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The various conditional limit theorems for the simple branching process are considered within a

uni®ed setting. In the subcritical case conditioning events have the form fH 2 n� S g, where H is

the time to extinction and S is a subset of the natural numbers. The resulting limit theorems contain

all known forms, and collectively they are equivalent to the classical Yaglom form. In the critical case

discrete limits exist provided S is a ®nite set. The principal results are extended to absorbing Markov

chains. The Yaglom and Harris theorems for the critical case are generalized by considering the joint

behaviour of generation sizes and total progeny conditioned by one-parameter families of events of the

form fn , H < áng and fH .áng, where 1 < á <1. A simple representation of the marginal

limit laws of the population sizes relates the Yaglom and Harris limits. Analagous structure is

elucidated for the marginal limit laws of the total progeny.
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1. Introduction

We will adopt as a setting for our discussion the simple discrete-time branching process,

although many of the general ideas and results will extend to other classes of branching

process, and even to countable-state Markov chains and processes under appropriate

conditions. So let fZn : n 2 N0g denote the successive generation sizes of the BienaymeÂ ±

Galton±Watson branching process having the offspring law fpj : j 2 N0g, where pj 6� 1 for

any j and p0 � p1 , 1. Denote the offspring probability generating function by f (s) �P
pjs

j. Let m � f 9(1ÿ) be the mean per capita number of offspring. The number of

ancestors is indicated using the notation Pi(�) � P(�jZ0 � i), and similarly for the expectation

operator. A general initial law is always denoted by ì, with masses ì(i) where ì(0) � 0, and

Pì(�) �Piì(i)Pi(�), and similarly for the expectation operator.

Let H denote the hitting time of the zero state, i.e. the time to extinction of our

branching process. The fundamental extinction theorem states that Pi(H ,1) � qi, where

q is the least non-negative solution of f (s) � s, and that q � 1 if and only if m < 1.

Athreya and Ney (1972) is a good general reference for this and other basic facts about

branching processes.

We will be interested in the behaviour of the conditional law of Zn given that H takes
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values in certain subsets of fn� 1, n� 2, . . .g. This condition entails that H ,1, i.e. our

attention will be restricted to mortal family trees. Thus we can assume that m < 1 since the

supercritical process conditioned on mortality is equivalent in terms of its ®nite-dimensional

laws to the subcritical branching process whose offspring probability generating function is

f (sq)=q. We make this assumption throughout this paper.

Scarcely less fundamental than the extinction theorem are several conditional limit

theorems usually attributed to A.M. Yaglom. These theorems make assertions about the

limit as n!1 of the conditional law of Zn given that H . n (written as L (ZnjH . n)).

When it exists, the limit is called the (singly) limiting conditional law. When m � 1 the

generation sizes must be normed in order to give a non-trivial limit law. Yaglom obtained

his results under certain moment assumptions which have since been removed by other

investigators, and the results themselves have been supplemented by theorems allowing

different conditioning events for H . We give references below.

The essential contribution of this paper will be to unify and extend the scope of what is

known about the behaviour of Zn, and the total progeny Tn �
Pn

j�0 Z j, when they are

conditioned by events which imply that H . n. In Section 2 we shall show that all known

conditional limit theorems for fZng (no norming) can be embedded in just two assertions ±

Theorem 2.1 if m , 1 and Theorem 2.5 if m � 1. In Sections 3±5 we are concerned with

the critical case m � 1 and v � f 0(1ÿ)=2 ,1. In Section 3 we present new limit theorems

for the random vectors (Zn, Tn) when they are suitably normed and conditioned on certain

events which imply that H . n. These new results are contained in Corollary 3.1, Theorem

3.3 and Theorem 3.5. They are used in Sections 4 and 5 to give an extended and uni®ed

treatment of known conditional limiting results for Tn. Let us give some more detail.

In Section 2 we will allow conditioning events of the form An � fH 2 n� S g, where

S � N is chosen to give discrete limit laws. This builds on some earlier work of Pakes

(1998) by allowing initial laws other than point masses, and tailoring the proofs to emphasize

the fact that our generalizations are equivalent to certain of the known results. When m , 1

we allow S to be quite arbitrary ± see Theorem 2.1. We also establish some links with the

doubly limiting conditional law in Theorems 2.2±2.4. This is the weak limit law of

(ZnjH . n� í) as í!1 and then as n!1. These results provide some compelling

probabilistic expressions of the notion of `quasi-stationarity'. In Theorem 2.5 we show when

m � 1 that a non-trivial limiting conditional law exists if and only if S has ®nite cardinality.

In Sections 3±5 we are concerned with the critical case, and S is an in®nite set of a

fairly simple kind. The Yaglom theorem asserts convergence of L (Zn=vnjH . n) to the

standard exponential law. Pakes (1998) observes that known results on diffusion

approximations imply the following extension. For 1 < á,1, L (Zn=vnjH .án) has a

limit law which can be represented as

ë � å1 � (1ÿ áÿ1)å2, (1:1)

where å1 and å2 are independent random variables having the standard exponential law. See

Lamperti and Ney (1968) for the usual form of this result, and Athreya and Ney (1972, p.

61). Khalili (1981) gives a multivariate extension of the Lamperti±Ney theorem. The case

á � 1 is the critical Yaglom theorem and the case á!1 can be interpreted to be the limit

law of L (Zn=vnjH � 1), where the conditioning event is taken to mean
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L (ZnjH � 1) � lim
í!1L (ZnjH . n� í): (1:2)

The resulting iterated limit, á � 1 in (1.1), is due to Harris (1951).

A principal aim of this paper is to investigate analogous structure for the total progeny

Tn in the critical case. In particular, we seek to link together the limit theorems for

L (Tn=vn2jH . n) and L (Tn=vn2jH � 1), ®rst found by Pakes (1971a). This requires

the determination of the limit of the joint conditional law L (Zn=vn, Tn=vn2jH .án)

where á > 1. Our principal results in this direction are Theorems 3.1 and 3.2. Their proof

is based on Durrett's (1978) conditional functional limit theorem, but we will use a different

time parametrization ± see (3.11). Theorem 3.2 is strengthened in Corollary 3.1 to allow

conditioning events of the form fH .án� o(n)g. Next, in Theorem 3.3 we use Theorem

3.1 to obtain the limit law of (Zn=vn, Tn=vn2jH . n� í) in which í=n!1. The proof

introduces a branching process augmented by independent immigrations whose numbers

have the probability generating function f 9(s). Only a little more effort is needed to obtain

a limit theorem for the joint law of the size and total progeny in the general case, and we

include this as Theorem 3.4. Theorem 3.2 conditions on extinction after án. Theorem 3.5

complements this result by conditioning on extinction occurring at or before án.

Section 4 is devoted to elucidating the nature of the marginal limit laws for Tn in

Theorems 3.2 and 3.5. The cases á � 1 and á � 1 for the conditioning fH .áng were

those treated by Pakes (1971a). Their representations in terms of series of independent

exponential random variables are discussed by Pakes (1997). First, we relate the limit laws

of Theorems 3.2 to the laws of certain functionals of Brownian motion. We then seek an

analogue of the limit law (1.1) of the generation sizes. The result, (4.8) together with

Theorem 4.2, is more complicated. But it still retains the fundamental structure of (1.1), i.e.

as the sum of the limit for á � 1 plus an independent component which increases

stochastically with á. A closely related representation is found for the conditioning events

fn , H < áng ± see Theorem 4.3 and (4.19).

Finally, we examine the limit of L (Tn=vn2jH 2 n� S ) with S ®nite. Kesten (1986)

proved its existence when S � f0g (i.e. An � fH � ng) without identifying its nature,

and Karpenko and Nagaev (1994) gave a different proof in a more general context which

yields its Laplace±Stieltjes transform. The resulting limit law is precisely that found from

the case á � 1 in Theorem 3.5. (The corresponding limit law for the generation sizes is of

course the point mass at zero.) We will show that this limit persists for any ®nite S , and

offer a modi®cation of Kesten's argument which gives the limit law more easily than the

Karpenko±Nagaev proof.

The total contribution of the limit theorems in Sections 3 and 5 is a uni®ed description

of the limit behaviour of generation sizes and total progeny given that extinction occurs in

the immediate future (H , n� o(n)), then grading into extinction in the intermediate

future (n , H < án with á. 1), and then in the more remote future (H .án), and

®nally, at the end of time (H � 1).

In Section 6 we point out that the essential content of Lemma 2.1, and Theorems 2.1, 2.2

and 2.4, extends to general Markov chains having a countable state space containing a

proper irreducible and R-positive subset.
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2. Discrete limit laws

Let f n(s) denote the n-fold functional iterate of f (s) and f n � f n(0). Then Ei(s
Z n ) � ( f n(s))i.

Let M(s) denote the probability generating function of the initial law ì. The basic

conditional limit theorem for the subcritical branching process can be expressed as follows.

Proposition 2.1. Suppose m , 1 and

M(s) � 1ÿ (1ÿ s)áLì((1ÿ s))ÿ1 (2:1)

for some 0 ,á < 1 and slowly varying function Lì. Then

�q j � lim
n!1Pì(Z n � jjH . n) ( j � 1, 2, . . .) (2:2)

exists and de®nes a non-defective law. Its probability generating function is

�Q(s) � 1ÿ (1ÿ Q(s))á,

where Q( s) �Pqjs
j is the probability generating function of the limit law when

M9(1ÿ) ,1 (and then á � 1). The probability generating function Q is the unique such

solution of

1ÿ Q( f (s)) � m(1ÿ Q(s)): (2:3)

Conversely, if for some initial law ì the limit (2.2) exists and comprises a non-defective law,

then M has the form (2.1) for some 0 ,á < 1 and slowly varying L ì.

The direct assertion when M(s) � si and f 0(1) ,1 is the original form of Yaglom. The

second-order moment condition was removed almost simultaneously by Heathcote et al.

(1967) and by Joffe (1967); the dates of reception differ by several months. Joffe gives the

result in the form (2.2), whereas the development of Heathcote et al. is entirely in terms of

generating functions. The probabilistic interpretation of the latter contribution is exposed by

Seneta and Vere-Jones (1966). The result is also attributed to Nagaev and Badalbaev (1967),

but this reference is inaccessible to the author. Rubin and Vere-Jones (1968) contributed the

last assertion of Proposition 1. A monograph account is given by Asmussen and Hering

(1983). We refer to the limit law in (2.2) as a ì-limiting conditional law, and we refer to

fqjg as the limiting conditional law.

The convergence parameter of the sub-stochastic matrix [ pij] � [Pi(Z1 � j) : i, j 2 N] is

R � mÿ1 and this matrix is R-recurrent (for all m) and it is R-positive when m , 1 if and

only if the LOG condition holds:

E1(Z1 log� Z1) ,1: (2:4)

The existence of the limiting conditional law is, in the R-positive case, guaranteed by the

general theory of quasi-stationary laws ± see Seneta and Vere-Jones (1966) for these matters.

The limiting conditional law is also a quasi-stationary law, which usually is understood in the

sense of R-invariance, meaning that
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R
X
i>1

qi pij � qj ( j > 1): (2:5)

This system, together with the normalization
P

qj � 1, is equivalent to (2.3). A much more

satisfactory characterization is as follows. Write PQ(�) for Pì(�) when M(s) � Q(s). Then

(2.5) is equivalent to the probabilistic property

PQ(Zn � jjH . n) � qj ( j, n > 1):

More generally,

P�Q(Zn � jjH . n) � �qj: (2:6)

This relation is effectively that adopted by Kesten (1995) as his de®nition of a quasi-

stationary law for countable-state Markov chains ± see his (1.15).

We end this mini-review by recalling that

Ei(ZnjH . n) � mn

1ÿ f n

! C � Q9(1ÿ)

and that C ,1 if and only if (2.4) holds. The convergence assertion with C ®nite is due

originally to Kolmogorov under the assumption that f 0(1ÿ) ,1. The full assertion is due to

Heathcote et al. (1967), and an intermediate assertion was proved by Joffe (1967).

Let �m � má and let î p denote a random variable having the shifted geometric law

P(î p � j) � (1ÿ p) p jÿ1 ( j � 1, 2, . . .). Next, let S � N. Using the fact that (1ÿ f n�í)=
(1ÿ f n)! mí (n!1), we obtain the following lemma.

Lemma 2.1. If m , 1 and (2.1) holds, then

lim
n!1 Pì(H 2 n� S jH . n) � P(î �m 2 S ): (2:7)

This assertion appears in Pakes (1998) for the case M(s) � si, and then �m � m. It is clear

that

P�Q(H � n) � P(î �m � n):

Our next result is a formal generalization of Proposition 2.1. Recall that An �
fH 2 n� S g.

Theorem 2.1. Suppose that S is ®xed, m , 1 and (2.1) holds. Then

lim
n!1 Pì(Z n � jjAn) � �q j(S ) � �qj

Pj(H 2 S )

P(î �m 2 S )
: (2:8)

Proof. This is substantially as in Pakes (1998), but we include it to emphasize that it follows

from the direct assertion of Proposition 2.1. Simply observe that
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Pì(Zn � jjAn) �

X
í2S

Pì(Zn � j; H � n� í)

Pì(H 2 n� S )

�

X
í2S

Pì(Zn � j)Pj(H � í)

Pì(H 2 n� S )

� Pì(Zn � jjH . n)Pj(H 2 S )
Pì(H . n)

Pì(H 2 n� S )
: (2:9)

The ®rst factor converges (n!1) to �qj if and only if (2.1) holds, and the last factor

converges to the denominator in (2.8) when (2.1) holds. The limit law is non-defective since
�Q ( f n) � 1ÿ �mn. h

Observe that the limit law in (2.8) has an invariance property dual to (2.6):

P�Q(Zn � jjAn) � �q j

Pj(H 2 S )

P(î �m 2 S )
:

The proof shows that (2.8) is equivalent to (2.2) when (2.1) holds. The existence of the limit

in (2.8) would imply (2.1) if (2.7) were to imply (2.1). However, there appears to be

insuf®cient structure to attain this implication. The convergence (2.7) is equivalent to

lim
n!1

1ÿM( f n�í)
1ÿM( f n)

� máí (í � 0, 1, . . .):

Let r(t) � (1ÿM(1ÿ t))tÿá. By decomposing r(t) into the monotone factors (1 ÿ
M(1ÿ t))=t and t1ÿá one can easily show for 0 , t , 1 that the limit points of

r(t(1ÿ f n))=r(1ÿ f n) are contained in the interval [má, mÿá] and hence 1ÿM(1ÿ 1=v)

is O-regularly varying ± see Bingham et al. (1987, p. 65). When á � 1 the same approach

shows that (2.1) follows from (2.7). We can deduce (2.1) from (2.7) under the additional

hypothesis that Lì(�) is ultimately monotone. Of course none of this resolves the question of

whether the existence of the limit (2.8) is equivalent to (2.1) since the n-dependent factors in

the above proof could in principle oscillate in a self-compensating manner.

Observe that the probability generating function of the limit law is

�Q(s, S ) �

X
í2S

[ �Q(s f í)ÿ �Q(s fíÿ1)]X
í2S

[ �Q( f í)ÿ �Q( f íÿ1)]
:

When S � í�N we obtain the limiting probability generating function

�Qí(s) �
�Q(s)ÿ �Q(s f í)

máí
� á(æí(s))áÿ1 Q(s)ÿ Q(sí)

máí
, (2:10)
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where Q(s f í) , æí(s) , Q(s). Now let í!1. The limit is zero when á, 1, but when á � 1

we obtain (dropping the overbar)

lim
í!1Qí(s) � sQ9(s)=C:

Summarizing, we have the following theorem.

Theorem 2.2. Let m , 1 and (2.1) hold with á � 1. Then

lim
í!1 lim

n!1 Pì(Z n � jjH . n� í) � jqj=C (2:11)

and the limit comprises a non-defective law if and only if (2.4) holds.

The limit law in this theorem is usually seen in the case where the initial population size

is ®xed and the double limit is taken in reverse order, giving what we called the doubly-

limiting conditional law. This appears ®rst in Seneta and Vere-Jones (1966, p. 422), and

subsequently in Papangelou (1968, p. 1476). If the limit law (2.11) is shifted one unit to the

left, then the result is the limiting stationary law obtained from our branching process after

augmenting it with independent arrivals of immigrants into each generation, and in numbers

whose probability generating function is f 9(s)=m. After allowing for this spatial shift, the

n-step transition probabilities of the immigration process appear as the limits

limí!1 Pi(Zn � jjH . n� í). This connection (valid for m < 1) was ®rst noticed by

Pakes (1971a) and independently by Khalili-FrancËon (1973). It was also noted much later

by Sagitov (1986). A more formal development is given by Athreya and Ney (1972, p. 56)

in terms of what they call the Q-process.

We observe that the relation between (2.11) and the more usual form giving the doubly-

limiting conditional law is not completely symmetric as the the doubly-limiting conditional

law requires a slightly stronger condition on ì for its existence. We show this in the next

result, which also asserts a probabilistic invariance property of the doubly-limiting

conditional law.

Theorem 2.3. Suppose that m , 1 and (2.4) holds. Then

ë j(n) � Pì(Z n � jjH � 1)

(as de®ned by (1.2)) exists. The limit is identically zero if M9(1) � 1, but when

M9(1) ,1 (2:12)

the limit comprises a non-defective law having the probability generating function

ën(s) � s
M9( f n(s))

M9(1)

Ynÿ1

l �0

f 9( f l (s))=m: (2:13)

The doubly-limiting conditional law exists if and only if (2.12) holds, and when it does,

lim
n!1 lim

í!1 Pì(Z n � jjH . n� í) � jq j=C: (2:14)

Finally,
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PQ(Zn � jjH � 1) � jq j=C (n � 1, 2, . . .): (2:15)

Proof. A two-stage application of the mean value theorem gives

Eì(s Z n jH . n� í) �M( f n(s))ÿM( f n(s fí))

1ÿM( f n�í)

�M9(îí(s))

M9(æí)
.

f s(s)ÿ f n(s f í)

1ÿ f n�í

�M9(îí(s))

M9(æí)
.

s(1ÿ f í)

1ÿ f n�í
f 9n(sæ9í),

where f n(s fí) , îí(s) , f n(s), f n�í , æí , 1 and f í , æ9í , 1. Since îí(s)! f n(s) and æí,
æ9í ! 1 as í!1, the above probability generating function converges, and the limit is

identically zero when (2.12) fails. But when (2.12) holds the limit is given by (2.13) which is

a probability generating function since ën(1) � 1. This completes the proof of the ®rst

assertion.

Differentiating (2.2) and iterating the result gives

Q9(s) � Q9( f n(s))
Ynÿ1

l �0

[ f 9( f l (s))=m],

whence

ën(s) �M9( f n(s))

M9(s)

Q9(s)

Q9( f n(s))
:

Letting n!1 yields (2.14). Finally, setting M(s) � Q(s) yields ën(s) � Q9(s)=Q9(1) and

(2.15) follows. h

Observe that (2.13) is valid for m < 1. The coef®cient of s in this equation is the

probability generating function of the size at time n of the simple branching process de®ned

above and having an initial law whose probability generating function is M9(s)=M9(1).

Indeed

ë j(n) � jPì(Z n � j)=mnM9(1),

showing that the size biasing evident in (2.15) arises from the inner limiting operation in

(2.14), i.e. in (1.2).

We end our discussion of the subcritical case by showing that the doubly-limiting

conditional law can be obtained from a single limiting operation.

Theorem 2.4. Let m , 1, (2.1) hold, S 2 N, and n9 be a sequence of integers tending to

in®nity. Then limn!1 Pì( Z n � jjAn�n9) exists. If á � 1 and (2.4) holds, then

lim
n!1 Pì(Z n � jjAn�n9) � jq j=C,

and if either condition fails then the limit is zero.
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Proof. Replace S in (2.9) with n9� S . Then, using (2.2) and (2.7), we obtain

Pì(Zn � jjAn�n9) � �q j P(îm 2 S )Pj(H . n9)
Pì(H . n)

P(î �m 2 S )Pì(H . n� n9)

� j �q j

P(îm 2 S )

P(î �m 2 S )
.
1ÿ f n9

mán9
:

The last factor tends to Cÿ1, which is zero unless á � 1 and (2.4) holds. h

We turn now to the critical case m � 1 and review some known results. Let fð j; j > 1g
denote the stationary measure of the branching process. It is unique up to a constant

multiplier and
P

ð j � 1. Its generating function can be derived as in Seneta (1967, p.

492),

U (s) �
X
j>1

ð j s
j � lim

n!1
f n(s)ÿ f n

f n�1 ÿ f n

, (2:16)

and this entails

U ( f n) � n: (2:17)

The following result extends Proposition 3.2 of Pakes (1998) by allowing initial laws of type

(2.1) and giving a sharper conclusion.

Theorem 2.5. Suppose that m � 1 and (2.1) holds. Then

lim
n!1 Pì(Z n � jjAn) � ð j

Pj(H 2 S )

jS j if jS j,1
0 if jS j � 1:

8<:
Proof. We begin by observing that

Eì(s Z n jH � n� í) �M( f n(s f í))ÿM( f n(s f íÿ1))

M( f n�í)ÿM( f n�íÿ1)

�M9(æn,í)

M9(în,í)
.

f n(s f í)ÿ f n(s f íÿ1)

f n�í ÿ f n�íÿ1

, (2:18)

where f n(s f íÿ1) , æn,í , f n(s f í) and f n�íÿ1 , în,í , f n�í. The second factor is E1(s Zn jH
� n� í), and this converges to U (s f í)ÿ U (sf íÿ1) by virtue of (2.16). Observe that (2.16)

and (2.17) yield

f n�í ÿ f n�íÿ1

f n�1 ÿ f n

! U ( f í)ÿ U ( f íÿ1) � 1:

Next, since M9(s) is monotone, it follows from (2.1) that M9(s) � á(1ÿ s)áÿ1 Lì((1 ÿ
s)ÿ1). Then since
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1ÿ f n(s f í)

1ÿ f n(s f íÿ1)
<

1ÿ în,í

1ÿ æn,í
<

1ÿ f n(s fíÿ1)

1ÿ f n(s f í)

and the left- and right-hand sides tend to 1, we conclude that M9(æn,í)=M9(în,í)! 1. Hence

Pì(Z n � jjH � n� í)! ð j(í) � ð j( f j
í ÿ f

j
íÿ1): (2:19)

For the last step we rearrange the ®rst equality in (2.9), obtaining

Pì(Z n � jjAn) �

X
í2S

Pì(Zn � j)( f j
í ÿ f

j
íÿ1)X

í2S

Pì(H � n� í)
: (2:20)

Now (2.19) is equivalent to

Pì(Z n � j)=Pì(H � n)! ð j,

and by working as above we obtain the ratio limit result

Pì(H � n� í)=Pì(H � n)! 1:

The assertion for jS j,1 follows directly.

When jS j � 1 we replace S in the numerator of (2.20) with N to obtain

Pì(Z n � jjAn) <
Pì(Zn � j)

Pì(H � n)

X
í2S

Pì(H � n)

 !ÿ1

:

The ®rst factor tends to ð j, and by Fatou's lemma the limsup of the second factor is less than

or equal to jS jÿ1 � 0. h

3. A joint limit law for the critical case with ®nite variance

Let Pn(s, r) � E1(s Z n rTn ). Then, as shown by Pakes (1971a), P0(s, r) � sr, Pn�1(s, r) �
rf (Pn(s, r)) and Eì(s Zn rTn ) �M(Pn(s, r)). We begin by stating the following conditional

limit theorem for (Zn, Tn).

