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In 2002 Basrak, Davis and Mikosch showed that an analogue of the Cramér–Wold device holds for

regular variation of random vectors if the index of regular variation is not an integer. This

characterization is of importance when studying stationary solutions to stochastic recurrence equations.

In this paper we construct counterexamples showing that for integer-valued indices, regular variation

of all linear combinations does not imply that the vector is regularly varying. The construction is

based on unpublished notes by Harry Kesten.
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1. Introduction

For Rd-valued random vectors Xn and X, the well-known Cramér–Wold theorem says that a

necessary and sufficient condition for Xn !
d

Xn is that xTXn !
d

xTX for every x 2 Rd. We

use the convention that x 2 Rd is a column vector and xT its transpose. In Basrak et al.

(2002a) it was shown that, for non-integer-valued indices of regular variation, there is a

similar characterization of regular variation for a random vector in terms of regular

variation of its linear combinations, meaning that for some Æ . 0 and some function L

which is slowly varying at infinity,

for every x 6¼ 0, lim t!1 tÆL(t)P(xTX . t) ¼ w(x) exists,

w(x) . 0, for some x 6¼ 0:
(1)

If (1) holds, then necessarily w(ux) ¼ uÆw(x) for all x 6¼ 0 and u . 0. The interest in this

condition originates from a classical result by Kesten (1973) which (briefly) says that, under

mild conditions, the stationary solution X of a multivariate stochastic recurrence equation

Xn ¼ AnXn�1 þ Bn satsifies (1), where L(t) ¼ 1 and Æ is the unique solution to

lim
n!1

1

n
E log kAn � � � A1kÆ ¼ 0:

Here k � k denotes the operator norm, kAk ¼ supjxj¼1jAxj, and j � j is the Euclidean norm on

Rd . A popular example is the stationary GARCH model which can be embedded in a

stochastic recurrence equation (see Basrak et al., 2002b). Other examples where condition (1)
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appears are the stochastic recurrence equations with heavy-tailed innovations studied in

Konstantinides and Mikosch (2005) and the random coefficient AR(q) models of Klüppelberg

and Pergamenchtchikov (2004). Important and accessible papers on the extremal behaviour of

solutions to univariate stochastic recurrence equations are de Haan et al. (1989), Goldie

(1991) and Borkovec and Klüppelberg (2001).

A random vector X is said to be regularly varying if there exist an Æ . 0 and a

probability measure � on B(Sd�1), the Borel � -field of Sd�1 ¼ fx 2 Rd : jxj ¼ 1g, such

that, for every x . 0, as t ! 1,

P(jXj . tx, X=jXj 2 � )

P(jXj . t)
�!v x�Æ� (�) on B(Sd�1): (2)

Here �!v denotes vague convergence, and Æ and � are respectively called the index of

regular variation and spectral measure of X. For Æ 2 (0, 2) this formulation of multivariate

regular variation is a necessary and sufficient condition for the convergence in distribution of

normalized partial sums of independent and identically distributed random vectors to a stable

random vector; see Rvačeva (1962). It is also used for the characterization of the maximum

domain of attraction of extreme value distributions and for weak convergence of point

processes; see, for example, Resnick (1987).

In Basrak et al. (2002a, Theorem 1.1) it was proved that (2) implies (1) and the

following statements hold:

(A) If X satisfies (1), where Æ is positive and non-integer, then (2) holds and the spectral

measure � is uniquely determined.

(B) If X assumes values in [0, 1)d and satisfies (1) for x 2 [0, 1)dnf0g, where Æ is

positive and non-integer, then (2) holds and the spectral measure � is uniquely

determined.

(C) If X assumes values in [0, 1)d and satisfies (1), where Æ is an odd integer, then (2)

holds and the spectral measure � is uniquely determined.

In Section 2 we construct a counterexample which shows that (A) cannot be extended to

integer-valued indices of regular variation without additional assumptions on the distribution

of X. In Section 3 we construct a counterexample which shows that (B) cannot be extended

to integer-valued indices of regular variation without additional assumptions on the

distribution of X. Whether (C) is true or not in the case of Æ belonging to the set of even

integers is, to the best of the knowledge of the authors, still an open problem.

