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We define a multivariate gamma distribution on R” by its Laplace transform (P(—0))*, A > 0, where

PO)= > pr[]o-

rc{l,...,n} ieT

Under pyy,. . 7 0, we establish necessary and sufficient conditions on the coefficients of P, such that
the above function is the Laplace transform of some probability distribution, for all 1 >0, thus
characterizing all infinitely divisible multivariate gamma distributions on R”.
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1. Introduction

In the literature, the multivariate gamma distributions on R” have several non-equivalent
definitions. Many authors require only that the marginal distributions are ordinary gamma
distributions (Johnson et al. 1997). In the present paper we extend the classical one-
dimensional definition to R” as follows: we consider an affine polynomial P(0) in
0=(6,...,0, where ‘affine’ means that, for j=1,..., n, 62P/80§ =0. We also
assume that P(0)=1. For instance, for n=2, we have P(O, 6,) =1+ p6, +
P26 + p12616,. We fix A>0. If a probability distribution # on R” is such that
E(eit-+0nn) = (P(—@))~* for a set of @ with non-empty interior, then u will be called
the multivariate gamma distribution associated with (P, ). Barndorff-Nielsen (1980) and
Seshadri  (1987) consider the case n=2 and find that for all A>0,
(1 = p16; — 26, + p126,60,)™* is the Laplace transform of a probability distribution on
[0, 00)* if p; >0, p, >0, pp >0 and —pi, + pyp> > 0. Griffiths (1984), Moran and
Vere-Jones (1969) and Vere-Jones (1967) consider the case where P(—0 = |I, + VO],
where V is a symmetric positive definite or positive semi-definite matrix, |A| = det(A), and
O = diag(b,, ..., 0,), another instance of an affine polynomial. These multivariate gamma
distributions occur naturally in the classification of natural exponential families in R” (Bar-
Lev et al. 1994).
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Not all affine polynomials give rise to a valid Laplace transform. For instance, Griffiths’
result for n =3 implies that for 0 < b < 1/2 there exists A < 1 such that

(1= 01 — 6, — 05+ 10,0, + 16,05 + (1 — b%)0,05 — b(1 — b)0,6,05) "

is not a Laplace transform. Finding all couples (P, 1) for which we obtain a multinomial
gamma distribution is a difficult problem that we will not consider here. Instead, we address
the simpler problem of characterizing the affine polynomials P on R” with P(0) =1 such
that, for any positive A, there exists a multivariate gamma distribution associated with (P, 1).
In other words, we wish to describe a/l multivariate gamma distributions, in our sense, that
are infinitely divisible. For n =2, the problem has been solved by Vere-Jones (1967).
Griffiths (1984) also gives a necessary and sufficient condition on V, a square symmetric

matrix, such that P(—0)=|I, + V0|, O = diag(f, ..., 0,), is associated with infinite
divisibility. The present paper considers a more general class of affine polynomials than
Griffiths, with the sole restriction that the coefficient py,), [n] ={1, ..., n}, of 6, --- 6, in

P is non-zero. The paper finds a necessary and sufficient condition on the coefficients of P
such that P is associated with infinite divisibility. This necessary and sufficient condition is
expressed as a finite set of polynomial inequalities with respect to the coefficients of P, and
relies on a previous paper by the author which solves the analogous problem for the negative
multinomial distributions (Bernardoff 2003).

Section 2 gives definitions, and explains why the condition pp, # 0 is essential. Section
3 states the main result and applies it to the particular case of a symmetric polynomial
PO, ..., 0,). Section 4 proves the main result. Section 5 develops a particular example.
Section 6 makes the link with the necessary and sufficient condition obtained by Griffiths in
the particular case P(—8) = |I, + VO|. Section 7 comments on the unsolved case pj,; = 0.

2. Multivariate gamma distributions

Let us give some definitions (Letac 1991). Let n € N, the set of positive integers. Let u be
a positive Radon measure on R”. The support of u, that is, the smallest closed set F such
that w(R™\F) =0, is denoted by Supp(u). We consider the Laplace transform of g,
Lu(0) = [rrexp(0, x)u(dx), where (0, x) denotes the scalar product. We denote by ©(u)
the interior of the convex set D(u) = {0 € R”, L,(0) < oco}. We denote by M, the set of
us such that Supp(u) is not included in a strict affine subspace of R”, and such that O(u)
is not empty. If u € M, and 0 € ©(u), then P(0, u)(dx) = L,(0) ' exp(0, x)u(dx) is a
probability measure on R”, and F(u)={P(0, u), ® € ©(u)} is called the natural
exponential family generated by u. We denote k,: O(u) — R, 0 — k,(0) =1logL,(0).
The function k, is called the cumulant transform of u.

We denote by 1, = #([n]) the family of all subsets of [n] and 3@?: the family of non-
empty subsets of [#n]. For simplicity, if » is fixed and if there is no ambiguity, we denote
these families by 8 and ", respectively.

We denote by Ny the set of non-negative integers. If z=(z,...,z,) € R” and
a=(ay,...,a,) €Ng, then a!l =ay!...a,l, |a|=0a) + ...+ a,, a4 = dq,...q,, and
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n

2 =[]z == 2.1)

i=1
For T in #8,, we simplify the above notation by writing z’ = [] ;crz, instead of z!” where
1r=(ai, ..., o), witha; =1ifi€c Tanda;, =0if i ¢ T. (2.2)

We also write z~7 for [1:crl/z; For a mapping a : B — R, we shall use the notation
a:#® — R, T — ar. In this notation an affine polynomial with constant term equal to 1 is
P0) = > 7empr0’, with pg=1. For simplicity, if 7 ={r, ..., t;}, we denote
afs...1,} = .1~ The indicator function of a set S is denoted by s, that is, T5(x) =1 for
x € Sand 0 for x¢ S.

Definition 1. A probability distribution u on R" is called a multivariate gamma distribution
associated with (P, A), and is denoted by Yp,, if u is in M, and is such that

L0)=(P(—8)",  0cO(u), (2.3)

where P(0) = > rempr0” is an affine polynomial with constant term equal to 1 and where
A>0.

Proposition 1. Let u be a multivariate gamma distribution on R" associated with (P, A).
Assume that u is not concentrated on a linear subspace of R" of the form {x € R"; x; = 0}
Sor some k in {1, ..., n}. Then:

(1) for all i € [n], p; #0;
(i) if p1, .y Pk <0 and piii, ..., pn >0, then Supp(u) C (—oo, 0]% X [0, 00)"~;
(i) if p1, ..., pn >0 then ppy = 0.

Proof. If py =0 (say) and if u exists then for 6, =...=60,=0 we obtain that
L,(60,0,...,0)=1. We conclude that u 1is concentrated on {x=(01, ..., x)
€ R": x; =0} and we obtain a contradiction. A similar argument applies if any p; =0,
1 <is=n.

Let y,,(dx) = |x|*~a|*/T(A)exp(—|x/a|)10.)(x/a) dx be the ordinary gamma distribu-
tion on (0, co) and with parameters a = 0 and A > 0. For i € [n], we denote by ¢; the
natural projection of R” onto the ith coordinate and by u; the image measure of u by ¢,
We have

Lu(6) = J e pi(dr) = Lo((0, ..., 0, 6, 0, 0))
R

= Lu(@i(8) = (1 — p0) " =L, (6).

We obtain that for all i€ [k], Supp(u;) =(—00,0], and for all ie{k+1,...n},
Supp(u;) = [0, 00). Since Supp(u;) = Supp(¢i(4)) = @:(Supp(u)), we have Supp(u) C
(=00, 0]F X [0, 00)" %, If b=(by,...,b,) €O(u) then O(u)>D (—o0, by] X - X
(—o00, b,]. Indeed, if 6; < b; for all i € [n], we have
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L,(0) = " exp(0, x)u(dx)

= exp(0, x)u(dx)

J10,00)7
< exp(b, x)u(dx) < co.
[0,00)"
If ppp <0 then we have lim,._P(—t¢, ..., —t)=lim,._ pp(—H" = —oo, and
P(—0) < 0 for some @ € O(u), thus P(—0)~* cannot be the Laplace transform of a positive
measure. O

From this proposition we now may assume, without loss of generality, that for all i € [n],
pi > 0 and p, = 0. Let us recall the following Lévy-Khinchine result (Sato, 1999, p. 39):
u € M, is infinitely divisible if and only if there exist (A, vy, v), where A is a symmetric
non-negative definite n X n real matrix, y € R”, v is a positive Radon measure on R”\{0}
satisfying

J min(||x||?, Dr(dx) < oo, (2.4)
R"\{0}
and
1
ku(8) = 5(0, AB) + (v, 0)
2 RCL R BRSNS 2.5)
R"\{0}

for all @ € ©(u«). The measure v is called the Lévy measure of x4 and (A, v, v) is called the
generating triplet of . If v satisfies the additional condition

J min(||x||, Dv(dx) < oo, (2.6)
R\ {0}
then we can replace (2.5) by

k. (0) = 1 (0, AB) + (o, 0) + J (' *¥ — 1)(dx) (2.7)
2 R\ {0}

where vy € R”. Suppose now that u is a multivariate gamma distribution associated with
(P, A), infinitely divisible or not. We show in Lemma 9 below that there exists a signed
measure vp on R"\{0} such that 1~'k,(0) = fR,,\{o}(e<9’X> — v p(dx). Of course, u will be
infinitely divisible if and only if such a vp is positive. In this case the triplet (A, v, V) is
(0, 0, v). Theorem 4 will give a necessary and sufficient condition for infinite divisibility of
the multivariate gamma distribution associated with (P, 4) in terms of the signs of 2" — 1
polynomials b7 in the variables (ps)g g Where P(0) =1+ ¢ p+ ps05.
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3. Main results
Recall first the Lévy measure of the ordinary gamma distribution.

Proposition 2. For n=1, p; >0, and 1> 0, let u =7y, ; be the gamma distribution on
(0, 00) with parameters py and A. Then, for 0y <,

ku(61) = AJ:oo(e"M — Dv(dx), where v(dx) = e~/ P 1(0,00)(x)d?x. (3.1)

The measure v satisfies (2.6) and (2.7). Therefore Av is the Lévy measure of .
Proof. See Sato (1999, p. 45, Example 8.10). O
To state our results in the general case, we use the following notation. If S is a non-
empty set, Hs denotes the set of all partitions of S into k non-empty subsets of S. We call

the elements of Hs k-partitions and []s = =1 [[&. If S = [n], we write H[ 1= =T1% and
I1.=Ui, Hn is the set of all partitions of [n]. For T = {Ty, ... Ty} € [[ s, we write

k
ar =[] ar. (3.2)
i=1
Let P(z) = ) ep prz’ and let du(P) be the coefficient of z* in the Taylor expansion

1 do(P 3.3
og T — P(Z) %NZ;{O} (Pyz. (3:3)

The number d;,(P) will have a special importance and will be denoted bg(P).

Proposition 3. For S € %t let bs(P) denote the number dy,(P) as defined by (3.3). Then

IS
bs(P) = ZU - pr (34)
Tell}
where |S| is the cardinal of S.
Proof. See Bernardoff (2003, Proposition 3). O

For simplicity, if P is fixed and if there is no ambiguity, we denote d,(P) and bg(P) by
da and bg, respectively. Let P(0) = > rem, pr@7, with pg =1, an affine polynomial such
that pp, # 0, and let P(8) = > rcm prO’ where

Pr = —p7/ P (3.5)
with 7 = [n]\T. We denote, in particular,
0p = (rs ..., ). (3.6)
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Thus
P(8) = pp0"(—P(O")). 3.7)

We shall use the Lévy-Khinchine result in Proposition 2 to establish our main result:

Theorem 4. Let u = yp ; be a gamma distribution associated with (P, 1), where A >0 and
PO) = rem,pr0” is such that p; >0 for all i€ [n], and py>0. Let P(8)
=Y rem, pr07 be the affine polynomial such that pr = —pz/pn for all T € B,,. Let

bs = bs(P) = f‘j(k -0y [ o
k=1 Tenk T€T
Then the measure u is infinitely divisible if and only if
pi<0 for all i € [n], (3.8)
and
bs =0 for all S € iﬁ: such that |S| = 2. (3.9

Before proving this theorem in Section 5, it is worthwhile to apply it to the particular
case of a polynomial P(0) which is affine symmetric in 6y, ..., 8,,. Then pr depends only
on |T|. We also use the notation s; = pr where 7 € B is such that |T| = k. Hence

n
PO) =1+ s,04(6), (3.10)
k=1
where 01(0) = >/ <...<;,0; - - - 0;, is the elementary symmetric polynomial in 6y, ..., 6, of

degree k. Let L, be the logarithmic polynomial defined by
Lo, ooos %) = > (=D k= DB k(x1, 3, ), (3.11)
k=1

where B, i is the Bell partial exponential polynomial of order &, homogeneous of degree k
and of weight n, and which is defined by

n!
= C1yC2
B, s X)) = c:(chc;“.y cile! - - (1her e - XX - (312)
c1+202+...:;7,cq1+c.2+..‘:k
These polynomials are defined, for instance, in Comtet (1970a). A table of these polynomials
is given on pp. 184—185 of that reference.

Theorem 5. Let P(0) = 1 + 3 }_,540«(0) be an affine polynomial where s, > 0 and s, > 0.
Suppose that there exists a gamma distribution u=vYp, associated with (P, ). Then
Piiy = —Sn-1/sp forall i=1, ..., n and
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bs= Ly <S’” =2 S"S') (3.13a)
Sn Sn Sn
1 IS . .
= 57 > (D k= DI Bygy wsumts s Sumriois): (3.13b)
Sn k=1

Further, u is infinitely divisible if and only if

S >0 (3.14)

and

L (s”l 2 s”) >0  foralll{=2,..., n (3.15)

S Sh Sh

Proof. These results are deduced from the following computations. For any 7' € 38;':,

pr= 2L _ STl (3.16)

Prn) Sn
in particular

Sn—1

Py = — , i=1,...,n (3.17)

Sn

Let N be a set of cardinality n. Let 7 be a partition of [] y whose elements are called

blocks of 7, and i-blocks if they have cardinality i. Let ¢y, ..., ¢, be non-negative integers
satisfying the condition ¢; +2¢; + ... + nc, = n. The partition 7 is said to be of type
c=(cy,...,cp) if, for all i=1,..., n, T has ¢; i-blocks. Noting that ¢ then satifies the

additional constraint ¢; + ...+ ¢, = |7/, it follows from Comtet (1970b, p. 40), that the
number of partitions of type ¢ is

n!
cleal - e l(Iha2Ne - - (ml)en”

(3.18)

If pr = s)p for any T € 3, then
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S|
bs=> (k=D >[I pr
k=1 Tel'[§ TeT
S|
S N DR
k=1 c=(c1,¢2,...)" T of type ¢
c1+2e+..=[S|.c1+ert+...=k
= Z(k - 1! Z : S{sS2
’ 1es! oo (1N (2Ne . ..°1 72
k=1 c=(c1,02,...): c1:ca: (1) 1(2) :
c1+2e+..=[S|,c1+cr+...=k
S|

= (k= D)!Bgi(s1, 52, -.)
k=1

5]
== (k= D(=D""Bigu(=s1, ..., =85-+1)
k=1
= —Lis(=s1, -+, =S|5)) (3.19)

and for any S € B, |S| =2, (3.16) implies

bs = —Lyg) <S”“ . SS) (3.20)
Sy Sy
where 5o = 1. Inequalities (3.8) and (3.9) reduce to (3.14) and (3.15). U]

Let us now apply Theorem 5 to the particular case in which s; = p*~! for all k € [n],
and A = 1. We show in the next proposition, by application of the previous theorem, that
this case corresponds to an infinitely divisible distribution x. Further, Section 7 will provide
a different proof of this fact by explicitly computing the A powers of convolution of u for
any A >0, that is, the measure u; such that L, (0)= (L”(G))’l. We utilize certain
generalized hypergeometric functions (see Slater 1966), namely

o0 1 k

0F (b1, ..., by 2) = ;mﬁ (3.21)

where (a); = I'(a + k)/T'(a) is the Pochhammer symbol for ¢ > 0 and &k € N,y. We use here
the notation of combinatorialists (see Comtet 1970a, pp. 15—16) rather than the notation (a);
of special functions. For the next proposition we only need ¢F,_1(1, ..., 1; z), while Section
5 will make use of ¢F,_; for more general parameters.
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Proposition 6. Let n € N, p=1—¢q € (0, 1); let
@ p1(dx) = p~" Vexp{—(n + ... + x,)/p}
X 0Fu_1(1, -y 15 gp"x1 - X)) (0,00 (X)dX (3.22)

and the polynomial
_ 14"
PO) =24 ~T[1 + pb). (3.23)
p P
Then @, p, is an infinitely divisible multivariate gamma distribution with Laplace transform
[, <00 = -0y (3.24)
defined for 0; < 1/p i=1,..., nand [];_ (1 — pb;) > q.

Proof. The proof consists of checking that the conditions of Theorem 5 are fulfilled. First, we
compute L, (0) for 6, <1/p, i=1,..., n, and for [TL,(1 = pb;) > q. We obtain

L(/’n,p.l(ﬂ) = JO e<9’x>p7(n71) exp{_(xl +...+ xn)/p}
( ’Qo)/l

X (gp7"x1 ... xp)k
X - dx
kZ; (k)

00 n_ oo k

=p " g HJ exp{~(1/p = Oi)xi}% i
=0 =170 '

=p Y (g O T/ p = 0 Y = (P-o)
k=0 i=1

Second, we apply Theorem 5 to @, ,1. By (3.23), sx = pr = p*~'. So s,_«/s, = p7F,

and by (3.13a) and (3.11) we have
bs = —L(p ', p2 ..., p_é)

4
== D= DB p . p D
k=1

4 4
=Y DM =Dp Bl .., )= pT Y (=D k= DSy,
k=1 k=1

where S is the Stirling number of the second kind, that is, the number of k-partitions of a
set with ¢ elements (Comtet 1970a, p. 146). By Stanley (1999, p. 34) br =0 for
2 < |T| < n— 1. Similar arguments show that l;[,,] = gp~". By Theorem 5, ¢, , is infinitely
divisible, and it is also a multivariate gamma distribution according to our Definition 1. [J
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4. The Lévy measures and the proof of Theorem 4
We will need the following result.

Theorem 7. For n € N, let P(z) = ZTE;@ prz”. Then the coefficient dy of 7% in the Taylor
expansion of log(1 — P(z))~! is apolynomlal Qg in the 2" — 1 variables bg, S € 33 and the
coefficients of Q, are non-negative.

Proof. See Bernardoff (2003, Theorem 1). O

We now construct certain measures on [0, co)” indexed by 7 € B*. For i € [n], define
01(dx;) = .00y (xi)dx; if i€ and £/(dx;) = do(dx;) if i¢ I. We define the following
measure on [0, 00)”:

hy(dx) = ‘él 01(dxy). (4.1)
For instance, if n =3 and [ = {2, 3}, then
hz31(dxy, dxz, dxz) = So(dx1) g 00 (X2, X3)dx2 dixs.

For I € BY, we write N/ =N if i € 7, N/ = {0} if i ¢ I, and N’ = x”_ N!. For instance, if
n=3and I = {2} then N/ = {0} X N X {0}. We introduce the notatlon NOI =Ny ifi e[,

Ng,; = {0} if i¢ 7, and Nj = X" Nj,. We denote by 1 the vector (1 , 1) in R". For
0=(0,,...,0, cR” Wlth 0, # 0 for all i in [n] recall the notation 0! = (0_1, 0,
and, for o € N”, 07 = (0~ 1)*. Forall[e% ,and a € N/, let
(171[
dx) = —— h;(dx). 4.2
Ha,1(dx) @1 1(dx) (4.2)
Thus, for 6; <0, ..., 6, <0, the Laplace transform of ue; is L, ,(0) = (=0)"* More
generally, for a; + 60, <0, ...,a,+0, <0, if a=(ay, ..., a,) then we have
Lexp(a,x)yavl(ﬁ) =(—a- 0)70" (4.3)

The latter is still true if we replace (a — 1,)! in (4.2) by [[ic/I(ay) if@; >0,i=1,...,n
The following lemma shows that the cumulant of a multivariate gamma distribution is
represented by a signed measure.

Lemma 8. Let P(0) = > rep, prO7, with pg = 1, be an affine polynomial such that p; > 0
for all i € [n] and ppy > 0. Let A >0 be such that yp; exists. Let P(0) = rcm, pr0”
where pr = —pz/ pray. Let ¥ p ; be the gamma distriution associated with (P, A). Then, for g

in ®(YP,1)’

A by (8) = J €9~ 1y (dx) @4.4)
Rm\{0}

with
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v, 0,(dx) = e!%¥ X OPXZ hH""Z Z (Z doi1, .>h1 (dx)

k=2 1B ,:|I|=k \ acN!

where the coefficients dy = d.(P) are defined by (3.3).

Proof. 1f 6; <0 for all i € [n] then, using (3.7), we have

2 log L,(8) = 2" log(P(—0))

=" log[p[n](—e)[”]{—f%—e—l)}]—‘

= log “hyt

)R -

+Zdu(0)“

0 aeN/\{0}
1o(—0) .
=1 1e®*:|[|=k aeN!
Using (4.3), the latter expression becomes
2k, (8) = 1o alu,1(0)
=1 1eB*:|1|=k aeN!
= log log — + L,,(0)
D] ,2:1: 0 Hy

where

wa =% % (Z%“)h(dx)

k=1 1em*:|1=k \aeN;
We observe that for all @y in O(u) and all @ in O(u) — 0,

Lu(00+0)

Ty~ 0+ 0) = k().

/'Lilkp(oo’ﬂ)(ﬂ) = 10
By the Frullani integral (Berndt 1985), we have
00 e()x —e "
—  dx = —log(—0), 6 <0.
0 X

We use this to represent (4.7) in the integral form

179

(4.5)

(4.6)

4.7
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_ SN . el . .
A kp,,0(0) = ZJ (" —1) dxi+J (@ = ey (dx).
=1 J0 Xi R7\{0}

Finally, we obtain

1
2] kP(e ,u)(ﬁ) _ J (e<0,x) _ 1)e(oo,x) _ h{,-}(dx)
! R"\{0} ; Xi

" da:1,,
0.x) _ 1)o@ ,x>§ : Z ot e ‘
+JR"\{0}(e De al iy ()

i=1 {i}
! aeN;

+ J (€/®% — 1)e®x 4, (dx). (4.8)
R"\{0}

We remark that for a € Néi} ,

dat1, = d(,.0a4+10,.0)

d a;+1 B
- (w) log(1 — P(0, ... 0,6;,0,...0)°"

d a;i+1
= (d@) log(1 — pi6)~!

0,=0

0,=0
_ I—;;z i+1 (0 )a i+1 (4 9)
ai+1  a;+1 : '
therefore
i 0 a +1 Op)ixi _
(l+1{) u av e

g . 4.10
> T = Y e = “10

ueNm i=0

By substituting (4.10) in (4.8), we obtain

sn 1
(e<9,x) _ 1)e<00’x> (ﬂl + elfr) Z;h{,}) (dx),
i=1 "1

according to (4.5). The proof of the lemma is complete. O

2 ep(0,,0(0) = J
Rm\{0}

Let us now set 0p = 0 in (4.5). We will give a different proof that vpg = vp. For all
a=(a, ..., a,) €Ny, we introduce the notation

a a a‘a‘
(%) a0 960
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For all T € 18, we also define (9/90)" = (9/90)'7. Now, we apply Taylor’s formula to P at
the point —0p defined in (3.6). We write ¢ = 0p + 0; then by Taylor’s formula,

P(—8) = P(8, — ¢)

= (80) POr)(—9)

TeB,
=/ 0 T
= - S = (—) P(0,)
TeB, Pn)
— P (=) R(—9) )
where
, 1 /a\T
R@)= > rro",  rr=——|(22) POp). @.11)
= Py \0O
In particular, we have rg; =0 for all i=1, ..., n. Thus
P(=0) = pu(=0)" 1= > rr(=0) T}, (4.12)
TeP,:|T|=2

Lemma9. Let u=vyp, be a gamma distribution associated with (P, 1), where
P(0) = ZTG;ﬁinOT~such that p; >0 for all i€ [n] and py, > 0. Consider the affine
polynomials R and P defined, respectively, by (4.11) and (3.5). For © € O(yp ), we have

Ak ,(0) = JW\{O}(e<°”‘> — v p(dx) (4.13)

with

vp(dx) = el Z h{}+z > (Z dgi1,(R) )h, (dx). (4.14)

k=2 IeB:|l|=k \ aeN/

Furthermore, br(R) = br for |T| =2 and b(R) =0 for i =1, ..., n. Finally, de;1,(R) is
a polynomial in the 2" —n—1 variables by, T € ;!5 |T| =2, with non-negative
coefficients.

Proof. Using (4.12), we write

A" log L,,(8) = —log pi, Zlog( ¢)+Z S daR)(—0)

k=2 IeB:|I|=k acN!

We now apply (4.3) and deduce that



182 P Bernardoff

47" log L,,(8) = —log pu — Y _ log(—p; — 6;) + L,,(8) (4.15)
i=1
where
wo(dx) =y N Y da+1,(R)— h(dx). (4.16)
k=2 18| 1|=k \ aeN!

Applying the Frullani integral, we obtain

| n 00 e(f’iJre:)xi —e i
A logL,0) = ~logp + Y0 | L) @)
i=1 J0 i
For 0 = 0, this reduces to
n eP:X: —e —Xj
0 = —log pps + ZJ S dx; + Ly, (0). (4.18)
i=1 70 i
We deduce that
A Mog L,(0) = J (¥ — 1)y p(dx), (4.19)
R\ {0}

where

vr(dx) = (07 Zh;} Z Z Zdaﬂ,(R) hy b (dx) (4.20)

= k=2 1eB1[=k \ aeN]

according to (4.14).
We apply Lemma 8 for 8 = 0 and Lemma 9 to obtain

vP(dx)fe"“Z CTEDSED DI b Sr AT PRt

k=2 1€:|1|=k ueN’

= el0rx) Z h{}+z ST D da, (R) hy %(dx).

k=2 1e®:|I|=k aeN’
This leads to
x* o0
> daﬂ, =N " dy i, (R)
aeN' ! aEN'

for all 7 € 13, such that |7| > 1. Substituting x = 0, we obtain dy,(R) = c?l,, [7] > 1, that is,
by =by(R), |I| > 1, and b;(R) = Ry = 0 for all i = 1, ..., n. By Theorem 7, dgy1,(R) is
a polynomial in b7(R) = br, |T| =2, with non-negative coefficients because by (R) = 0,
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i=1,...,n Since by = br(R) for T € 3B, with |T| = 2, we conclude that dy1,(R) is a
polynomial in by, |T| = 2, with non-negative coefficients.

It is important to compare (4.14) to (4.5) where we have set 0y = 0. Note that the term
el0»% factorizes the whole vp = Vpo. O
Proof of Theorem 4. We prove the ‘only if” part. Since vp is a Lévy measure, it follows from
(2.4) that vp is finite on ]1, oo[”. Therefore p; is negative for all i € [n]. All the measures on
the right-hand side of (4.14) are mutually singular. Then vp is positive if and only if all these
measures are positive. This implies by = 0 for all T € 315?: such that |7]| = 2 owing to the
fact that dy,(R) = by and

x* x*
Y dat (R s =di(R)+ D dai,(R) -
aeN] ’ aeNI\{0} ’

Conversely, according to Theorem 9, (3.8) and (3.9) imply that Avp is the Lévy measure
of Ypra- O

5. An explicit case

Proposition 6 provides a particular example of an infinitely divisible multivariate gamma
distribution. This section computes the densities of the convolution powers and the Lévy
measure of this example.

Proposition 10. Let P be the affine polynomial defined by (3.23); let u = yp1 = @n p,1 be the
infinitely divisible gamma distribution associated with (P, 1). Let ¥p ) = @, p, be the gamma
distribution associated with (P, 1). Then we have:

(i) For x= (x|, ..., x,) € R"
p [n]\A—1
Y p,i(dx) = T exp{—(x1 + ...+ x,)/p}(x'"™)
X 0Fu 1Ay oy A3 qp~ "X (g noyr (X)dx. (5.1

(ii) The Lévy measure of Yp, is Avp with

vp(dx) = exp{—(x; + ... + x,)/p}

" h ;
X <qp”0Fn_1(l, o 1,25 gpm XY g oy (%) + Z?) dx. (5.2)
i=1 !

Proof. Recall pr = pl”=! and pr=—p7\7, for all T € B Then 0p= (—p~', ...,
—p ) =—p'"1. Let ¢ =0+ 0p, that is, ¢, =6, — p~'. For [[_;(p~' —6:) > gp~" and
p'—0;>0,i=1,..., n, we obtain
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L,(8) = (P(—0)) " = [L,(¢ — 0p)]
n n —4
=p (H(p1 - 00‘) <1 —qp " [ - 0,-)1>
i=1 i=1
=p " e ) [J - 007
k=0 i=1

o
—(n—1)2 vk
p (=D Z(Mk(qp ") L(n;i:]ef«ri/px?ﬁkal/r(},+k))1(0m)n(x)dx(0)

Lf/’n. ]),/1(0)’

where

—(n—14

= P — e A—1
@ n,pi(dx) = T exp{—(x1 + ...+ x,)/pYx1 -+ xp)

x ...x
Z(qp kl)n lkl) 1000y (x)dx

_ pf(nfl)l
)k
X oFn1(A, ..y A5 gp™"x1 -+ - X4) 1 (0,00)7 (X)dX.

exp{_(xl + ...+ xn)/p}(xl o xn)i_1

Finally, we obtain (5.1). Note that we have just obtained a second proof of the infinite
divisibility of u.
We now use (4.14) to compute the Lévy measure of u = up ;. We write

n

L.(9) :%{—qﬂ—p)"ncpi} =" o= )T
i=1

|T]=2

where rp =0, 1 <|T|<n—1 and r, = gp~". Since
log(1 — gp~"o!") = Z (gp~ "' (") Z (p~ " Py - D,

we obtain dg(R) = 0 if o # /1, and dy(R) = ¢~'(gp™")", ¢ € N. Therefore, from (4.14), we
have
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vp(dx) = exp(—p 1, x) {Z hy + (Z die+(R) (fl)'> h[n]}(dX)
=exp{—(x + ...+ x,)/p}
C X))
{Z h{ T (qp Z(qu)nxll(g +xl)' )h[n]}(dx)
= exp{—(xl + ...+ xn)/p}

. l —n —n n
x(Z;;ih{i}+qp oF (1, ..., 1,2 gp~"xt ])q(o,oc)"(x)>(dx)a

according to (5.2). Ol

6. Application to Griffiths’ result

Griffiths (1984, p. 14, Theorem 1) has proved the following result. Let u be a probability
distribution on [0, o©)” such that

L) = Ly(0y,...,0,)=1,— V0|,

where V is a symmetric positive definite or positive semi-definite n X n (n = 3) matrix,
0 = diag(by, ..., 0,) with 6; <0 for all i € [n], and I,, is the n X n identity matrix. Denote
by Vj; the cofactor of (i, j). Then u is infinitely divisible if and only if, for all 3 < k < n and
for all {i, ..., ix} € [n], we have

=DV Visiy -+ Vipin Vigi, = 0. (6.1)

Furthermore, Griffiths obtains the corollary that when the matrix of cofactors (V)] =1 of the
matrix V has no zero elements, then u is infinitely divisible if and only if for all distinct
i, j, ¢ € [n],

ViVieVii < 0. (6.2)
Since the polynomial P(0) = |I, + VO|, where © = diag(6,, ..., 0,), is affine, a natural
question is: whether Theorem 4 yields Griffiths’ result. Actually not, but Theorem 15 below

offers another necessary and sufficient condition close to Griffiths’ one. The next proposition
matches Griffiths” notation with ours.

Proposition 11. Let P(0) = |1, , where V is a symmetric positive definite n X n
(n = 3) matrix, ® = diag(0,, ..., 6,). For T € i@t let Vi = (V) jer and Vg = 1. Then we
have:

(1) For all T € %m pPr = |VT| and ﬁT = 7|V]—~|/|V|

(i) For all S € B, bs = Y12, (€ = W7oy [ rer (= V7l /[V]) with [Vg| = 1.
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Proof. Let T € ", The coefficient of 87 in
n
P0) =1, +VO| = Y 20) [[si + Vo.i0)
oed, i=1
is
pr = Z 5(0)1_[00(1'),1' = Z 5(0)Hvo(i),i = [Vr|.
0€S,0())=J,j¢T ieT oESy ieT
For T € #3,, we obtain
A\
VI

Then we have

z;s—‘i(f—n' > ZPT—Z“—”' 2 H( |V|>

’Ten/ TeT TGH[ TeT
O
Let us now recall a crucial result. For an n X n matrix Q = (g;;) define
r =Dy, (6.3)

Theorem 12. Let T be a non-empty subset of [n] and €r be the set of all circular
permutations of T. Then

br = Z HCItc(t) =T : Z Qiviy " Girrixqiriy -

ceCr teT {itysix}=T
Proof. See Bernardoff (2003, Theorem 3). O
The next theorem provides the link with Griffiths’ result recalled in (6.1).

Theorem 13. With the above notation, we have for S in B,

—[VDSlbs = IS0 > Vs Vig i Viear- (6.4)

{ilyensif }=S
Proof. The proof relies on a formula due to Jacobi. Let S = {sy, s Spis <L < Sk}
and T ={t,...,t;:t1 <... <t} be subsets of [n]. We denote S =[n]\S = {sii1,
e Spisinn < .o <sub and T=[n\T={thst, - tn:tir1 <...<tp}. If A=

(@), jernp 18 an n X n invertible matrix, let us use the notation Apr = (a;),epxr- Then
the minor of the inverse A~' of A with respect to S and T is given by Jacobi’s identity (Krob
and Legros 1999, pp. 349-350)
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(A Dsr| = e(or")|Az gl A7,

where ¢ indicates the signature and where ¢ and 7 denote the permutations of $, defined
respectively by o(i) = s; and ©(i) = ¢; for all i in [n].

Consider the particular case in which S = 7, and where A =V is an n X n symmetric
positive definite matrix. We obtain

- V7l
Vel =51 6.5
We substitute (6.5) in (6.3) and obtain
T = (—1)\T\*1|(_V—1)T| _ (_1)|T\71(_1)|T\|(_V71)T| _ | T| — Br

M

and bs = bs. We now apply Theorem 12 to Q@ = —V~! = (— Vii/IVDii.jyernp Where 'V is
symmetric positive definite. We then obtain

55 = |S|71 Z Qivir " YiyixYigiy

_ |S|—l Z (_ Viliz) . <_ Viklik) (_ Viki1>
o=\ VI VI VI

=S| (= v Z Viiio == Viyin Vigin»

according to (6.4). (I

Corollary 14. If n =3, S ={i, j, £}, and |V| # 0, then
—|V*bije =2V ViV

Proof. In this case Vi, Vi,i, Viyiy = ViV Vi for all {iy, i, i3} = S and

~ 1
_|V|)3bi,j,é =3 Z V’llz Vlzlz Vlsll = 2VU Vjé Véi'
{ivi,i3}={i,jl}

Theorem 15. Let V be a positive semi-definite symmetric matrix. Then the following
statements are equivalent:

() I, — VO|™!, with @ = diag(,, ..., 0,), is the Laplace transform of an infinitely
divisible distribution.
(i) (=D, - V,'kfl,-kV,'ki1 = 0 for any sequence of elements iy, ..., iy € [n] and for
ke {3,.
(iii) For all S C [n] the sign of Z{” i=sVii - Ve Vi, s (—1)lS!.

,,,,,
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Proof. (i) < (ii) is due to Griffiths (1984). (ii) = (iii) is trivial. Let us show (iii) = (i). If
[V| >0 then this is Theorem 13. Assume now that |V| =0. Let ¢ >0, and consider
V.=V +el,. Then I, —V.0O| ! satisfies (iii) and |V, > 0. Then by the first case,
[T, — Ve®|~! is infinitely divisible. As the limit of an infinitely divisible distribution is
infinitely divisible, (i) is valid also for ¢ = 0. O

7. The case pp, =0

Theorem 4 requires py,; # 0. In the particular case considered by Griffiths (1984), we have
prap = |V| and Theorem 15 ignores the condition py, # 0. However, finding necessary and
sufficient conditions for infinite divisibility in the case pp, =0 seems to be a difficult
problem. To illustrate this point we consider the classical Wishart distribution on positive
definite symmetric 2 X 2 matrices

[ %

X3 Xp
with

-p
SIX 1+ Xo4253 X S183 2\—
E(e™ 152 X27+253 N=1I, — L3 S2” =(1+s51 — 85+ 8515 — 53) P,

p = 2. It is known (Bar-Lev et al. 1994) that there is no distribution in R*® having such a
Laplace transform for 0 < p < 1/2. Note that R(si, s2, $3) = 51 + 82 — 5152 + s% is not an
affine polynomial. However, let s; = 6, + 65, s, = 6, + 03 and s3 = 6. Then R becomes

PO) =1+ 0, +20; + 0, + 6,0, + 0,05 + 0;0,.

This  polynomial satisfies p33=0. Therefore, for Y, =X;, Y,=X, and
Y3 = X; + X, +2X3 we have E(e{®Y)) = (P(—0)~7, which is a Laplace transform if and
only if p = 1/2. Therefore, infinite divisibility may or may not exist in the case p,; = 0, and
even the case n =3 is a challenge.
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