Theorem 3.1. Let m � 1 and v � f 0( 1ÿ)=2 ,1. If the initial law satis®es (2.1) then

L (Zn=vn, Tn=vn2jH . n)) (å, A),

where

E(eÿæåÿèA) � ö(æ, è) � è cosech
���
è
p���

è
p

cosh
���
è
p � æ sinh

���
è
p � 2

���
è
p

cosech(2
���
è
p

)

1� æ
tanh

���
è
p���
è
p

: (3:1)

In the case of the critical Markov branching process, Puri (1969) obtained the joint limit
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law for the population size at time t, and the number of deaths and the integral under the

population trajectory up to time t. He assumes the offspring law has a ®nite third-order

moment. Setting u � æ, v � è and w � 0 in his Theorem 9 gives an expression that can be

put into the form (3.1).

Before proving Theorem 3.1, we shall explore some of its consequences. Setting è � 0 in

(3.1) yields the familiar exponential limit law for L (Zn=vnjH . n), and setting æ � 0

gives the limiting Laplace±Stieltjes transform for the total progeny found by Pakes (1971a).

The density function of this law can be expressed in terms of a theta function, and we have

an `in law' representation as a sum of independent exponential random variables,

A�d 4U � 4

ð2

X1
n�1

ån=n2: (3:2)

See Pakes (1997) for these.

We know ö(æ, è) is a bivariate Laplace±Stieltjes transform by virtue of its derivation. It

is not obvious (to the author) how this could be demonstrated just from the analytical

expression (3.1), or whether there is a random variable representation similar to (3.2).

However, there is a representation in terms of functionals of a standard Brownian motion

process (Bt), as follows.

The Laplace±Stieltjes transform of U in (3.2) is
���
è
p

cosech
���
è
p

. Factoring this out of

(3.1) gives

ö(æ, è) � (
���
è
p

cosech
���
è
p

) .

���
è
p���

è
p

cosh
���
è
p � æ sinh

���
è
p : (3:3)

Let M t � maxô< t Bô and

Á � infft : Mt ÿ Bt � 1g:
The joint Laplace±Stieltjes transform of (MÁ, Á) is the second factor in (3.3), i.e.

E(eÿæMÁÿèÁ) � sech
���
è
p

1� æ
tanh

���
è
p���
è
p

: (3:4)

This was ®rst shown by Taylor (1975), and then more simply by Williams (1976). It follows

that if U (de®ned in (3.2)) is chosen to be independent of (MÁ, Á) then

L (å, A) � L (MÁ, U �Á): (3:5)

Proof of Theorem 3.1. It is clear that

Eì(s Z n rTn jH . n) �M(Pn(s, r))ÿM(Pn(0, r))

1ÿM( f n)
: (3:6)

Since critical processes are almost surely mortal, Tn " T1 where T1 is the total number of

individuals ever to have existed. Its law is non-defective and its probability generating

function g(�) solves g(r) � rf (g(r)). Hence Pn(s, r)! g(r) as n!1 and 0 < s < 1 ± see

Pakes (1971a). So if 0 < sn < 1 and rn ! 1, then Pn(sn, rn)! 1, and it follows in the usual
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way that any limit law which might result from (3.6) will be independent of the form of ì
provided (2.1) holds. Thus we can, and shall, take M(s) � s.

We will use the following known weak convergence theorems for a sequence of simple

branching processes. For each n let fZ(n)
í : í � 0, 1, . . .g denote a simple critical branching

process with offspring probability generating function f (s) as above, v ,1, and an initial

size depending on n which satis®es Z
(n)
0 !1 (n!1). De®ne the continuous-time

interpolated process (v(n)
t : t > 0) by

v(n)
t � Z

(n)
[nt]=vn:

Building on earlier work, Lindvall (1974) has shown that if v(n)
0 ! z . 0 then

(v(n)
t )) (v t),

where the convergence is in the sense of weak convergence of random elements in the

function space D[0, 1) of cadlag functions, and the limit process is Feller's continuous

branching (CB) diffusion. The CB process solves the ItoÃ equation

dv t �
�������
2v t

p
dBt, (3:7)

and its transition law is given via

Ez(e
ÿæv t ) � exp ÿ zæ

1� æt

� �
: (3:8)

This law has an absolutely continuous component whose density is

p(x, tjz) � 1

t

���
z

x

r
exp ÿ z� x

t

� �
I1

2
�����
zx
p
t

� �
, (3:9)

where I1(�) is a modi®ed Bessel function of the ®rst kind. The origin is an accessible

absorbing state. Let ç denote its hitting time, i.e. the extinction time of the CB diffusion.

Then

Pz(v t � 0) � Pz(ç < t) � exp(ÿz=t): (3:10)

Durrett (1978, Theorem 4.5) has shown that a conditional weak convergence theorem for

(v(n)
t ) follows from Lindvall's theorem. It is more convenient for our purposes to express

this as follows. Fix á. 0. Then the conditioned process

(v(n)
t : 0 < t < ájv(n)

á . 0)) (V�t (á) : 0 < t < ájV�0 (á) � 0),

where the limiting process is an inhomogeneous Markov process for which

E0(eÿæV�t (á)) � [(1� æt)(1� æt(1ÿ t=á))]ÿ1: (3:11)

The zero state is entrance but not exit. The transition law has the following density function:

for 0 < u , t < á,

P(V�t (á) 2 dxjV�u (á) � z) � q(x, tjz, u; á) dx � p(x, t ÿ ujz)
Px(ç.áÿ t)

Pz(ç.áÿ u)
dx: (3:12)
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This is the conditional probability that the CB diffusion occupies (x, x� dx) at t given that it

starts from z at time u and does not hit zero before time á. The law de®ned by (3.11) is

obtained from (3.12) by setting u � 0 and allowing z # 0. This algorithm provides the means

for computing the law of functionals of (V�t (á)) from the corresponding law for the same

functional of (v t).

Let t � 1 < á and observe that�1

0

v(n)
u du � (vn)ÿ1

�1

0

Z
(n)
[nu] du � (vn2)ÿ1

Xn

j�1

Z
(n)
j :

Since j1(v(n)
(�) ) � (v(n)

1 ,
� 1

0
v(n)

u du) is a continuous functional, the continuous mapping theorem

applied to Durrett's theorem yields

(Zn=vn, Tn=vn2jH . ná)) j1(V�(�)(á)): (3:13)

We choose to compute the limit law by using the Feynman±Kac formula to calculate

ö(tjz) � ö(æ, è, tjz) � Ez exp ÿæv t ÿ è

� t

0

vu du

 !" #
:

The Feynman±Kac recipe applied to (3.7) (Karlin and Taylor 1981, p. 224) yields the

following partial differential equation for ö(tjz):

@ö

@ t
� z

@2ö

@z2
ÿ èzö, ö(0jz) � eÿæz:

The branching property entails the existence of a function w(t) > 0 for which ö(tjz) �
exp(ÿzw(t)) and w(0) � æ. Substitution produces the ®rst-order equation w9(t) � èÿ w2(t),

and separation of variables leads to

w(t) � w(æ, è, t) �
���
è
p æ� ���

è
p

tanh(t
���
è
p

)

æ tanh(t
���
è
p

)� ���
è
p :

Noting that ö(1, è, 1jz) � Ez(exp(ÿè � 1

0
vu du); v1 � 0), the above computation algorithm

yields an evaluation of the left-hand side of (3.1) as

lim
z!0

ö(æ, è, 1jz)ÿ ö(1, è, 1jz)

1ÿ exp(ÿz)
� w(1, è, 1)ÿ w(æ, è, 1):

Since w(1, è, 1) � ���
è
p

=tanh
���
è
p

, (3.1) follows after some manipulation with hyperbolic

function identities. h

An alternative direct way of proving Theorem 3.1 is to use existing bounds for the

difference g(r)ÿ Pn(s, r), similar to the route followed by Pakes (1971a) for L (Tn=vn2j
H . n). See also Pakes (1972). Again, the evaluation using the Feynman±Kac formula

which follows (3.13) can be replaced by a direct evaluation of the limit for some tractable

offspring law, namely, f (s) � (2� s)ÿ1. Here v � 1 and Pn(s, r) can be explicitly

determined. However, the details for each of these are algebraically much more

complicated.
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Applying the computation algorithm as above, but for any á. 1, shows that the joint

Laplace±Stieltjes transform of the limit law in (3.13) is

lim
z!0

ö(æ, è, 1jz)ÿ ö(æ� (áÿ 1)ÿ1, è, 1jz)

1ÿ exp(ÿz=a)
� á[w(æ� (áÿ 1)ÿ1, è, 1)ÿ w(æ, è, 1)]:

Carrying out the algebra leads to the following generalization of Theorem 3.1.

