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The class of distributions on R generated by convolutions of ˆ-distributions and the class generated by

convolutions of mixtures of exponential distributions are generalized to higher dimensions and denoted

by T (Rd) and B(Rd). From the Lévy process fX ( �)
t g on Rd with distribution � at t ¼ 1, �(�) is

defined as the distribution of the stochastic integral
Ð 1
0
log(1=t)dX ( �)

t . This mapping is a generalization

of the mapping � introduced by Barndorff-Nielsen and Thorbjørnsen in one dimension. It is proved

that �(ID(Rd)) ¼ B(Rd) and �(L(Rd)) ¼ T (Rd), where ID(Rd) and L(Rd) are the classes of infinitely

divisible distributions and of self-decomposable distributions on Rd , respectively. The relations with

the mapping � from � to the distribution at each time of the stationary process of Ornstein–

Uhlenbeck type with background driving Lévy process fX ( �)
t g are studied. Developments of these

results in the context of the nested sequence Lm(R
d), m ¼ 0, 1, . . . , 1, are presented. Other

applications and examples are given.

Keywords: Goldie–Steutel–Bondesson class; infinite divisibility; Lévy measure; Lévy process; self-

decomposability; stochastic integral; Thorin class

1. Introduction

For distributions on the positive real line, Thorin (1977a; 1977b) introduced the smallest

class that contains all ˆ-distributions and is closed under convolution and convergence,

where convergence of distributions means weak convergence. He called distributions of this

class generalized ˆ-convolutions. This was in connection with his proof of infinite

divisibility of Pareto and lognormal distributions. In Bondesson’s (1992) monograph the

class is denoted by T . Subsequently Thorin (1978) considered the smallest class on the real

line R which contains all generalized ˆ-convolutions and is closed under convolution,

convergence and reflection. We denote this class by T (R). Based on the work of Goldie

(1967) and Steutel (1967, 1970), Bondesson (1981) studied the smallest class which
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contains all mixtures of exponential distributions and is closed under convolution and

convergence. He called distributions of this class generalized convolutions of mixtures of

exponential distributions. It is similarly extended to a class on R, and we denote the

extension by B(R). In Bondesson (1992) the class T (R) and the class of generalized

convolutions of mixtures of exponential distributions are denoted by T e and T 2,

respectively; the class B(R) should not be confused with the class B there.

We study multidimensional analogues of the classes T (R) and B(R). We define them as

subclasses of the class ID(Rd) of infinitely divisible distributions on Rd such that their

Lévy measures have radial components having the same property as the part on

Rþ ¼ [0, 1) of the Lévy measures of distributions in T (R) and B(R), respectively. The

class T (Rd) is included in the class L(Rd) of self-decomposable distributions on Rd , but the

class B(Rd) is not. Precise definitions will be given in Section 2. The class T (Rd) is duly

called the Thorin class, as it is the analogue of T (R). Historically, Goldie (1967) proved the

infinite divisibility of mixtures of exponential distributions and Steutel (1967) found the

description of their Lévy measures. So it would be appropriate to call B (Rd) the Goldie–

Steutel–Bondesson class. We give a probabilistic characterization of these classes on Rd by

using a mapping � defined by a stochastic integral; �(�) is the distribution ofÐ 1
0
log(1=t)dX

( �)
t , where fX ( �)

t g is the Lévy process on Rd with distribution � at t ¼ 1.

In one dimension this is the mapping introduced by Barndorff-Nielsen and Thorbjørnsen

(2002a; 2002b, 2004; 2005) in relation to the Bercovici–Pata bijection between free infinite

divisibility and classical infinite divisibility. We will prove that B(Rd) and T (Rd) are the

images by � of ID(Rd) and L(Rd), respectively. We will further investigate the relation

with the mapping � which is defined for � in IDlog(R
d), the class of distributions in

ID(Rd) with finite log-moment, and which gives the distribution �(�) of
Ð1
0
e� t dX

( �)
t .

Both �� and �� are defined on IDlog(R
d); they coincide and give another stochastic

integral representation of T (Rd). By analogy with the construction of the well-known nested

sequence of subclasses Lm(R
d), m ¼ 0, 1, . . . , 1, of L(Rd) ¼ L0(R

d), we define a new

nested sequence of subclasses Tm(R
d), m ¼ 0, 1, . . . , 1, beginning with T0(R

d) ¼ T (Rd).

Alternatively, the former sequence extended by adding ID(Rd) at the top and the latter

sequence extended by adding B(Rd) at the top can be generated from the top members by

iterating the mapping � each time after restriction to IDlog(R
d). We will show that the

latter extended sequence is the image by the mapping � of the former extended sequence.

Further, we will describe Tm(R
d) by specifying the Lévy measures. A characterization of

T (Rd) and B(Rd) by using elementary ˆ-variables and elementary mixed-exponential

variables in Rd , respectively, will also be given.

2. Main results

For any Rd-valued random variable X , we denote its distribution by L(X ). The

characteristic function and the cumulant function of a distribution � on Rd are denoted

by �̂�(z) and C�(z), respectively. That is, C�(z) is a continuous function with C�(0) ¼ 0 such

that �̂�(z) ¼ exp(C�(z)), z 2 Rd; such a function C�(z) exists and is unique if �̂�(z) 6¼ 0 for

all z 2 Rd . If � ¼ L(X ), then C�(z) is also written as CX (z).
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Any Lévy process fX ( �)
t : t > 0g on Rd uniquely induces an Rd-valued independently

scattered random measure fM ( �)(B) : B 2 B0
[0,1)g such that M ( �)([0, t]) ¼ X

( �)
t almost

surely, where B0
[0,1) is the class of bounded Borel sets in [0, 1). Let f (t) be a real-valued

measurable function on [0, 1), M ( �)-integrable (also called fX ( �)
t g-integrable) in the sense

of Urbanik and Woyczynski (1967) and Rajput and Rosinski (1989) for d ¼ 1 and of Sato

(2004) for general d. Then M ( f ,�)(B) ¼
Ð
B
f (t)M ( �)(dt) (also written as

Ð
B
f (t)dX

( �)
t ) is

defined a.s. for each B 2 B0
[0,1) and fM ( f ,�)(B) : B 2 B0

[0,1)g is again an Rd-valued

independently scattered random measure; furthermore, we have
Ð
B
jC�( f (t)z)jdt , 1 and

CM ( f ,�)(B)(z) ¼
ð
B

C�( f (t)z)dt, z 2 Rd : (2:1)

For B ¼ (a, b), (a, b], [a, b), and [a, b], the expressions
Ð
B
f (t)dX

( �)
t coincide a.s.; we write

them as
Ð b
a
f (t)dX

( �)
t . On [0, 1) or (0, 1) the stochastic integral of f with respect to X

( �)
t

is defined as the limit in probability of
Ð s
0
f (t)dX

( �)
t as s ! 1 and written as

Ð1
0

f (t)dX
( �)
t ,

whenever the limit exists. Let

IDlog(R
d) ¼ � 2 ID(Rd) :

ð
jxj.2

logjxj�(dx) , 1
( )

¼ � 2 ID(Rd) :

ð
jxj.2

logjxj�( �)(dx) , 1
( )

,

where �( �) is the Lévy measure of �. It is known (Jurek and Vervaat 1983; Sato and

Yamazato 1983; Sato 1999) that
Ð1
0
e� t dX

( �)
t is definable if and only if � 2 IDlog(R

d), and

that

L(Rd) ¼ �(IDlog(R
d)), (2:2)

where

�(�) ¼ L
ð1
0

e� t dX
( �)
t

� �
: (2:3)

The domain of definition of the mapping � is IDlog(R
d), and � is one-to-one. Another

characterization of �(�) is given in relation to the Langevin equation

dYt ¼ dX
( �)
t � Yt dt: (2:4)

Equation (2.4) has a stationary solution fYt : t > 0g if and only if � 2 IDlog(R
d). If

� 2 IDlog(R
d), then a stationary solution fYtg is unique, and L(Yt) ¼ �(�) for all t > 0. The

process fYtg is called a stationary process of Ornstein–Uhlenbeck type. For a historical

account of the connection of L(Rd), �, and processes of Ornstein–Uhlenbeck type, see

Rocha-Arteaga and Sato (2003, pp. 54–55). Steutel and van Harn (1979) should also be cited,

as they mentioned the possibility of expressing C ~��(z) for ~�� 2 L(R) in the form equivalent to

the right-hand side of (4.1) in Section 4 with some �. For further developments and

extensions, see Maejima and Sato (2003) and the references therein.

For any Borel set E in Rd , the class of Borel subsets of E is denoted by B(E). A
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function defined on E is called measurable if it is B(E)-measurable. The unit sphere in Rd

is denoted by S ¼ f� 2 Rd : j�j ¼ 1g.
We use the Lévy–Khintchine triplet, or simply the triplet, (A, �, ª) of � 2 ID(Rd) in the

sense that

C�(z) ¼ � 1

2
hz, Azi þ

ð
Rd

eihz,xi � 1� ihz, xi
1þ jxj2

� �
�(dx)þ ihª, zi, (2:5)

where A is a d 3 d symmetric non-negative definite matrix, � is a measure on Rd called the

Lévy measure of �, and ª 2 Rd . A measure � is the Lévy measure of some � 2 ID(Rd) if

and only if �(f0g) ¼ 0 and
Ð
Rd (jxj2 ^ 1)�(dx) , 1. We sometimes denote an infinitely

divisible distribution � with triplet (A, �, ª) by �(A,�,ª). We also denote the Lévy measure of

� by �( �).
We use the following polar decomposition of Lévy measures.

Lemma 2.1. Let � ¼ �( �) for some � 2 ID(Rd) with 0 , �(Rd) < 1. Then there exist a

measure º on S with 0 , º(S) < 1 and a family f�� : � 2 Sg of measures on (0, 1) such

that

��(B) is measurable in � for each B 2 B((0, 1)); (2:6)

0 , ��((0, 1)) < 1, for each � 2 S; (2:7)

�(B) ¼
ð
S

º(d�)

ð1
0

1B(r�)��(dr), for B 2 B(Rdnf0g): (2:8)

Here º and f��g are uniquely determined by � in the following sense: if º, f��g and º9, f�9�g
both have properties (2.6)–(2.8), then there is a measurable function c(�) on S such that

0 , c(�) , 1; (2:9)

º9(d�) ¼ c(�)º(d�); (2:10)

c(�)�9�(dr) ¼ ��(dr), for º almost every � 2 S: (2:11)

Rosinski (1990) has the same result, but the uniqueness is not mentioned. Sometimes we

call º and �� in Lemma 2.1 the spherical component and the radial component of �
respectively, as they are uniquely determined in the sense given above. The following

description of the Lévy measures of L(Rd) is well known (see Sato 1999, Theorem 15.10).

Proposition 2.2. Let � 2 ID(Rd) and let � ¼ �( �). Then � 2 L(Rd) if and only if either � ¼ 0

or � 6¼ 0 with a polar decomposition (º, ��) such that there is a non-negative function k�(r)

measurable in � and decreasing, right-continuous in r, satisfying

��(dr) ¼ k�(r)r
�1 dr, for º-a:e: � 2 S: (2:12)

We call k�(r) the k-function of � 2 L(Rd) or of its Lévy measure �, as it is determined

by � º-a.e. up to multiplication of functions of �. The right-continuous modification of
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k�(e
�u) is denoted by h�(u) and called the h-function of � 2 L(Rd) or of its Lévy

measure �.
Let us define T (Rd) and B(Rd).

Definition 2.1. The class T (Rd) is the collection of � 2 L(Rd) with � ¼ �( �) such that either

� ¼ 0 or � 6¼ 0, having k-function k�(r) completely monotone in r for º-a.e. �, where º is the

spherical component of �.

Definition 2.2. The class B(Rd) is the collection of � 2 ID(Rd) with � ¼ �( �) such that either

� ¼ 0 or � 6¼ 0, having polar decomposition (º, ��) satisfying

��(dr) ¼ l�(r)dr, for º-a:e: � 2 S, (2:13)

where l�(r) is measurable in � and completely monotone in r for º-a.e. �.

We call l�(r) the l-function of � 2 B(Rd) or of its Lévy measure �. We can prove that

B(Rd) \ L(Rd) �
6¼ T (Rd): (2:14)

Except for the strictness, this is clear; the strictness will be proved in Section 3.

We introduce a mapping �.

Proposition 2.3. If f (t) is a function on [0, 1) given by f (t) ¼ log(1=t) for 0 , t < 1 and

f (t) ¼ 0 otherwise, then f (t) is fX ( �)
t g-integrable for every � 2 ID(Rd).

Definition 2.3. For any � 2 ID(Rd), define

�(�) ¼ L
ð1
0

log
1

t
dX

( �)
t

� �
: (2:15)

We often write �� or �� for �(�) or �(�), respectively. We now state our main results

on B(Rd) and T (Rd).

Theorem A. (i) The total image of the mapping � equals B(Rd). That is,

B(Rd) ¼ �(ID(Rd)): (2:16)

(ii) Let � 2 ID(Rd) and ~�� ¼ ��, and let � ¼ �( �) and ~�� ¼ �( ~��). Then

~��(B) ¼
ð1
0

e�s�(s�1B)ds, for B 2 B(Rd): (2:17)

If � 6¼ 0 and � has polar decomposition (º, ��), then a polar decomposition of ~�� is given by
~ºº ¼ º and ~���(dr) ¼ ~ll�(r)dr, with

~ll�(r) ¼
ð1
0

s�1e�r=s��(ds): (2:18)

Multivariate infinitely divisible distributions 5



Theorem B. (i) The image of the class L(Rd) by the mapping � equals T (Rd). That is,

T (Rd) ¼ �(L(Rd)): (2:19)

(ii) Let � 2 L(Rd) and ~�� ¼ �� with � ¼ �( �) and ~�� ¼ �( ~��). If � 6¼ 0 and � has spherical

component º and k-function k�(r), then ~�� has spherical component ~ºº ¼ º and k-function

~kk�(r) ¼
ð1
0

k�(rs
�1)e�s ds ¼

ð1
0

e�ru dk
#
� (u): (2:20)

Here k
#
� (u) is the right-continuous modification of k�(u

�1).

In the one-dimensional case (d ¼ 1), (2.19) was discovered by Barndorff-Nielsen and

Thorbjørnsen who also, in effect, noted that �(ID(R)) � B(R), but without being aware of

the connection to the class B(R); see Barndorff-Nielsen and Thorbjørnsen (2004; 2005).

In proving Theorems A and B, we will show the following properties of the mapping �.

Proposition 2.4. (i) For any � 2 ID(Rd),
Ð 1
0
jC�(z log(1=t))jdt , 1 and

C��(z) ¼
ð1
0

C� z log
1

t

� �
dt, z 2 Rd : (2:21)

(ii) The mapping � is one-to-one from ID(Rd) into ID(Rd).

(iii) �(�1 � �2) ¼ ��1 � ��2 for �1, �2 2 ID(Rd).

(iv) For � 2 ID(Rd) with triplet (A, �, ª), �� has triplet ( ~AA, ~��, ~ªª) with expressions

~AA ¼ 2A; (2:22)

~��(B) ¼
ð1
0

�(s�1B)e�s ds, for B 2 B(Rd); (2:23)

~ªª ¼ ªþ
ð1
0

e�ss ds

ð
Rd

x
1

1þ s2jxj2 �
1

1þ jxj2

� �
�(dx)

¼ ªþ
ð
Rd

xjxj2
1þ jxj2 �(dx)

ð1
0

e�ss(1� s2)

1þ s2jxj2 ds: (2:24)

(v) Let �n 2 ID(Rd), n ¼ 1, 2, . . . . If �n ! �, then � 2 ID(Rd) and ��n ! ��.
Conversely, if ��n ! ~�� for some distribution ~��, then ~�� ¼ �� for some

� 2 ID(Rd) and �n ! �.
(vi) The mapping � has the following alternative expressions:

�� ¼ L
ð1
0

log
1

1� t
dX

( �)
t

� �
, (2:25)

�� ¼ L lim
s#0

ð1
s

X
( �)
t

t
dt

 !
, (2:26)

where the limit in (2.26) is almost sure.
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For another expression for T (Rd), we use the function e1(u) ¼
Ð1
u
e�ss�1 ds and the

function e�1 (t) inverse to e1(u), that is, t ¼ e1(u) if and only if u ¼ e�1 (t).

Theorem C. (i) Let � 2 ID(Rd). Then �� 2 IDlog(R
d) if and only if � 2 IDlog(R

d).

(ii) The integral
Ð1
0
e�1 (t)dX

( �)
t exists if and only if � 2 IDlog(R

d). If � 2 IDlog(R
d), then

��� ¼ ��� ¼ L
ð1
0

e�1 (t)dX
( �)
t

� �
, (2:27)

where ��� ¼ �(�(�)) and ��� ¼ �(�(�)).
(iii) We have

T (Rd) ¼ �(B(Rd) \ IDlog(R
d)) (2:28)

and

T (Rd) ¼ L
ð1
0

e�1 (t)dX
( �)
t

� �
: � 2 IDlog(R

d)

� �
: (2:29)

Let us recall the definition of self-decomposability. A distribution � on Rd is said to be

self-decomposable, or � 2 L(Rd), if for each b . 1 there is a distribution r( �)b such that

�̂�(z) ¼ �̂�(b�1z)
cr( �)br
( �)
b (z): (2:30)

Note that r( �)b is uniquely determined by � and b and that r( �)b 2 ID(Rd). We define

L0(R
d) ¼ L(Rd) and then, for m ¼ 1, 2, . . . , define

Lm(R
d) ¼ f� 2 L(Rd) : r( �)b 2 Lm�1(R

d) for all b . 1g: (2:31)

Let L1(Rd) ¼ \0<m,1 Lm(R
d) and let S(Rd) be the class of stable distributions on Rd .

Thus we obtain the nested sequence studied by Urbanik (1972), Sato (1980) and others:

ID(Rd) � L0(R
d) � L1(R

d) � L2(R
d) � . . . � L1(Rd) � S(R d) (2:32)

The class L1(Rd) is the smallest class that contains S(Rd) and is closed under convolution

and convergence.

Corollary to Theorem C. We have

T (Rd) ¼ f� 2 L(Rd) : r( �)b 2 B(Rd) for all b . 1g: (2:33)

We now define the classes Tm(R
d), letting T0(R

d) ¼ T (Rd) and, for m ¼ 1, 2, . . . ,

Tm(R
d) ¼ f� 2 L(Rd) : r( �)b 2 Tm�1(R

d) for every b . 1g: (2:34)

Let T1(Rd) ¼ \0<m,1 Tm(R
d). In this way we obtain a decreasing sequence

B(Rd) � T0(R
d) � T1(R

d) � T2(R
d) � . . . � T1(Rd) � S(Rd) (2:35)

The last inclusion is clear because, for any Gaussian distribution �, r( �)b is Gaussian, and

because, for any Æ-stable distribution � with 0 , Æ , 2, � 2 L(Rd) with k-function r�Æ, and

thus � is in T (Rd) and has Æ-stable r( �)b .

Multivariate infinitely divisible distributions 7



Theorem D. The sequence (2.32) is transformed into the sequence (2.35) by the mapping �,

that is, (2.16) and

Tm(R
d) ¼ �(Lm(R

d)), for m ¼ 0, 1, . . . , 1, (2:36)

S(Rd) ¼ �(S(R d)): (2:37)

Moreover, we have

Tm(R
d) �

6¼ Lm(R
d), for m ¼ 0, 1, . . . , (2:38)

T1(Rd) ¼ L1(Rd), (2:39)

Tmþ1(R
d) ¼ �(Tm(R

d) \ IDlog(R
d)), for m ¼ 0, 1, . . . , 1, (2:40)

where we understand mþ 1 ¼ 1 for m ¼ 1.

Relation (2.37) was shown in Barndorff-Nielsen and Thorbjørnsen (2002b) for d ¼ 1.

It is known that

Lmþ1(R
d) ¼ �(Lm(R

d) \ IDlog(R
d)), for m ¼ 0, 1, . . . , 1: (2:41)

Assertion (2.40) is analogous to this. Thus Lm(R
d) and Tm(R

d) are the images of ID(Rd) and

B(Rd), respectively, by �mþ1, the (mþ 1)th iteration of �. A description of the domain of

definition of �mþ1 and a stochastic integral representation of �mþ1 are known. See Jurek

(1983), Sato and Yamazato (1983), also Rocha-Arteaga and Sato (2003) Theorems 46 and 49

and Remark 58.1

The Lévy measures of Tm(R
d) are characterized as follows.

Theorem E. Let m 2 f0, 1, . . .g. Let � 2 ID(Rd). Then � 2 Tm(R
d) if and only if � 2 L(Rd)

and � ¼ �( �) is either � ¼ 0 or � 6¼ 0, having infinitely differentiable h-function h�(u) such

that

h
( j)
� (u) > 0 for u 2 R, 0 < j , m, and h

(m)
� (�log r)

is completely monotone in r . 0, º-a:e: �,
(2:42)

where h
( j)
� is the jth derivative of h� and º is the spherical component of �.

A characterization of B(Rd) and T (Rd) usign mixed-exponential distributions and

ˆ-distributions is as follows.

Definition 2.4. Call Ux an elementary mixed-exponential variable in Rd (an elementary

ˆ-variable in Rd) if x is a non-random non-zero vector in Rd and U is a real random

variable whose distribution is a mixture of a finite number of exponential distributions (a real

ˆ-distributed random variable).

1In line 4 of the remark, �m should be replaced by �.

8 O.E. Barndorff-Nielsen, M. Maejima and K. Sato



Theorem F. The class B(Rd) (T (Rd)) is the smallest class of distributions on Rd closed

under convolution and convergence and containing the distributions of all elementary mixed-

exponential variables in Rd (of all elementary ˆ-variables in Rd). Actually, � is in B(Rd)

(T (Rd)) if and only if there are �n, n ¼ 1, 2, . . . , with �n ! � such that each �n is the

distribution of the sum of a finite number of independent elementary mixed-exponential

variables in Rd (elementary ˆ-variables in Rd).

Many examples of distributions in T (R) supported on Rþ are given in Bondesson (1992)

and Steutel and van Harn (2004). As shown by Bondesson (1992, Theorem 7.3.1), all

normal variance mixtures where the law of the variance is a generalized ˆ-convolution
belong to T (R). (Any such mixture equals the law at time 1 of a subordination of Brownian

motion by a generalized ˆ-convolution subordinator.) We also note that if X1, . . . , Xd are

independent real random variables with L(X j) in T (R) (B(R)) for each j, then

L(X ) 2 T (Rd) (B(Rd)) for X ¼ (X j)1< j<d.

We will prove the results above in the sections that follow. In the final section we will

discuss several examples.

3. Proof of Theorems A and B

We prove Theorems A and B on the relationship of the classes B(Rd) and T (Rd) with the

mapping �. We also show relation (2.14), Lemma 2.1, and Propositions 2.3 and 2.4.

Proof of Lemma 2.1. Let c ¼
Ð
Rd (jxj2 ^ 1)�(dx) and let N be a random variable on Rd with

distribution c�1(jxj2 ^ 1)�(dx). Let R ¼ jN j and ˛ ¼ N=jN j. Define º0 ¼ L(˛) and

�0�(B) ¼ c
Ð
B
(r2 ^ 1)�1P(R 2 dr j˛ ¼ �), using the conditional distribution. Then º0 and

f�0�g satisfy (2.6)–(2.8) with the additional properties that º0(S) ¼ 1 and
Ð1
0
(r2 ^ 1)�0�(dr)

¼ 1 for all � 2 S.

The proof of the uniqueness is as follows. Let º, f��g and º9, f�9�g both satisfy (2.6)–

(2.8). Define a(�) ¼
Ð1
0
(r2 ^ 1)��(dr) and a9(�) ¼

Ð1
0
(r2 ^ 1)�9�(dr). By (2.7), a(�) and

a9(�) are positive for all �. We have a(�) , 1 for º-a.e. � and a9(�) , 1 for º9-a.e. �,
since

Ð
S
a(�)º(d�) ¼

Ð
S
a9(�)º9(d�) ¼ c , 1. For any B 2 B(S),

cº0(B) ¼
ð
fx:jxj�1x2Bg

(jxj2 ^ 1)�(dx) ¼
ð
B

a(�)º(d�) ¼
ð
B

a9(�)º9(d�):

Hence º0, º, and º9 are mutually absolutely continuous. By the uniqueness of the conditional

distribution P(R 2 dr j˛ ¼ �), we obtain ca(�)�1��(dr) ¼ �0�(dr) and ca9(�)�1�9�(dr) ¼
�0�(dr) for º

0-a.e. �. Letting c(�) ¼ a(�)=a9(�) with appropriate modification on a set of º0-
measure 0, we obtain (2.9)–(2.11). h

Remark 3.1. By the uniqueness of a polar decomposition of � in the sense of Lemma 2.1, the

properties of � in Definitions 2.1 and 2.2 of T (Rd) and B(Rd) do not depend on the choice of

polar decompositions.
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Remark 3.2. By an extension of Bernstein’s theorem to the case with a parameter, for each

� 2 B(Rd) there exists a unique family fQ� : � 2 Sg of measures on (0, 1) such that Q�(B)

is measurable in � for each B 2 B((0, 1)) and

l�(r) ¼
ð1
0

e�ruQ�(du); (3:1)

see the proof of Lemma 3.3 of Sato (1980) for the details. Here we have used l�(1) ¼ 0. We

have
Ð1
0
(r2 ^ 1)l�(r)dr ¼

Ð1
0

a(u)Q�(du), where

a(u) ¼ u�3

ðu
0

r2e�r dr þ u�1e�u: (3:2)

Since
Ð
Rd (jxj2 ^ 1)�(dx) , 1, ð

S

º(d�)

ð1
0

a(u)Q�(du) , 1: (3:3)

Noting that a(u) � u�1 as u # 0 and a(u) � 2u�3 as u " 1, we see that (3.3) is equivalent toð
S

º(d�)

ð1
0

(u�1 ^ u�3)Q�(du) , 1: (3:4)

Similarly, for each � 2 T (Rd) there exists a unique family fR� : � 2 Sg of measures on

(0, 1) such that R�(B) is measurable in � for each B 2 B((0, 1)), and

k�(r) ