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We study a one-parameter family of attractive reversible nearest particle systems on a finite interval.

As the length of the interval increases, the time at which the nearest particle system first hits the

empty set increases from logarithmic to exponential depending on the intensity of interaction. In the

critical case, the first hitting time is polynomial in the interval length.
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1. Introduction

A nearest particle system on S ¼ f1, 2, . . . , Ng is a continuous-time Markov chain with the

state space fA : A � Sg. The jump rates are specified as follows:

q(A, Anfxg) ¼ 1, if x 2 A;

q(A, A [ fxg) ¼ �(lx(A), rx(A)), if x 2 SnA;
q(A, B) ¼ 0 otherwise:

Here lx(A) and rx(A) are the distances from x to the nearest points in A to the left and right

respectively, with the convention that lx(A) (rx(A)) is 1 if y . x (y , x) for all y 2 A. We

assume that:

1. �(l, r) ¼ �(r, l);
2. �(l, r) is decreasing in l and in r;

3. �(1, 1) ¼ 0, �(l, 1) . 0;

4.
P

l �(l, 1) , 1.

There are many choices of �(�, �) satisfying the above assumptions.

Example 1 The one-dimensional contact process. �(1, 1) ¼ 2º, �(1, r) ¼ �(l, 1) ¼ º for

l, r . 1, and �(l, r) ¼ 0 otherwise.

Example 2 The uniform birth rate. �(l, r) ¼ º=(l þ r � 1).

Example 3 The reversible case.

Bernoulli 12(1), 2006, 101–111

1350–7265 # 2006 ISI/BS



�(l, r) ¼ º
ł(l)ł(r)

ł(l þ r)
, �(l, 1) ¼ �(1, l) ¼ ºł(l),

where

ł(�) . 0,
X1
n¼1

ł(n) ¼ 1,
ł(n)

ł(nþ 1)
& 1:

Assume further that X
n

n2ł(n) , 1: (1)

For example, ł(n) ¼ cn�Æ for some Æ . 3 satisfies the above requirement.

It is helpful to associate a subset A of S with an element � of f0, 1gS and use them

interchangeably: �(x) ¼ 1 if and only if x 2 A. Each configuration � is given an occupancy

interpretation. We say there is a particle at x if �(x) ¼ 1, and we say the site is vacant if

�(x) ¼ 0. Then the above transition mechanism is interpreted as follows: each particle

disappears at rate 1 independently, and a particle is born at vacant site x at rate

�(lx(A), rx(A)).
The transition mechanisms also make sense if we replace S ¼ f1, 2, . . . , Ng with the

integer lattice Z. The state space f0, 1gZ consists of four disjoint subspaces:

(i) all finite subsets of Z;

(ii) all subsets of Z with infinitely many particles both to the left and to the right of

the origin;

(iii) all infinite subsets of Z with finitely many particles to the right of the origin; and

(iv) all infinite subsets of Z with finitely many particles to the left of the origin.

Because of assumption 4, a nearest particle system will remain for ever in one of the four

subspaces. The processes taking values in subspaces (i) or (ii) are called finite and infinite

nearest particle systems, respectively. A comprehensive account can be found in Chapter 7 of

Liggett (1985). The processes taking values in subspaces (iii) or (iv) share many properties of

finite and infinite nearest particle systems, and are indispensable on some occasions (see, for

example, Lemma 4.1 below).

For interacting particle systems one is most concerned with the existence of phase

transition and the critical value. For the infinite nearest particle system with uniform birth

rate (Example 2), the critical value is 1 (see Mountford 1992). For the reversible nearest

particle system (Example 3), the critical value is also 1. For the contact process (Example

1), the critical value is unknown but is between 1.5 and 2, and is denoted as ºc throughout

this paper.

Can the critical value of an infinite model be detected by its counterpart on a finite

interval? This interplay was first explored for the contact process in a series of papers by

Durrett and co-workers (Durrett and Liu 1988; Durrett and Schonmann 1988; Durrett et al.

1989). The main results are summarized as follows. Let f�N
t : t > 0g be the contact process
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on f1, 2, . . . , Ng with the parameter º starting from all sites occupied, and �N be the first

time it hits the empty set.

Theorem 1.1. (i) If º , ºc, then there is a constant ª1(º) . 0 such that as N ! 1,

�N=log N ! 1=ª1(º) in probability (Durrett and Liu 1988, Theorem 1).

(ii) If º . ºc, then there is a constant ª2(º) . 0 such that as N ! 1,

(log �N )=N ! ª2(º) in probability (Durrett and Schonmann 1988, Theorem 2).

(iii) If º ¼ ºc and a, b 2 (0, 1), then P(aN < �N < bN4) ! 1 as N ! 1 (Durrett

et al. 1989, Theorem 1.6).

We believe that these statements hold for a large class of interacting particle systems. In

this paper we study the asymptotic behaviour of the hitting time � N of the reversible

nearest particle systems (Example 3) on a finite interval, as the length of the interval

increases. The results read as follows.

Theorem 1.2. Suppose the initial state is f1, 2, . . . , Ng.

(i) If

º , min 1, min
n

ł(n)P
lþr¼n ł(l)ł(r)

� �
,

then E� N < C log N for some constant C which is independent of N, and

lim
N!1

P(� N < CN log N ) ¼ 1,

where fCN : N > 1g is any sequence of increasing numbers such that

limN!1CN ¼ 1.

(ii) If º . 1, then there is a constant ª . 0 such that limN!1P(� N > eªN ) ¼ 1.

Remark . It is not difficult to establish estimates in the opposite direction (see Theorems 2.3

and 2.4). We have thus shown that � N increases logarithmically if º is small enough and

exponentially if º . 1.

For any non-empty set A ¼ fx1, x2, . . . , xkg, we assume without loss of generality that

x1 , x2 ,. . ., xk and define

�ł(A) ¼
ł(x2 � x1)ł(x3 � x2) � � � ł(xk � xk�1), if k . 1,

1 if k ¼ 1:

�
Let SN ¼ f0, 1gf1,...,Ng, KN ¼

P
A2S N nf˘g �ł(A), and �(A) ¼ �ł(A)=KN : Then � is a

probability measure on SN , with �(˘) ¼ 0.

Theorem 1.3. Suppose that º ¼ 1 and the initial distribution is �. Let fCN : N > 1g be any

sequence of increasing numbers such that limN!1 CN ¼ 1. Then
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lim
N!þ1

P
N

CN

< � N < CN N
2

� �
¼ 1:

We now proceed to prove Theorems 1.2 and 1.3 by three different approaches.

2. Comparison by coupling

We will prove the first part of Theorem 1.2 by establishing a more general conclusion

(Theorem 2.2). Let fX t : t > 0g be a birth and death process on f0, 1, . . . , Ng with death

rate

ai ¼ i, for i ¼ 1, . . . , N ,

and birth rate

bi ¼ (iþ 1)Æ, for i ¼ 0, . . . , N � 1:

Let � ¼ infft . 0 : X t ¼ 0g be the first time that fX t : t > 0g hits 0. Let EN be the

conditional expectation on X 0 ¼ N .

Lemma 2.1. Suppose that X 0 ¼ N. For large N,

EN� <
(2 log N )=(1� Æ), if Æ , 1,

2N log N , if Æ ¼ 1,

ÆNÆ=(Æ� 1)2, if Æ . 1:

8<:
Furthermore,

EN�2 < 2(EN�)2: (2)

Proof. Let Pi be the conditional probability distribution on the initial state i, E i be the

expectation with respect to Pi, and mi ¼ E i� for i ¼ 0, . . . , N. It is shown in Wang (1980)

that

EN� ¼
XN
i¼1

ei, EN�2 ¼
XN
i¼1

�i,

where

ei ¼
1

ai
þ

XN�1�i

k¼0

bibiþ1 � � � biþk

aiaiþ1 � � � aiþk aiþkþ1

¼ 1

i
(1þ Æþ Æ2 þ � � � ÆN�i), (3)

�i ¼
2mi

ai
þ

XN�1�i

k¼0

2bibiþ1 � � � biþk miþkþ1

aiaiþ1 � � � aiþkaiþkþ1

:

Notice that mi < mN for any i < N. It follows that �i < 2mN ei. Therefore,
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EN�2 ¼
XN
i¼1

�i < 2mN

XN
i¼1

ei < 2mNE
N� ¼ 2 EN�

� �2
:

If Æ , 1, then

EN� ¼
XN
i¼1

ei ¼
XN
i¼1

1

i

1� ÆMþ1�i

1� Æ
<

XN
i¼1

i�1=(1� Æ) <
2 log N

1� Æ
:

If Æ ¼ 1, by (3), ei ¼ (N � iþ 1)=i, and for large N ,

EN� ¼
XN
i¼1

ei < N
XN
i¼1

i�1 < 2N log N :

If Æ . 1, then EN� ¼
PN

i¼1 ei < (Æ� 1)�1
PN

i¼1 Æ
N�iþ1 < ÆNþ1=(Æ� 1)2. h

Consider a nearest particle system f�N
t : t > 0g on f1, 2, . . . , Ng starting from

f1, 2, . . . , Ng (not necessarily reversible). Let � N be the first time �N
t hits the empty

set, and

M ¼ max maxn

X
lþr¼n

�(l, r),
X
l

�(l, 1)

( )
:

Theorem 2.2. Suppose the initial state is f1, 2, . . . , Ng. If M , 1, then E� N <

(2 log N )=(1� M); and for any sequence fCN : N > 1g of increasing numbers such that

limN!1CN ¼ 1, limN!1 P(� N < CN log N ) ¼ 1.

Proof. Let j�j be the cardinality of the set fx : �(x) ¼ 1, 1 < x < Ng. For any configuration

� such that j�j ¼ i, there are at most iþ 1 intervals of consecutive vacant sites, separated by

occupied sites; and the rate at which a new particle in each interval is born is no more than

M . Hence the rate at which j�N
t j increases by 1 is no more than (iþ 1)M . On the other hand,

when j� tj ¼ i, the rate at which j� tj decreases by 1 is equal to i, the total number of particles.

Compare j� tj with a birth and death process X t with parameter Æ ¼ M. Since initially

X 0 ¼ j�N j, there is a coupling of fX t : t > 0g and f�N
t : t > 0g such that

PN ,� N

(X t > j�N
t j, 8 t > 0) ¼ 1, (4)

where PN ,� N

is the coupling measure with initial state (N , �N ). By (4), � N is stochastically

dominated by �, that is, for any t > 0,

P(� N . t) < PN (� > t):

Therefore,

E� N < EN� <
2 log N

1� M

by Lemma 2.1. By the Chebyshev inequality and (2), for any cN . 0,
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P(� N . cNE
N�) < PN (� > cNE

N�) <
EN�2

(cNEN�)2
<

2

c2N
: (5)

For any sequence CN ! 1 as N ! 1, choose cN ¼ CN (1� M)=2. Then an upper estimate

of � N may be taken as cNE
N�, and the claims in Theorem 2.2 hold by (5) and Lemma 2.1.

h

By the same argument it is not difficult to establish the following estimates, though a

renormalization argument is used in the proof of the second part of Theorem 2.4. We skip

the proof since it is not needed in proving Theorems 1.2 and 1.3.

Theorem 2.3. Suppose the initial state is f1, 2, . . . , Ng.

(i) If M ¼ 1, then E� N < 2N log N; and limN!1P(� N < CN N log N ) ¼ 1.

(ii) If M . 1, then E� N < MNþ1=(M � 1)2; and there is a constant ª1 . 0 such that

lim
N!1

P(� N < eª1N ) ¼ 1:

Theorem 2.4. Suppose the initial state is f1, 2, . . . , Ng.

(i) For any � . 0, limN!1P(� N . (1� �)log N ) ¼ 1.

(ii) If maxn minf1
2

P2n
l¼n �(l, 3n� l),

P2n
l¼n �(l, 1)g is larger than the critical value of

the contact process on Z, then there is a constant ª . 0 such that

lim
N!1

P(� N > eªN ) ¼ 1:

3. A lower estimate of � N

We first extend the notation introduced before Theorem 1.3. For any non-empty set

A ¼ fx1, x2, . . . , xkg, x1 , x2 , . . . , xk , define

�ł,º(A) ¼
ºk�1ł(x2 � x1)ł(x3 � x2) � � � ł(xk � xk�1), if k . 1,

1 if k ¼ 1:

�
Let SN ¼ f0, 1gf1,...,Ng, KN (º) ¼

P
A2S Nnf˘g�ł,º(A), and �(A) ¼ �ł,º(A)=KN (º). Then � is

a probability measure on SN , with �(˘) ¼ 0.

Lemma 3.1. KN (º) > CN 2eª(º)N for º > 1, where ª(1) ¼ 0 and ª(º) . 0 if º . 1.

Proof. For � 2 SN , recall that j�j is the cardinality of fx : �(x) ¼ 1, 1 < x < Ng. We have

KN (º) ¼
X

�2S Nnf˘g
�ł,º(�) >

X[N=3]

x¼0

XN
y¼[2N=3]

X
�2SN (x, y)

ºj�j�1�ł(�), (6)

where
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SN (x, y) ¼ f� 2 SN : �(x) ¼ �(y) ¼ 1, �(z) ¼ 0, 8 1 < z , x, or y , z < Ng:

In light of (1), by the renewal theorem, �ł(SN (x, y)) > 1=(2
P

n nł(n)) whenever y� x is

large enough. If º ¼ 1, then KN > CN2 when N is large, and we are done. If º . 1, we can

choose a constant 	 . 0 such that

�ł(f� 2 SN (x, y); j�j > 	jy� xjg) > �ł(SN (x, y))

2
:

This, together with (6), implies the desired conclusion. In particular, we may choose

ª(º) ¼ (	=3)log º. h

We now borrow an idea used in proving Theorem 7.1.20 of Liggett (1985) to prove

lim
N!1

P� � N >
KN (º)

CN N

� �
¼ 1: (7)

The first half of Theorem 1.3 readily follows from (7) and Lemma 3.1. Notice that the hitting

time of the nearest particle system starting from f1, 2, . . . , Ng is stochastically larger than

that starting from the initial distribution �. Therefore the second part of Theorem 1.2 also

follows, with a small change to ª.

Proof of (7). The reversible nearest particle system f�N
t : t > 0g is a Markov process taking

values in SN with jump rate

q(A, B) ¼

1, if x 2 A, B ¼ Anfxg,

º
ł(lx(A))ł(rx(A))

ł(lx(A)þ rx(A))
, if x =2 A, B ¼ A [ fxg,

0, otherwise:

8>>><>>>:
It is reversible with respect to � in the sense that �(A)q(A, B) ¼ �(B)q(B, A) for

A, B 2 SNnf˘g.
Let ff�N

t�
N
t : t > 0g be a Markov process on SN , which is a modification of f�N

t : t > 0g
so that particles can be born from the empty set. More specifically, the transition rate of

ff�N
t�
N
t : t > 0g is defined as follows:

~qq(A, B) ¼
q(A, B), if A 6¼ ˘,

q, if A ¼ ˘ and jBj ¼ 1,

0, otherwise,

8<:
where q . 0 is a constant to be determined later. Let KN stand for KN (º) for simplicity,

�ł(f˘g) ¼ q�1 and ~�� ¼ �ł
KN þ q�1

:

Then ff�N
t�
N
t : t > 0g is reversible with respect to ~�� in the sense that

~��(A)q(A, B) ¼ ~��(B)q(B, A) for any A, B 2 SN.
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Let ~PP be the distribution of ff�N
t�
N
t : t > 0g with initial distribution ~��, and ~EE be the

expectation with respect to ~PP. Notice that ff�N
t�
N
t : t > 0g is stationary under ~PP. For any

t . 0,

2t~��(f˘g) ¼ ~EE

ð2 t
0

1
fe�N

s�
N
s ¼˘g

ds:

Introduce the stopping time � ¼ infft > 0 :
f�N
t�
N
t ¼ ˘g: By the strong Markovian property,

~EE

ð2 t
0

1
fe�N

s�
N
s ¼˘g

ds ¼ ~EE~EE

ð2 t
0

1
fe�N

s�
N
s ¼˘g

dsjF�

� �
> ~EE~EE 1f�, tg

ð2 t
0

1
fe�N

s�
N
s ¼˘g

dsjF�

� �

> ~EE~EE 1f�, tg

ð�þ t

�
1
fe�N

s�
N
s ¼˘g

dsjF�

� �
¼ ~PP(� , t)~EE

ð t

0

1
fe�N

s�
N
s ¼˘g

dsjf�N
0�
N
0 ¼ ˘

� �
Denote by � the first time ff�N

t�
N
t : t > 0g jumps. Then

~EE

ð t

0

1
fe�N

s�
N
s ¼˘g

dsjf�N
0�
N
0 ¼ ˘

�
> ~EE �1f�< tgjf�N

0�
N
0 ¼ ˘

� �
¼

ð t

0

s~qq˘e
�~qq˘ s ds,

�
where ~qq˘ ¼

P
� ~qq(˘, �) ¼ Nq. Hence

~PP(� , t) <
2t~��(f˘g)ð t

0

s~qq˘e
�~qq˘ s ds

¼ 2tq�1

KN þ q�1
� Nq

1� e�Nqt � Nqte�Nqt
: (8)

On the other hand,

~PP(� , t) > ~PP � , t,
f�N
0�
N
0 6¼ ˘

� �
¼ ~PP f�N

0�
N
0 6¼ ˘

� �
~PP � , tjf�N

0�
N
0 6¼ ˘

� �
¼ KN

KN þ q�1
P(� N , t):

This, together with (8), yields that

P � N , tð Þ < 2tN

KN 1� e�Nqt � Nqte�Nqtð Þ :

Letting q ! 1, then

P(� N , t) <
2tN

KN

:

This implies (7), by choosing t ¼ KN=(CN N ) ¼ KN (º)=(CN N ). h

4. The critical case

In this section we will prove the second half of Theorem 1.3, that is, when º ¼ 1,
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lim
N!1

P� � N < CN N
2

� �
¼ 1: (9)

Let f
 t : t > 0g be an infinite reversible nearest particle system on Z with finitely many

particles to the right of the origin (subspace (iii) of Section 1); and rt the rightmost particle

in f
 t : t > 0g, that is, rt :¼ supfx : 
 t(x) ¼ 1g. The properties of rt of the critical nearest

particle system are studied in Schinazi (1992). For a recent survey, see Mountford (2003).

Lemma 4.1. (Schinazi 1992, Theorem 1). Let f
 t : t > 0g be the critical reversible nearest

particle system on Z. Suppose the initial configurations have a particle at the origin and no

particle to the right of the origin, and the distribution of particles to the left of the origin

follows the renewal measure Ren(ł) with density ł(�). Then, as a ! 1, ra2 t=a converges in

distribution to a Brownian motion with diffusion constant D . 0 in the Skorohod space.

Proof of (9). Partition the configurations of SN by the position of the rightmost particle.

Namely, let

Ax ¼ f� 2 SN : �(x) ¼ 1, and �(y) ¼ 0 for any y . xg

be the set of configurations whose rightmost particle is at x. Denote by P the distribution of

f�N
t : t > 0g with initial distribution � (introduced before Theorem 1.3), and by PN ,x the

conditional distribution of the nearest particle system on f1, 2, . . . , Ng whose initial

configurations are in Ax. Then

P ¼
XN
x¼0

P(Ax)PN ,x: (10)

Denote by P the distribution of the nearest particle system on Z with the initial

distribution in Lemma 4.1, and Px the translation of P by x. Thanks to the attractive

property, there is a coupling of Px and PN ,x such that for all t . 0 and all i 2 Z,

�N
t (i) < 
 t(i):

Then under this coupling, �N
t � ˘ once rt , 1, hence � N < infft : rt , 1g.

Suppose that limN!1CN ¼ 1. For any C . 0 and large N ,

PN ,x(� N < CN N
2) > PN ,x � N < C(x� 1)2

� �
> Px 9 t < C(x� 1)2 such that rt , 1

� �
¼ P 9 t < C(x� 1)2 such that rt , �(x� 1)

� �
¼ P 9 t < C such that r(x�1)2 t=(x� 1) , �1

� �
:

Here the first equality holds because Px is the translation of P by x. This, together with

Lemma 4.1, implies that

lim inf
N ,x!þ1

PN ,x � N < CN N
2

� �
> P 9 t < C such that Bt , �1ð Þ, 8 C . 0,
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where fBt : t > 0g is a Brownian motion with diffusion constant D . 0. Letting C ! þ1,

the right-hand side of the above equation converges to 1. Hence

lim
N ,x!þ1

PN ,x � N < CN N
2

� �
¼ 1:

Consequently, for any � . 0, there exists N0 . 0 such that for any N > x > N0,

PN ,x � N < CN N
2

� �
. 1� �:

This, together with (10), implies that

P � N < CN N
2

� �
¼

XN
x¼1

P(Ax)PN ,x � N < CN N
2

� �
> (1� �)

XN
x¼N0

P(Ax): (11)

On the other hand, XN0�1

x¼1

�ł(Ax) <
XN0�1

x¼1

Xx

y¼1

�ł(SN (y, x)) < N 2
0:

Therefore, as N ! 1, XN
x¼N0

P(Ax) > 1� N2
0=(CN

2) ! 1:

This, together with (11), implies that lim inf N!1 P � N < CN N
2ð Þ > 1� �: Let � ! 0 and

the result follows. h
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