Theorem 3.2. If the conditions of Theorem 3.1 hold and 1 < á,1 then

L (Zn=vn, Tn=vn2jH .án)) (å(á), A(á)),

where

E(eÿæå(á)ÿèA(á)) � öá(æ, è) � sech2
���
è
p

1� æ
tanh

���
è
p���
è
p

" #
1ÿ áÿ1 � (áÿ1 � (1ÿ áÿ1)æ)

tanh
���
è
p���
è
p

" # :
(3:14)

We will now use Theorem 3.1 to obtain a more robust version of Theorem 3.2 which

allows a more general family of conditioning events. Observe that

E1(s Zn rTn jH . n� í) � Pn(s, r)ÿ Pn(s f í, r)

1ÿ f n�í

� 1ÿ f n

1ÿ f n�í
[E1(s Zn rTn jH . n)ÿ E1((s f í)

Zn rTn jH . n)]: (3:15)

We let n!1 and í=n! áÿ 1 > 0. Using

1ÿ f n � (vn)ÿ1 (3:16)

(Athreya and Ney 1972) we obtain

1ÿ f n

1ÿ f n�í
! á if í=n! áÿ 1 ,1,

1 if í=n!1:
�

(3:17)

Corollary 3.1. Suppose the conditions of Theorem 3.1 hold and í=n! áÿ 1 where

1 < á,1. Then, in the notation of Theorem 3.2,

L (Zn=vn, Tn=vn2jH . n� í)) (å(á), A(á)):

Proof. When á. 1 the proof is a straightforward application of Theorem 3.1, (3.17) and the

observation that if sn � exp(ÿæ=vn) then

sn f í � exp ÿ 1

vn
(æ� n=í)� o(nÿ1)

� �
� exp ÿ 1

vn
(æ� (áÿ 1)ÿ1)� o(nÿ1)

� �
:

When á � 1 the proof is similar but easier, since
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E1((s fí) Z n rTn jH . n) < E( f Z n

í jH . n) � P1(H < n� íjH . n)! 0: h

We now show that the assertion of Corollary 3.1 remains true when á � 1. The proof of

this assertion is a consequence of Theorem 3.1. It is rather more involved than for á,1,

and hence the following proof omits some analytical detail which the reader can supply.

Theorem 3.3. Suppose the conditions of Theorem 3.1 hold and that í=n!1. Then

L (Zn=vn, Tn=vn2jH . n� í)) (å(1), A(1)),

where

E(eÿæå(1)ÿèA(1)) � è

[
���
è
p

cosh
���
è
p � æ sinh

���
è
p

]2
:

Proof. Observe ®rst that

(1ÿ fí)=(1ÿ f n�í)! 1: (3:18)

Consequently, with sn as in the previous proof we have sn f í � sn. It follows from the ®rst

line of (3.15) that

E1 s Zn

n rTn

n jH . n� í
ÿ � � sn

1ÿ f í

1ÿ f n�í
.
@

@s
Pn(s, r)js�î n,r�rn

: (3:19)

Here rn � exp(ÿè=vn2) and sn f í , în , sn. Clearly we can replace în with sn.

Let Dn(s, r) denote the above derivative. It is easy to show that

Dn(s, r) � r n�1
Ynÿ1

i�0

f 9(Pi(s, r)):

Since rn
n ! 1, we obtain

Dn(sn, rn) � [ f 9(g(rn))]n
Ynÿ1

i�0

f 9(Pi(sn, rn))

f 9(g(rn))

� �
:

It follows from Pakes (1971a, eq. (26)), that

[ f 9(g(rn))]n ! eÿ2
��
è
p
: (3:20)

Denote the product term by Qn(s, r). The mean value theorem yields

ÿlog Qn(sn, rn) � 2v
Xnÿ1

i�0

[g(rn)ÿ Pi(sn, rn)]:

Observe that since T1 ÿ Tn � 0 on the event fZn � 0g,
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g(r)ÿ Pn(s, r)

P1(H . n)
� g(r)ÿ Pn(0, r)

P1(H . n)
ÿ Pn(s, r)ÿ Pn(0, r)

P1(H . n)

� E1(rT1jH . n)ÿ E1(s Z n rTn jH . n):

Pakes (1971a, p. 188) has shown that

E1(rT1
n jH . n)! â(è) � (

���
è
p

cosech
���
è
p

) eÿ
��
è
p

,

the Laplace±Stieltjes transform of a continuous law. Theorem 3.1 and the discussion which

follows it show that (å, A) has a continuous law. We now invoke the fact that if a sequence of

positive random vectors has a continuous and non-defective limit law, then their Laplace±

Stieltjes transforms converge uniformly in the positive quadrant. For two dimensions this

follows from the decomposition

1ÿ E(eÿæVÿèW ) �æ
�1

0

eÿæv P(V . v) dv� è

�1
0

eÿèw P(W . w) dw

ÿ æè

�1
0

�1
0

eÿævÿèw P(V . v, W . w) dv dw:

Consequently,

g(rn)ÿ Pn(sn, rn)

P1(H . n)
! ø(æ, è) � â(è)ÿ ö(æ, è)

uniformly in f0 < æ, è,1g. It follows that as i, n!1,

g(rn)ÿ Pi(sn, rn) � (vi)ÿ1ø(æi=n, è(i=n)2)(1� o(1)):

We can conclude then that

ÿlog Qn(sn, rn) � (2=n)
Xnÿ1

i�1

ø(æi=n, è(i=n)2)(n=i)

! 2

�1

0

ø(æu, èu2) du=u:

The change of variables v � eÿu
��
è
p

=2 and algebraic reduction eventually yield

ÿlog Qn(sn, rn)! 2(æÿ
���
è
p

)

�1

exp(ÿ2
��
è
p

)

dv

æ� ���
è
p ÿ (æÿ ���

è
p

)v

� ÿ2log

���
è
p

exp(
���
è
p

)���
è
p

cosh
���
è
p � æ sinh

���
è
p

" #
:

This, together with (3.18)±(3.20) and further algebraic reduction, ®nishes the proof. h

Allowing í!1 in the ®rst line of (3.15) yields
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E1(s Z n rTn jH � 1) � sDn(s, r):

It follows that L (Zn=vn, Tn=vn2jH � 1) has the same limit law as in Theorem 3.3.

Furthermore, we note that the product term
Qnÿ1

i�0 f 9(Pi(s, r)) is the joint probability

generating function of the size and total progeny at time n of a simple branching process with

immigration (BPI). Its immigration law has the probability generating function f 9(s).

Let Xn denote the size at time n of a BPI whose offspring law has the probability

generating function f (s) and whose immigration law has a general probability generating

function h(s), h(0) , 1. If X 0 � 0 and Yn �
Pn

i�1 X i then

E s X n rYn� � �
Ynÿ1

i�0

h(Pi(s, r)):

Some simple alterations to the proof of Theorem 3.3 yield the following result.

Theorem 3.4. Suppose m � 1, v ,1 and let â � h9(1ÿ) ,1. Then

(X n=vn, Yn=vn2)) (ã, Õ)

where (see (3.1))

E(eÿæãÿèÕ) � è���
è
p

cosh
���
è
p � æ sinh

���
è
p

� �â=v
:

Setting è � 0 reproduces the well-known gamma limit law for Xn=vn obtained independently

by Foster (1969), Pakes (1971b) and Seneta (1970). Putting æ � 0 gives a result for the total

progeny originally derived by Pakes (1972, Theorem 5).

The conditioning in Theorems 3.2 and 3.3 captures the essence of conditioning on

extinction in the proximate to remote futures. The following result complements this idea

by conditioning on extinction in the intermediate future. Results for the generation sizes

conditioned by events of the form fn=ô, H ,án=ôg, where á. 1 and 0 , ô,á, were

considered by Esty (1976). Here, and in the next section, we will ®nd it notationally

convenient to set r � 1=á.

Theorem 3.5. If the conditions of Theorem 3.1 hold and í!1 and í=n! áÿ 1, where

1 < á <1, then

L (Zn=vn, Tn=vn2jn , H < n� í)) (ä(á), B(á)),

where

E(eÿæä(á)ÿèB(á)) � øá(æ, è) � è cosech
���
è
p

(1ÿ r)
���
è
p

cosh
���
è
p � (r� (1ÿ r)æ) sinh

���
è
p : (3:21)

Proof. When á. 1 this is similar to Corollary 3.1, using the identity

E1(s Z n rTn jn , H < n� í) � E1((s f í)
Zn rTn jH . n) .

1ÿ f n

f n�í ÿ f n

:
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When á � 1, it can be shown that E1(Zn=njn , H < n� í) � O(í=n)! 0, and hence

from Markov's inequality that (Zn=njn , H < n� í)!p 0. Consequently Zn=n and Tn=n2

are conditionally independent in the limit as n!1, and hence we need only compute the

marginal limit law for the total progeny. To do this, observe that

E1(rTn

n jn , H < n� í) � ( f n�í ÿ f n)ÿ1
Xí
j�1

E1(rTn

n jH � n� j)( f n� j ÿ f n� jÿ1):

But Theorem 5.2 below implies that E1(rTn
n jH � n� j)! è cosech2

���
è
p

. h

The case á � 1 can be interpreted as conditioning on extinction in the near future,

fn , H < n� o(n)g. Hence the conditioning in Theorem 3.5 interpolates this case and the

Yaglom conditioning event fH . ng. The limit law for the generation sizes is

ä(á)�d (1ÿ áÿ1)å:

This degenerates when á � 1, as observed in the proof, and it increases stochastically with á.

It is always stochastically smaller than the weak limit (1.1).

4. Representations for the total progeny limit laws

Taking æ � 0 in (3.14) together with Corollaries 3.1 and 3.2 gives the following conditional

limit theorem for the total progeny.

Theorem 4.1. Let m � 1, v ,1 and 1 < á <1. If í=n! áÿ 1 then

(Tn=vn2jH . n� í)) A(á),

where

a(è, á) � E(eÿèA(á)) � sech2
���
è
p

1ÿ r� r
tanh

���
è
p���
è
p

�
���
è
p

sech
���
è
p

(1ÿ r)
���
è
p

cosh
���
è
p � r sinh

���
è
p : (4:1)

Observe that

E(A(á)) � 1ÿ 1=3á,

a(è, 1) � 2
���
è
p

cosech (2
���
è
p

) (4:2)

and that

a(è, 1) � sech2
���
è
p

: (4:3)

The limit law L (A(á)) can be represented as a kind of size-biased version of the

limiting bivariate law (3.1) since
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a(è, á) � E[(exp(ÿ(áÿ 1)ÿ1åÿ èA)]=E[exp(ÿ(áÿ 1)ÿ1å)]:

This, however, is not especially revealing.

Noting (4.2), rewrite (4.1) as

a(è, á) � a(è, 1)k(è, á), (4:4)

where

k(è, á) � k(è)

1ÿ r� rk(è)
, k(è) � k(è, 1) � èÿ1=2 tanh

���
è
p

: (4:5)

All of the above functions are Laplace±Stieltjes transforms of a functional of the

standard Brownian motion process (Bt). Thus

a(è, 1) � E(eÿèCjB2 � 0),

where

C �
�2

0

B2
t dt ÿ

�2

0

Bt dt

 !2

;

see Donati-Martin and Yor (1993, p. 577). Or, if H � H(c, d) is the exit time of (Bt) from

(c, d), then taking c � 0 and d � ���
2
p

we have

a(è, 1) � E0[exp(ÿèH)jBH �
���
2
p

)];

see entry 1.3.0.5(b) of Borodin and Salminen (1996).

Next, taking d � ÿc � 1=
���
2
p

, we have

a(è, 1) � [E0(exp(ÿèH))]2 � E0 exp ÿè
� ��2p

0

â2
t (4) dt

 !" #
,

where (â2
t (í)) is the í-dimensional squared Bessel process; see entries 1.2.4.1 and 4.1.9.3 of

Borodin and Salminen (1996) for these. Let ãl (2) (l � 1, 2, . . .) denote independent copies

of å� å9, where å9 is an independent copy of å. Then

A(1)�d ðÿ2
X1
l �1

ãl (2)=bl , bl � (l ÿ 1
2
)2;

see Pakes (1997).

Clearly A(1) and A(1) have in®nitely divisible laws with LeÂvy measures which can be

expressed in terms of theta functions. In an obvious sense the laws of the A(á) interpolate

those of A(1) and A(1). We now procede to show that L (A(á)) too is in®nitely divisible

and expressible as an in®nite sum of randomly weighted standard exponential random

variables.

We begin by observing that k(è, á) de®ned in (4.4) is the Laplace±Stieltjes transform of

a probability law. Indeed, by taking á. 1, c � 0 and d � á=
���
2
p

, we have
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k(è, á) � E1=
��
2
p exp ÿè

� H

0

1[0,1=
��
2
p

](Bt) dt

 !
jBH � á=

���
2
p

" #
;

see entry 1.3.4.5(b) of Borodin and Salminen (1996). Let Ká denote a random variable

having this Laplace±Stieltjes transform.

Expressing k(è) (see (4.5)) in terms of k(è, á) gives

k(è) � k(è, á)
1ÿ r

1ÿ rb(è, á)
(1 < á,1), (4:6)

which also is a Laplace±Stieltjes transform. In addition k(è) � E0(exp(ÿèK)), where K is

the last exit time from zero of the stopped process B(t ^ H(ÿ1=
���
2
p

, 1=
���
2
p

)); see Louchard

(1984, p. 480). The density function of K is

k(x) � (4
������
ðx
p

)ÿ1
X1

j�ÿ1
(ÿ1) j exp(ÿ j2=x);

see Borodin and Salminen (1996, p. 451). The in®nite product representation of tanh(�) leads

to the representation

K �d ðÿ2
X1
l �1

I l ål =bl , (4:7)

where L (I l ) � Bern(1ÿ bl =al ), al � l 2, and all the I l and ål are independent.

Logarithmic differentiation of the second member of (4.4) eventually reveals that L (K) is

in®nitely divisible with canonical form:

k(è) � exp ÿ
�1

0

(1ÿ eÿèx)n(dx)

� �
,

where

n(dx) � (2x)ÿ1 P(A(1) . x) dx:

In terms of random variables, (4.4) takes the form

A(á)�d A(1)� Ká, (4:8)

and from (4.5) this implies the following link between the extreme ends of our linear family

of limit laws:

A(1)�d A(1)� K,

where the summands are independent. (We follow this convention below.)

Observing that 1ÿ r� rk(è) is the Laplace±Stieltjes transform of I(1=á)K, where

L (I(�)) � Bern(�), we have

A(á)� I(1=á)K �d A(1):
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This can be rewritten in various ways after observing that (4.6) is equivalent to

K �d
X1�N(å=(áÿ1))

l �1

K (l )
á ,

where N (�) is a unit-rate Poisson process, å is standard exponential, and the K (l )
á are

independent copies of Ká.

Our principal representation theorems follow from the next result which expresses Ká as

a randomly weighted sum of exponential random variables.

Theorem 4.2. For á > 1, the equation

yÿ1 tan y � ÿ(áÿ 1) (4:9)

has real solutions yl � ðt�l (á) (l � 1, 2, . . .) where tl (á) � ÿtÿl (á) and

(l ÿ 1=2) , tl (á) , l : (4:10)

In addition, for ®xed l > 1,

tl (á)! l as á! 1

l ÿ 1
2

as á!1,

�
(4:11)

and for any á. 1,

tl (á) � l ÿ 1
2

(l !1): (4:12)

Finally,

Ká�d ðÿ2
X1
l �1

J l ål =tl (á), (4:13)

where L (J l ) � Bern(1ÿ (tl (á)=l )2) and the J l and ål are independent.

Proof. We verify conditions allowing the application of Hadamard's product theorem (Veech

1967, Chapter 5) to the entire function D(z) � 1=c(z2, á), where (see (4.1))

c(è, á) �
���
è
p

(1ÿ r)
���
è
p

cosh
���
è
p � r sinh

���
è
p : (4:14)

The function D(z) has order 1 and its zeros coincide with the solutions of

zÿ1 tanh z � ÿ(áÿ 1):

It can be shown that the left-hand side is real if and only if z is real or imaginary. In the

former case the left-hand side is positive and hence there can be no solutions. When z � iy,

with y real, the above equation transforms to (4.9). Graphical considerations reveal the truth

of (4.10) to (4.12).

Hadamard's theorem gives us the product representation
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D(z) � ec1�c2 z
Y
l 6�0

[(1ÿ z=iyl ) ez=i yl ] � E c1�c2 z
Y1
l �1

(1� z2=y2
l ),

where c1 and c2 are constants to be determined. We have c1 � 0 since D(0) � 1, and

expanding log D(x), x > 0, around the origin leads to c2 � 0. We conclude that

c(è, á) �
Y1
l �1

(1� è=ð2 t2
l (á))ÿ1, (4:15)

which shows that c(è, á) is the Laplace±Stieltjes transform of a probability law. In fact it has

a representation very similar to that of k(è, á) above.

The in®nite product representation of sinh
���
è
p

now yields

k(è, á) � c(è, á)sinh
���
è
p
�
Y1
l �1

1� è=ð2l 2

1� è=ð2 t2
l (á)

:

The right-hand inequality of (4.10) allows us to conclude that each factor in the above

product is the Laplace±Stieltjes transform of ðÿ2 J l ål =t2
l (á). h

The decomposition (4.8) and the structure of L (Ká) given by Theorem 4.2 together

comprise our analogue of the relation (1.1) for the limit law for the generation sizes under

the same family of conditioning events. When á � 1 the random weights J l vanish almost

surely, giving K1 � 0. As á!1 the random weights J l ) I l ± see (4.7). It follows then

from (4.11) that Ká ) K, a fact we know from above considerations. Hence A(á) is the

sum of A(1) and an independent component which increases stochastically with á from zero

to K.

A representation in terms of non-random weights follows from (4.1), (4.14) and (4.15)

(compare the representation for A(1)):

A(á)�d ðÿ2
X1
l �1

ål =t2
l (á)� ðÿ2

X1
l �1

å9l =(l ÿ 1
2
)2, (4:16)

where the ål and å9l are independent with standard exponential laws.

Refering next to (3.21), we obtain the following theorem.

Theorem 4.3. Let m � 1, v ,1 and 1 < á <1. If í!1 and í=n! áÿ 1 then

(Tn=vn2jn , H < n� í)) B(á),

where

b(è, á) � E(eÿèB(á)) � è cosech
���
è
p

(1ÿ r)
���
è
p

cosh
���
è
p � r sinh

���
è
p : (4:17)

This is similar in overall structure to a(è, á), and hence many of the above results apply

here with suitable alteration. For later reference, note that
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b(è, 1) � è cosech2
���
è
p

: (4:18)

Algebra yields

E(B(á)) � (1ÿ áÿ1)=3,

which increases as á " 1 to E(A(1)). Analagous to (4.13), we see from (4.14), (4.17) and

(4.18) that

B(á)�d B(1)� Ká, (4:19)

and hence that substituting l for l ÿ 1
2

in (4.16) gives a representation for B(á).

5. The total progeny with extinction in the near future

As in Sections 3 and 4, we assume m � 1 and v ,1. Karpenko and Nagaev (1994, p. 449),

proved that

E(TnjH � n) � vn2=3: (5:1)

They made a stronger moment assumption to obtain this result, but their assumption

provides an error estimate. We can prove (5.1) under our weaker assumption by changing

details of the proof of their Lemma 5 as follows. Let un � E1(Tn; Zn � 0). Karpenko and

Nagaev (1994) show that

un � f n � f 9( f nÿ1)unÿ1 � f n �
Xnÿ1

i�1

f i

Xnÿ1

l �i

f 9( f l ):

Lemma 5.1. If m � 1 and v ,1 then

un � n=3:

Proof. Let fn9g be a subsequence of positive integers satisfying n9 , n, n9!1 and

n9=n! 0, both as n!1. Write

f n � 1ÿ (vn)ÿ1(1� e(n)),

where e(n)! 0. It follows that

un � O(n9)� (1� o(1))
X

n9<i<n

Ynÿ1

l �i

f 9( f l ): (5:2)

Following Karpenko and Nagaev, we see that the product equals

exp ÿ2
Xnÿ1

l �i

l ÿ1(1ÿ e(l ))

( )
. exp

Xnÿ1

l �i

O(l ÿ2)

( )
:
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The second exponential factor contributes a factor 1� o(1) to the sum (5.2). Since

supn9<l <n e(l )! 0, we can bound the sum at (5.2) with expressions of the form

(1� o(1))
Xn

i�n9

(i=n)2�ä(n9),

where ä(n9)! 0 as n!1. Denoting the last sum by ó n, integral test comparisons yield

ó n �
� n

n9

(x=n)2�ä(n9) dx � n=3: h

The asymptotic estimate (5.1) follows now from

Ei(TnjH � n) � i
un ÿ unÿ1

f i
n ÿ f i

nÿ1

� un ÿ unÿ1

f n ÿ f nÿ1

� f n ÿ (1ÿ f 9( f nÿ1))unÿ1

f n ÿ f nÿ1

and the estimate 1ÿ f 9( f nÿ1) � 2=n.

Let mi(n, í) � Ei(ZnjH � n� í).

Lemma 5.2. If m � 1 and í is ®xed then

lim
n!1 mi(n, í) � f í ÿ f íÿ1 f 9( f íÿ1)

f í ÿ f íÿ1

P (í)

where P (í) is a constant which is de®ned in the proof.

Proof. We see from (2.18) that mi(n, í) � m1(n, í) and

m1(n, í) � f í f 9n( f í)ÿ f íÿ1 f 9n( f íÿ1)

f n�í ÿ f n�íÿ1

:

But

f 9n( fí)

f n�í ÿ f n�íÿ1

� ( f í ÿ f íÿ1)ÿ1 f 9n( fí)= f 9n(æí)

� ( f í ÿ f íÿ1)ÿ1
Ynÿ1

i�0

f 9( f i�í)
f 9( f i(æí))

,

where f íÿ1 , æí , fí. Hence

1 , f 9( f i�í)= f 9( f i(æí)) , f 9( f i�í)= f 9( f i�íÿ1):

It follows that the product converges as n!1 to

P (í) �
Y1
i�0

f 9( f i�í)= f 9( f i(æí)) ,1:
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The proof is completed by further algebraic manipulation. h

It follows then that under the conditions of Lemma 5.1 and for ®xed í, we have

Ei(TnjH � n� í) � vn2=3,

whence the following theorem.

Theorem 5.1. If m � 1, v ,1 and S � N has ®nite cardinality, then

Ei(TnjH 2 n� S ) � vn2=3:

The restriction on the cardinality of S is essential. For example, we can show from (3.6)

that

Ei(TnjH . n� í) � i
E1(Tn)ÿ f iÿ1

n�íE1(Tn; Z n�í � 0)

1ÿ f i
n�í

� i
E1(Tn)ÿ E1(Tn; Z n�í � 0)

1ÿ f i
n�í

� 1ÿ f iÿ1
n�í

1ÿ f i
n�í

E1(Tn; Z n�í � 0)

� 2vn2=3 (n!1 & í=n! 0),

because Lemma 5.1 entails E1(Tn; Z n�í � 0) � un�í � O(í).

One may ask whether it is possible to interpolate the constants 1
3

and 2
3

which appear in

these asymptotic estimates by allowing S to expand unboundedly as n!1.

It follows from Theorem 5 of Karpenko and Nagaev (1994) that (cf. (4.18))

E1(eÿèTn=vn2 jH � n)! b(è, 1): (5:3)

They obtained this limiting Laplace±Stieltjes transform for the more general paracritical case

where m may differ from unity but m! 1 as n!1. Their proof requires a stronger

moment assumption than we are making here. As we mentioned in Section 1, Kesten (1986)

proved the existence of a limit law under our moment conditions, but he did not identify it.

We offer the following variation of Kesten's approach which yields (5.3). It rests on Theorem

3.4 and hence, like Kesten's proof, on Durrett's functional limit theorem.

Let n be large and 0� a , 1. In the following we will understand the product an to

mean [an] wherever it occurs in time indices. Now, with rn as above,
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E1(rTan

n jH � n) � ( f n ÿ f nÿ1)ÿ1
X1
j�1

E1(rTan

n ; Zan � j)[ f
j
(1ÿa)n ÿ f

j
(1ÿa)nÿ1]

� (1ÿ a)ÿ2
X1
j�1

E1(rTan

n ; Zan � j) f
jÿ1
(1ÿa)n

� (1ÿ a)ÿ2 @

@s
Pan(s, rn)js� f(1ÿa) n

� (1ÿ a)ÿ2 ran�1
n Dan( f (1ÿa)n, rn)

� (1ÿ a)ÿ2
Yanÿ1

i�0

f 9(Pi( f (1ÿa)n, rn))

� (1ÿ a)ÿ2E0(( f (1ÿa)n)Xn rYan

n ),

where (X n) is a branching process with offspring probability generating function f and

immigration probability generating function f 9(s).

Since

f (1ÿa)n � (1� o(1)) exp[ÿ((1ÿ a)vn)ÿ1],

we obtain

E1(rTan

n jH � n) � (1ÿ a)ÿ2E0[exp(ÿ(a=(1ÿ a))X an=vanÿ (a2è)Yan=van2)]

! (1ÿ a)ÿ2 a2è

a
���
è
p

cosh(a
���
è
p

)� a

1ÿ a
sinh(a

���
è
p

)

� �2
,

on using Theorem 3.4. As shown by Kesten (1986), we thus obtain

lim
n!1E1 rTn

n jH � n
ÿ � � lim

a!1
lim
n!1E1 rTan

n jH � n
ÿ � � è=(sinh

���
è
p

)2:

Recalling the representation (3.2) and the discussion which precedes it, we see that the

limit law represented by (5.3) can be expressed in random variable terms as

(Tn=vn2jH � n)) V � ðÿ2
X1
l �1

ã l(2)=l 2: (5:4)

It is now an easy step to the main result of this section, and complement to Theorem 4.3.

Theorem 5.2. Let the conditions of Theorem 5.1 hold. Then

(Tn=vn2jH 2 n� S )) V :

Proof. It suf®ces to prove the assertion with S � fíg. However, it follows from Theorem

5.1 that nÿ2E1[(T n�í ÿ Tn)jH � n� í]! 0, and hence Markov's inequality implies that
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nÿ2(Tn�í ÿ TnjH � n� í)!p 0:

The assertion follows now from (5.4) after replacing n with n� í. h

6. Countable-state Markov chains

In this section we suppose that (Zn) is a Markov chain on a countable state space containing

an irreducible proper subset T . Let H be the hitting time of the complement set �T , and

suppose ri � Pi(H ,1) . 0 for each i 2 T .

The essential structure of branching processes exploited in Lemma 2.1 and Theorem 2.1

is preserved by assuming that

T is R-positive for some R . 1: (A)

Let p
(n)
ij � Pi(Zn � j). Then p

(n)
ij ! 0 (n!1; i, j 2 T ) and the irreducibility of T

implies that the power series
P

p
(n)
ij z n have a common radius of convergence R > 1. We say

T is R-positive if p
(n)
ij � Rÿnxi m j, where fxig and fmig are positive sequences which are

right- and left-invariant, respectively, for the matrix [Rpij : i, j 2 T ] and normalized so thatP
xi mi � 1. More speci®cally, fmig is an R-invariant measure:

R
X
i2T

mi pij � m j ( j 2 T ): (6:1)

Making the further assumption

M �
X
i2T

rimi ,1, (B)

Seneta and Vere-Jones (1966) show that

Pi(Zn � jjn , H ,1)! r j m j=M : (6:2)

The summability condition (B) is equivalent to

lim
n!1 Rn

X
j2T

p
(n)
ij r j � lim

n!1 Rn Pi(n , H ,1) � Mxi: (6:3)

Seneta and Vere-Jones give conditions under which the limits (6.2) and (6.3) are

preserved when (Zn) has an initial law (ì(i)). These are that eitherX
ri mi ,1 and there exists A . 0 such that ì(i) , Ari mi; (C)

or

inf
i2T

xi . 0 and
X

ì(i)xi ,1: (D)
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For the subcritical branching process we have xi � i, whence condition (D) is just that the

initial law has a ®nite ®rst moment.

When (A), (B) and (C) or (D) hold, then details of the proofs of results in Section 2 can

be altered to give the following assertions. Let rì(n) � Pì(H � n). First,

Rn Pì(n , H ,1)! Mxi, (6:4)

whence

Rn rì(n)! (Rÿ 1)Mxi:

Consequently, if we set �m � 1=R then (2.7) holds in our present setting. Again, setting

�ì(i) � ri mi=M , then

P�ì(H 2 n� S ) � P(î �m 2 S ):

Observing that H 2 n� S entails H ,1, and alterating some of the algebraic steps in

(2.9), we obtain

Pì(Z n � jjAn) � Pì(Zn � jjn , H ,1)
Pj(H 2 S jH ,1)

Pì(AnjH ,1)

and hence we obtain a generalized version of (2.8):

lim
n!1 Pì(Z n � jjH 2 n� S ) � �ì( j)

Pj(H 2 S jH ,1)

P(î �m 2 S )
:

This reduces to (6.2) when S � N since the numerator conditional probability becomes

unity. Observe that �ì is quasi-stationary in the sense that

P�ì(Zn � jjH 2 n� S ) � �ì( j)
Pj(H 2 S jH ,1)

P(î �m 2 S )
:

Seneta and Vere-Jones (1966) show that under (A), (B) and (C) or (D) the doubly-

limiting conditional law exists:

lim
n!1 lim

í!1 Pì(Z n � jjn� í, H ,1) � xjmj:

It is easy to show the limits can be taken in reverse order, giving an extension of Theorem

2.2. Finally, Theorem 2.4 holds in the form: if n9!1 as n!1, then

lim
n!1 Pì(Z n � jjH 2 n� n9� S ) � xj m j:

Under certain moment conditions, Pakes (1974) proves conditional laws of large numbers

and central limit theorems for Tn �
Pn

l �1 Zl . It seems very likely that the limit laws there

will subsist under the conditioning events examined in this section.
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