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Using the concept of the convex hull of a set of lines, a dual random triangle is defined by selecting

three lines from a parent triangle of lines. The angles of the constructed triangle define the shape;

calculation of the shape distribution is described. For a sequence of nested triangles constructed in this

way it is shown that there is convergence to collinearity and to the collinear shape distribution derived

by Mannion for a sequence of vertex-generated triangles.
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1. Introduction

Mannion (1990a; 1990b) examined the stochastic properties of a nested sequence of

triangles in R2. In that sequence each daughter triangle is constructed as the convex hull of

three points chosen at random within the previous parent triangle. Mannion showed that,

ultimately, the triangles tend to degenerate collinear triangles and he determined the

degenerate shape distribution, where the shape of a collinear triangle just corresponds to the

ratio in which the longest side is divided by the opposite vertex. In this paper we study

the dual process of a sequence of triangles of oriented lines each of which is constructed as

the convex hull of three lines chosen randomly within the previous triangle. This dual

process is a different process but it leads to the same limiting degenerate collinear shape

distribution.

We shall be working with triples fg1, g2, g3g of directed lines in R2. The construction

here depends upon the definition of the convex hull of a set of directed lines; this is

repeated here for convenience. For a set of directed lines in R2 we have L, the intersection

of their left-hand sides, and R, the intersection of their right-hand sides. The convex hull is

then defined as the set of directed lines that contain L in their left-hand side and R in their

right-hand side. If the directions of the lines are contained in a semicircle then the convex

hull is compact. The reader is referred to Gates (1994) for a general discussion of triangle

shape and to Gates (1993) for discussion of convexity and convex hull for sets of lines. For

triangles constructed by lines as sides it is much easier to measure shape directly by angles;

transformation to Kendall’s shape coordinates is given in Gates (1994).

A directed line is often specified by its orientation � in [0, 2�) and the distance, p, of

the origin to the left of the line, with �1 , p , 1. The standard representation of the set

of directed lines in the plane is the cylinder Z ¼ S1 3 R1 in R3, in which the line with

orientation � at distance p is represented as the point (cos�, sin�, p) of Z. The set of all
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lines passing through a point (a, b) of R2 is represented by the intersection of Z with the

plane through the origin orthogonal to the vector (b, �a, 1). The set of oriented lines has a

natural measure and convexity structure, but no natural metric. The natural measure is the

unique (up to proportionality) Haar measure invariant under the action of the group of

planar motions (see Santaló 1976). In the cylinder representation the invariant measure is

just cylindrical surface area. Gates et al. (2005) show that familiar convexity properties of

planar sets of points have analogues for convexity of lines. We can think of three lines in

the plane as three points on the manifold Z; the process described here is the dual of the

process of sequentially choosing three vertices in the plane. On Z, as the triangles of the

nested sequence become smaller, the patch of the cylinder more closely resembles a planar

patch and leads us to suspect that the limiting behaviour of the dual process is the same as

the classic case of vertices from R2. Of course the three lines can also be regarded as the

sides of a triangle in R2.

In this paper we will be concerned with convergence to collinearity and we start with a

parent triangle fg1, g2, g3g; the orientation �i of gi will be taken in [0, �] and the lines

labelled so that 0 < �2 < �1 < �3 < �; the triangle shape is defined as (B, C), where

B ¼ �3 � �1 and C ¼ �1 � �2. In vertex-generated shape theory it is common to construct

a standard representative of a shape class; we employ a corresponding convention here.

Thus given angles (B, C) we construct a line triple (shown in Figure 1) with g1 crossing

the x-axis at b and having orientation �1 ¼ �� B, with g2 passing through the origin, o,

�
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Figure 1. Construction of a daughter triangle.

56 J. Gates



having orientation �2 ¼ �� B� C (¼ A, say) and with g3 as the negative x-axis. Let g1
and g2 meet at c; then the line triple shown has its left-hand side with a single vertex, o,

and with its right-hand side having two vertices, b and c. The standard line measure of the

convex hull is obþ oc� bc; we normalize the scale to give unit line measure by taking

ob ¼ h� sin(C), where

h� ¼ (sin(B)þ sin(C)� sin(A))�1, (1)

so that h� sin(B)sin(C) is the altitude length from o to g1. The angular range of lines in this

convex set is [A, �].
In selecting a line G9 uniformly randomly the orientation �9 has probability density

function given by the internal width function (see Gates 1994):

w(�9jB, C) ¼ h�minfsin(B)sin(�9� A), sin(C)sin(�9)g, (2)

where A < �9 < �. This will be termed the sine-arch density. The process of selecting a

daughter triangle shape is to choose three angles (�91, �92, �93) independently according to

(2), order these, and then calculate the new shape angles (B9, C9) by

B9 ¼ �9(3) ��9(2), C9 ¼ �9(2) ��9(1): (3)

We note that, trivially, B9þ C9 < Bþ C. This construction is illustrated in Figure 1.

It will be convenient to denote Bþ C by r and B9þ C9 by R. If we start with an obtuse

triangle (r , �=2), then the marginal daughter density function for (B9, C9) is

h(u, v) ¼ 6

ð��u�v

A

w(�)w(�þ v)w(�þ uþ v)d�, (4)

where the dependence on (B, C) has been suppressed. In specific cases analytic evaluation of

(4) is elementary, but requires substitutions of the appropriate trigonometric component of the

w function. The result is a piecewise linear trigonometric function.

2. Internal ratio and range distribution

Before our application we develop some formulae in general notation. Suppose that

X (1), X (2), X (3) are the order statistics of a random sample of size 3 from a continuous

distribution on [0, L] with distribution function F and concave probability density function

f. Define the internal ratio as S ¼ (X (2) � X (1))=(X (3) � X (1)). The density, IRf, of S is given

by

IRf (t) ¼ 6

ðð
(x3 � x1) f (x1) f (x3) f (x1 þ t(x3 � x1))dx1 dx3, (5)

with domain of integration 0 < x1 < x3 < L. A case of particular interest is when f is the

triangle-arch density (with parameter s),

w0(xjs) ¼ minf2xs�1, 2(1� x)(1� s)�1g, 0 < x < 1, (6)

which has L ¼ 1 and is a limiting case of the scaled sine-arch density. The internal ratio
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density for w0 was evaluated by Mannion (1990b), who also demonstrated that it is uniformly

bounded below by 2
3
.

Lemma 1. If f is continuous and concave on [0, L] then IRf (t) > 1=12.

Proof. We can assume that L ¼ 1 and that f attains its maximum f � at s� in [0, 1]. Then, by

concavity, f (x) > 1
2
f �w0(xjs�). From (5) we see that

IRf (t) > 1
2
f �

� �3
IRw0(tjs�) > 1

2
f �

� �3 2
3
,

using the Mannion result. As f is a density on [0, 1], f � > 1 and so the lower bound

follows. h

This result will be ergodically significant in the next section where the internal ratio

density will be a stochastic transition kernel.

The following lemma is useful when approximating sampled distributions.

Lemma 2. If f and g are concave densities on [0, L] with j f (x)� g(x)j < k, then

jIRf (t)� IRg(t)j < 28k:

Proof. Assume that L ¼ 1. Then by direct substitution of the bounds f (x)� k for g(x) in (5)

and using the facts that f (x) < 2 and k < 2, we obtain

jIRf (t)� IRg(t)j < 12k þ 6k2 þ k3 < 28k: h

The internal ratio is the shape of a sample of size 3; complementary to that is the range

R ¼ X (3) � X (1). Using results in Exercise 14.19 and equation (14.82) of Kendall and Stuart

(1977), we can say that

E(R) ¼ 3

ð L
0

(F(x)(1� F(x)))dx < 3
L

4
: (7)

If X1, X 2, X 3 is an initial sample from a distribution on [0, L] and we repeatedly take nested

samples, so that X
(k)
1 , X

(k)
2 , X

(k)
3 is a sample from the interval [X

(k�1)
(1) , X

(k�1)
(3) ], then (7)

implies that, with Rk the range of the kth nested sample,

E(Rk) < (3L=4)k : (8)

In our application to a sequence of nested dual triangles (8) will ensure a geometric rate of

convergence to collinearity.

Next we need some detail on the approximation of the scaled triangle-arch density to the

sine-arch density to establish a bound for the use of Lemma 2.

A triangle shape can be represented by (B, C) or by (s, r), where r ¼ Bþ C and

s ¼ B=r. From (2) the daughter triangle is chosen from the distribution with density

a(xjs, r) ¼ w(�� xjsr, (1� s)r) ¼ h�minfsin((1� s)r)sin(x), sin(sr)sin(r � x)g, (9)

58 J. Gates



where h� ¼ [sin(sr)þ sin((1� s)r)� sin(r)]�1.

Lemma 3.

(i) 0 < 1
2

� �
r3 � (s(1� s)h�)�1 < Kr5, where K ¼ 1=24.

(ii) ja(xjs, r)� r�1w0(xr
�1js)j < r=3, for 0 < x < r.

Proof. From (1), using trigonometric identities, we can write

(h�)�1 ¼ 4 sin
r

2

� �
sin

rs

2

� �
sin

r(1� s)

2

� �
:

The left-hand inequality in (i) is obtained by using the upper bound sin(t) < t; using

t � t3=6 < sin(t), we have

(h�)�1 >
r3s(1� s)

2
1� r2

24

� �
1� r2s2

24

� �
1� r2(1� s)2

24

� �

>
r3s(1� s)

2
1� r2

24

� �2

>
r3s(1� s)

2
1� r2

12

� �
:

from which the right-hand inequality of (i) follows.

To prove (ii) we start by rearranging (i):

2(s(1� s)r3)�1 < h� < 2(s(1� s)r3)�1(1þ 2Kr2):

For 0 < x < sr, using the upper bound for sin(:), we have

a(xjs, r) < 2xr(1� s)(s(1� s)r3)�1(1þ 2Kr2)

¼ r�1w0(xr
�1)(1þ 2Kr2) < r�1w0(xr

�1)þ 4Kr:

Using the lower bound, we have

2(s(1� s)r3)�1[(1� s)r � 1
6
((1� s)r)3][x� 1

6
x3] < a(xjs, r),

leading to

2x(sr2)�1[1� 1
6
((1� s)r)2 � 1

6
x2] < a(xjs, r)

and then, as x < sr, to

r�1w0(xr
�1js)� 1

3
r < a(xjs, r):

For sr < x < r, we have

a(xjs, r) < 2sr(r � x)(s(1� s)r3)�1(1þ 2Kr2)

¼ r�1w0(xr
�1js)(1þ 2Kr2) < r�1w0(xr

�1js)þ 4Kr:

Similarly, using the lower bound for sin(:) in this case we have
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r�1w0(xr
�1js)� 1

3
r < a(xjs, r):

As 4K < 1=3 we see that r=3 is a bound on the difference in either case. h

Combining Lemmas 2 and 3, using the fact that r�1w0(xr
�1js) is a density on [0, r] with

the same internal ratio density as w0, we have the following corollary.

Corollary 1. jIRa(tjs, r)� IRw0(tjs)j < 28r=3.

3. Convergence of a nested sequence of triangles

In this section we consider the stochastic convergence of the shapes of a nested sequence of

dual random triangles. Let (s0, r0) be an initial triangle shape (with r0 , �=2). We

construct a standard representative dual triangle as described in Section 1; three lines are

selected at random to produce a daughter triangle shape (S1, R1), and the process is

repeated. Removing the geometry, we sample X 1, X2, X 3 from a(�js0, r0) and let

S1 ¼ (X (2) � X (1))=(X (3) � X (1)) and R1 ¼ X (3) � X (1). The process is repeated to produce

a sequence f(Sn, Rn)g. This sequence is a discrete-time continuous state space Markov

chain, but we shall instead consider fSng as a non-homogeneous but asymptotically

homogeneous Markov chain. For large n, Rn should be small and we shall be nearly

sampling from the triangle-arch distribution. We have to prove that the limiting distribution

of fSng is that of the collinear shape process determined by Mannion. We shall formulate

versions of the results given by Seneta (1973) for inhomogeneous finite-state Markov

chains.

Notationally define the total variation norm of an integrable function h on [0, 1] by

jhj1 ¼
ð1
0

jh(x)jdx,

so that jhj1 ¼ 1 if h is a probability density function. Let f njm denote the density of the

shape Sn after n selections given the shape and range after m selections (n . m), so that

f mþ1jm(:) ¼ IRa(:jsm, rm); let f n ¼ f nj0 denote the unconditional density after n selections

starting with an initial parent triangle and Fn the corresponding distribution function of Sn.

For any integrable function, h, on [0, 1] let hPm denote the function on [0, 1] defined by

(hPm)(x) ¼
ð1
0

h(s) f mþ1jm(x)ds ¼
ð1
0

h(s)IRa(xjs, rm)ds,

which also depends on rm. If h is a density then so is hPm. Also let P0 denote the transition

kernel defined by IRw0(:j:).

Lemma 4. For any two densities h1 and h2 on [0, 1],

j(h1 � h2)Pmj1 < (1� º)jh1 � h2j1,

where º ¼ 1=12.
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Proof. For any s, r the function (IRa(�js, r))� º) is non-negative and has integral 1� º,
hence

j(h1 � h2)Pmj1 ¼
ð1
0

����
ð1
0

(h1(s)� h2(s)(IRa(xjs, rm))dsjdx

¼
ð1
0

����
ð1
0

(h1(s)� h2(s)(IRa(xjs, rm)� º)dsjdx

<

ð1
0

ð1
0

jh1(s)� h2(s)j(IRa(xjs, rm)� º)dx ds

¼ (1� º)

ð1
0

jh1(s)� h2(s)jds ¼ (1� º)jh1 � h2j1:

h

Let G (or g) denote the invariant distribution (or density) for the collinear Markov

process with transition kernel P0, from the triangle-arch distribution, so that gP0 ¼ g.

Mannion (1990b) gave

g(t) ¼ (3��2)f1þ Æ(t)þ Æ(1� t)g, 0 < t < 1,

where

Æ(t) ¼ t�2 þ 1
2
t�3f2þ 3t þ 2t2g(1� t)2 ln(1� t):

The following lemma allows us to show a contraction of f njm to g.

Lemma 5. For k . 0,

j f kþmjm � gj1 < j f m � gj1(1� º)k þ rm
28

3

� �Xk�1

j¼0

(1� º) j:

Proof. We have

j f mþ1jm � gj1 < j( f m � g)Pmj1 þ jgPm � gP0j1

< (1� º)j f m � gj1 þ
ð1
0

ð1
0

g(s)jIRa(xjs, rm)� IRw0(xjs)jds dx

< (1� º)j f m � gj1 þ
ð1
0

ð1
0

g(s)
28rm

3

� �
ds dx ¼ (1� º)j f m gj1 þ rm

28

3

� �
,

using Corollary 1 and proving Lemma 5 for k ¼ 1.

Suppose it is true for k ¼ i. Then for k ¼ iþ 1 we have
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j f mþiþ1jm � gj1 < j( f mþijm � g)Pmþij1 þ jgPmþi � gP0j1

< (1� º)j f mþijm � gj1 þ
ð1
0

ð1
0

g(s)
28rmþi

3

� �
ds dx

< (1� º)j f mþijm � gj1 þ rm
28

3

� �
,

as rmþi < rm. Using the induction assumption, we can say that

j f mþiþ1jm � gj1 < (1� º) j f m � gj1(1� º)i þ rm
28

3

� �Xi�1

j¼0

(1� º) j
( )

þ rm
28

3

� �

¼ j f m � gj1(1� º)iþ1 þ rm
28

3

� �Xi

j¼0

(1� º) j,

confirming the result at k ¼ iþ 1 and hence for all k. h

Corollary 2. j f kþmjm � gj1 < (11=12)k j f m � gj1 þ 112rm.

Lemma 5 allows us to establish convergence in distribution of the law of Sn to G. For

any n, let m ¼ [n=2] and let k ¼ n� [n=2]. Then

Pr(Sn < t)� G(t) ¼ E(Pr(Sn < tjRm)� G(t))

¼ E

ð t
0

( f njm(u)� g(u))du

� �
< E

ð t
0

j( f njm(u)� g(u))jdu
� �

< E j f njm � gj
� �

< E
11

12

� �kþ1

þ 112Rm

 !
<

11

12

� �n=2

þ 112
3

4

� �n=2

,

where we have used (8). Essentially the same steps also show that G(t)� Pr(Sn < t) has the

same bound and so

jPr(Sn < t)� G(t)j < 11

12

� �n=2

þ 112
3

4

� �n=2

,

an error bound clearly uniform (and geometrically decreasing) in t.

Theorem 1. Fn(t) ! G(t), uniformly in t, as n ! 1.
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