

then
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PfX � Y � ÿ2g � PfX � Y � 2g � 4=27,

PfX � Y � ÿ1g � PfX � Y � 1g � 8=27,

PfX � Y � 0g � 3=27,

so that X � Y is symmetric. As one can see, var(Y ) , var(X ) which implies that X is not

symmetry resistant.

To see that X is not decomposable, note that the probability generating function of X is

(4� 3z2 � 2z3)=9 and has the unique real factorization f(1� 2z)=3gf(2ÿ z� 2z2)=3g. But

the second factor is not the probability generating function of a proper random variable.

h

A similar construction shows that the sum of four independent replicas of a binary

random variable with 0:488 975 2 , p , 0:5 is not symmetry resistant, even though it has no

symmetric component. Indeed, let Z have a six-point improper distribution with negative

`variance', with `probabilities' proportional to ( p2q, ÿ4 p3, 16 p2qÿ 6q3, 16 p2qÿ 6q3, ÿ4 p3,

p2q). Then for the stated range of p, X � Z is proper, and has variance less than the

variance of X . The corresponding random variable is a symmetrizer of ÿX . The lower

extreme of the range of p is a root of the cubic 71 p3 ÿ 23 p2 ÿ 18 p� 6.

This result implies that for all n > 4, for p in a neighbourhood of 1
2
, a sum of n

independent binary random variables is not symmetry resistant. We conjecture that this is

not true for n � 2, 3.

Finally, we ask the question: is a minimum-variance symmetrizer unique? The answer is

no:

Theorem 4. There exists a random variable for which the minimum-variance independent

symmetrizer is not unique.

Proof. We shall show that there is a non-symmetric random variable X with at least two

different minimum-variance symmetrizers, one of which may be symmetric. First, we

construct a non-symmetric distribution such that a sum X1 � X 2 of two independent random

variables with this non-symmetric distribution is symmetric. Let ø be a real characteristic

function that vanishes for all jtj > 1
2
, for example the characteristic function corresponding to

the density

f (x) � A
sin(x=8)

x=8

� �4

,

where A � 3=(4ð) is a normalizing constant so that f integrates to unity. Let

ö(t) � ø(t)� (i=2)(ø(t ÿ 1)ÿ ø(t � 1)):

Clearly, ö2 is real, so that X 1 � X 2 is symmetric. The density corresponding to ö is

g(x) � A(1ÿ sin x)
sin(x=8)

x=8

� �4

,
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which has ®nite variance. We do not know whether or not this X is resistant (we suspect not).

If it is, then both X and ÿX are minimum-variance symmetrizers of X . If not, let Y be a

minimum-variance symmetrizer of X . Then the characteristic function ÷ of Y must be real

(or zero) where ö is real, and purely imaginary (or zero) where ö is purely imaginary. If Y is

not symmetric, then both Y and ÿY are minimum-variance symmetrizers of X . If Y is

symmetric, then ÷(t) must vanish for 1
2

, jtj, 3
2
, and ÷(t)� i(÷(t � 1)ÿ ÷(tÿ 1))=2 is the

characteristic function of a non-symmetric symmetrizer of X , with the same variance as Y .

h
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