Let us point out that there are several equivalent formulations of (2); many of them are

documented in Basrak (2000) and Resnick (2004). See also Basrak et al. (2002a), Hult

(2003), Lindskog (2004) and Resnick (1987) for more on multivariate regular variation. For a

detailed treatment of the concept of regularly varying functions, see Bingham et al. (1987).

2. Construction of the counterexamples

The constructions of the counterexamples corresponding to (A) and (B) for integer-valued

indices of regular variation are rather similar and consist of two steps. First, note that due
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to the scaling property the limit function w in (1) is determined by its values on Sd�1.

Therefore it is sufficient to consider linear combinations xTX with x 2 Sd�1.

The first step consists of finding two bivariate regularly varying random vectors X0 and

X1 with index of regular variation Æ . 0 and spectral measures �0 and �1, with �0 6¼ �1,

such that for every x 2 S and t . 1,

P(xTX0 . t) ¼ P(xTX1 . t): (3)

For the example corresponding to (B) we restrict x to S \ [0, 1)2.

In the second step we will construct the counterexamples by finding a random vector X

such that, for every x 2 S and x 2 S \ [0, 1)2, respectively,

lim
t!1

tÆP(xTX . t) ¼ lim
t!1

tÆP(xTX0 . t) ¼ lim
t!1

tÆP(xTX1 . t) ¼: w(x) (4)

and such that there are subsequences (un), (vn), un " 1, vn " 1, with the property that for

every S 2 B(S) with �0(@S) ¼ �1(@S) ¼ 0,

lim
n!1

P(jXj . un, X=jXj 2 S)

P(jXj . un)
¼ �0(S), (5)

lim
n!1

P(jXj . vn, X=jXj 2 S)

P(jXj . vn)
¼ �1(S): (6)

The counterexamples are easily extended to Rd-valued random vectors. Take

X ¼ (X (1), X (2))T as above and Y ¼ (Y (1), . . . , Y (d�2))T independent of X with Y satisfying

(1) with the same Æ as X, L(t) ¼ 1, and limit function wY. Put

Z ¼ (X (1), X (2), Y (1), . . . , Y (d�2))T. Then, by independence (cf. Davis and Resnick 1996,

Lemma 2.1),

lim
t!1

tÆP(zTZ . t)

¼ lim
t!1

tÆP((z(1), z(2))X . t) þ lim
t!1

tÆP((z(3), . . . , z(d))Y . t)

¼ w(z(1), z(2)) þ wY(z(3), . . . , z(d)):

Hence, Z satisfies (1). However, Z does not satisfy (2). Indeed, assume on the contrary that Z

satisfies (2) with spectral measure �Z. Then since X ¼ T (Z) with T : Rd ! R2 is given by

T (z) ¼ (z(1), z(2))T it follows that X satisfies (2) for some spectral measure � (Basrak et al.,

2002b, Proposition A.1). This is a contradiction.

2.1. Construction of X0 and X1

We will now focus on the construction of X0 and X1 in the counterexample corresponding

to (A) when Æ is a positive integer.

We will construct two regularly varying random vectors X0 and X1 with index of regular

variation Æ and different spectral measures such that (3) is satisfied. A different construction

in the case Æ ¼ 1 can be found in Meerschaert and Scheffler (2001, Example 6.1.35).
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Let ¨0 be a [0, 2�)-valued random variable with density f 0 satisfying, for some � . 0,

f 0(Ł) . � for all Ł 2 [0, 2�). Take v 2 (0, �) and let ¨1 have density f 1 given by

f 1(Ł) ¼ f 0(Ł) þ v sin((Æþ 2)Ł), Ł 2 [0, 2�):

Let R � Pareto(Æ), that is, P(R . x) ¼ x�Æ for x > 1, be independent of ¨i, i ¼ 0, 1, and

put

Xi ¼
d

(R cos¨i, R sin¨i)
T:

Obviously Xi is regularly varying with � i(�) ¼ P((cos¨i, sin¨i) 2 � ). Take x 2 S and let

� 2 [0, 2�) be given by x ¼ (cos �, sin �)T. Then, for t . 1,

P(xTX1 . t) � P(xTX0 . t)

¼ v

ð1
t

ð�þarccos( t=r)

��arccos( t=r)

Ær�Æ�1 sin((Æþ 2)Ł)dŁdr

¼ � vÆ

Æþ 2

ð1
t

r�Æ�1(cosf(Æþ 2)(�þ arccos(t=r))g � cosf(Æþ 2)(�� arccos(t=r))g)dr

¼ 2vÆ

Æþ 2
sin((Æþ 2)�)

ð1
t

r�Æ�1 sin f(Æþ 2)arccos(t=r)gdr:

Using standard variable substitutions and trigonometric formulae the integral can be rewritten

as follows:ð1
t

r�Æ�1 sin f(Æþ 2)arccos(t=r)gdr

¼ t�Æ

ð1

0

rÆ�1 sin f(Æþ 2)arccos(r)gdr

¼ t�Æ

ð�=2

0

cosÆ�1(r)sin((Æþ 2)r)sin(r)dr

¼ t�Æ

ð�=2

0

cosÆ�1(r)cos((Æþ 1)r)dr � t�Æ

ð�=2

0

cosÆ(r)cos((Æþ 2)r)dr:

The two last integrals equal zero for every Æ 2 f1, 2, . . .g; see Gradshteyn and Ryzhik (2000,

p. 392). Hence, for t . 1, P(xTX1 . t) ¼ P(xTX0 . t), which proves (3).

The following construction of X satisfying (4)–(6) is based on unpublished notes by

Harry Kesten relating to Kesten (1973, Remark 4, p. 245).

2.2. The counterexample

Consider the random vectors X0 and X1 above. Let g0 and g1 denote their densities. We
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construct a random vector X satisfying (1) which is not regularly varying; we will show that

it satisfies (4)–(6).

Take y 2 R2 with jyj . 1. There exist unique integers j, n > 1 such that

jyj 2 ( j!, ( jþ 1)!] and j 2
Xn�1

k¼1

2k þ 1, . . . ,
Xn
k¼1

2k

( )
:

Let X be an R2-valued random vector with density g given by

1 � j�
Xn�1

k¼1

2k

 !
2�n

 !
gb(n)(y) þ j�

Xn�1

k¼1

2k

 !
2�n gb(nþ1)(y),

for jyj 2 ( j!, ( jþ 1)!], where

b(n) ¼ 0, if n is odd,

1, if n is even:

�
That is, the density g is given by

g(y) ¼

g0(y) ¼ 0, jyj 2 (0, 1],

1
2
g0(y) þ 1

2
g1(y), jyj 2 (1, 2],

g1(y), jyj 2 (2, 3!],

1
4
g0(y) þ 3

4
g1(y), jyj 2 (3!, 4!],

1
2
g0(y) þ 1

2
g1(y), jyj 2 (4!, 5!],

3
4
g0(y) þ 1

4
g1(y), jyj 2 (5!, 6!],

etc:

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
Note that in each disc jyj 2 ( j!, ( jþ 1)!] the density g is a convex combination of the

densities g0 and g1. Therefore,ð
R2

g(y)dy ¼
X1
j¼1

ð
jyj2( j!,( jþ1)!]

g(y)dy

¼
X1
j¼1

ð( jþ1)!

j!

Ær�Æ�1 dr ¼
ð1

1

Ær�Æ�1 dr ¼ 1,

so g is indeed a probability density. Take x 2 S and t 2 (( j� 1)!, j!]. Then there are two

possibilities:

(i) j� 1 2
Pn�1

k¼1 2k þ 1, . . . ,
Pn

k¼1 2k � 1
n o

or

(ii) j� 1 ¼
Pn�1

k¼1 2k :

Suppose (i) holds. Then, with ª ¼ ( j�
Pn�1

k¼1 2k)2�n 2 [0, 1], we have
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P(xTX . t) ¼ 1 � ªþ 2�nð ÞP(xTXb(n) . t, jXb(n)j 2 (t, j!])

þ ª� 2�nð ÞP(xTXb(nþ1) . t, jXb(nþ1)j 2 (t, j!])

þ (1 � ª)P(xTXb(n) . t, jXb(n)j 2 ( j!, ( jþ 1)!])

þ ªP(xTXb(nþ1) . t, jXb(nþ1)j 2 ( j!, ( jþ 1)!])

þ P(xTX . t, jXj . ( jþ 1)!):

Hence,

P(xTX . t) ¼ 2�n P(xTXb(n) . t, jXb(n)j 2 (t, j!]) � P(xTXb(nþ1) . t, jXb(nþ1)j 2 (t, j!])
� �

þ (1 � ª)P(xTXb(n) . t) þ ªP(xTXb(nþ1) . t)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Bn

� (1 � ª)P(xTXb(n) . t, jXb(n)j . ( jþ 1)!)

� ªP(xTXb(nþ1) . t, jXb(nþ1)j . ( jþ 1)!)

þ P(xTX . t, jXj . ( jþ 1)!):

We have

2�n P(xTXb(n) . t, jXb(n)j 2 (t, j!]) � P(xTXb(nþ1) . t, jXb(nþ1)j 2 (t, j!])
� �
< 2�n P(jXb(n)j . t) þ P(jXb(nþ1)j . t)

� �
¼ 2�nþ1 t�Æ:

Moreover, since P(xTX1 . t) ¼ P(xTX0 . t) we have Bn ¼ P(xTX0 . t). The absolute value

of each of the remaining terms is less than or equal to (( jþ 1)!)�Æ < ( j j!)�Æ < ( j t)�Æ, so

we conclude that

tÆjP(xTX . t) � P(xTX0 . t)j < 2�nþ1 þ 3 j�Æ:

Since j ¼ j(t) ! 1 and n ¼ n(t) ! 1 as t ! 1, we have

lim
t!1

tÆjP(xTX . t) � P(xTX0 . t)j ¼ 0:

That is,

lim
t!1

tÆP(xTX . t) ¼ lim
t!1

tÆP(xTX0 . t) ¼ lim
t!1

tÆP(xTX1 . t):

Suppose now that (ii) holds. Then

138 H. Hult and F. Lindskog



P(xTX . t) ¼ P(xTXb(n) . t, jXb(n)j 2 (t, j!])

þ (1 � 2�n)P(xTXb(n) . t, jXb(n)j 2 ( j!, ( jþ 1)!])

þ 2�nP(xTXb(nþ1) . t, jXb(nþ1)j 2 ( j!, ( jþ 1)!])

þ P(xTX . t, jXj . ( jþ 1)!)

¼ P(xTXb(n) . t) � P(xTXb(n) . t, jXb(n)j . ( jþ 1)!)

þ 2�nfP(xTXb(nþ1) . t, jXb(nþ1)j 2 ( j!, ( jþ 1)!])

� P(xTXb(n) . t, jXb(n)j 2 ( j!, ( jþ 1)!])g

þ P(xTX . t, jXj . ( jþ 1)!):

By arguments similar to those for case (i), we obtain

tÆjP(xTX . t) � P(xTX0 . t)j < 2(2�n þ j�Æ):

It follows that

lim
t!1

tÆP(xTX . t) ¼ lim
t!1

tÆP(xTX0 . t) ¼ lim
t!1

tÆP(xTX1 . t),

which proves (4).

Finally, we find subsequences (un) and (vn) satisfying (5) and (6). Take S 2 B(S) with

�0(@S) ¼ �1(@S) ¼ 0. Put

cn ¼
X2n
k¼1

2k and dn ¼
X2nþ1

k¼1

2k :

Note that for cn! , jyj < (cn þ 1)! we have g(y) ¼ gb(2nþ1)(y) ¼ g0(y), whereas for

dn! , jyj < (dn þ 1)! we have g(y) ¼ gb(2nþ2)(y) ¼ g1(y). It follows that, with un ¼ cn!,

uÆnP(jXj . un, X=jXj 2 S) ¼ uÆnP cn! , jXj < (cn þ 1)!, X=jXj 2 Sð Þ

þ uÆnP jXj . (cn þ 1)!, X=jXj 2 Sð Þ:

Since the second term is less than or equal to

uÆnP jXj . (cn þ 1)!ð Þ ¼ (cn!)
Æ (cn þ 1)!½ ��Æ! 0,

as n ! 1, it follows that

lim
n!1

uÆnP(jXj . un, X=jXj 2 S) ¼ lim
n!1

uÆn u�Æ
n � (cn þ 1)!½ ��Æ� �

�0(S)

¼ �0(S):

By a similar argument, with vn ¼ dn!,

lim
n!1

vÆnP(jXj . vn, X=jXj 2 S) ¼ �1(S):

Kesten’s counterexample 139



Thus, we have found sequences (un) and (vn) satisfying (5) and (6) and the counterexample

is complete.

3. Vectors with non-negative components

In this section we construct a counterexample corresponding to (B) in the case of integer-

valued indices of regular variation.

The following construction of X0 and X1 was given in Basrak et al. (2002a) for Æ ¼ 2

but can, as we will see, be extended to any positive integer Æ. Take Æ 2 f1, 2, . . .g and let

¨0, ¨1 be two [0, �=2]-valued random variables with unequal distributions satisfying

E(cosk¨0 sinÆ�k¨0) ¼ E(cosk¨1 sinÆ�k¨1), k ¼ 0, 1, . . . , Æ: (7)

Let R � Pareto(Æ), that is, P(R . x) ¼ x�Æ for x > 1. Suppose R is independent of ¨i,

i ¼ 0, 1 and put Xi ¼d (R cos¨i, R sin¨i)
T. For x 2 [0, 1)2nf0g we have

tÆP(xTXi . t) ¼ tÆP(x1R cos¨i þ x2R sin¨i . t)

¼ tÆ
ð1

1

P(x1cos¨i þ x2 sin¨i . t=r)Ær�Æ�1dr

¼
ð tÆ

0

P((x1cos¨i þ x2 sin¨i)
Æ . v)dv

¼
XÆ
k¼1

Æ
k

� �
xk1 x

Æ�k
2 E(cosk¨i sinÆ�k¨i)

for t sufficiently large. We can now construct the vector X as in Section 2.2, with

x 2 Sþ ¼ S \ [0, 1)2 and the new densities g0 and g1 of X0 and X1. It remains to show

that we can find unequal distributions of the [0, �=2]-valued random variables ¨0 and ¨1

satisfying (7). Let ¨0 have density f 0 satisfying, for some � . 0, f0(Ł) . � for all

Ł 2 [0, �=2]. We will show that the density f 1 of ¨1 can be chosen as

f 1(Ł) ¼ f 0(Ł) þ v f (Ł), where v 2 (0, �) and f is chosen such that supŁ2[0,�=2]j f (Ł)j ¼ 1,Ð �=2

0
f (Ł)dŁ ¼ 0, and (7) holds. Let

A :¼ spanf1, sinÆ(Ł), cos(Ł)sinÆ�1(Ł), . . . , cosÆ(Ł)g � C2([0, �=2]),

where C2([0, �=2]) is the space of real-valued continuous functions on [0, �=2] equipped

with the inner product (h1, h2) ¼
Ð �=2

0
h1(s)h2(s)ds, which makes it an inner product space.

For any non-zero eff =2 A with eff 2 C2([0, �=2]), we can choose

f :¼
eff � ProjA( eff )

supŁ2[0,�=2]jf eff � ProjA( eff )g(Ł)j
:

Then f?A, f1 is a density function and (7) holds. Since A is a finite-dimensional subspace of

140 H. Hult and F. Lindskog



the infinite-dimensional space C2([0, �=2]) it is clear that its orthogonal complement is non-

empty. Hence, the density f 1 above exists.
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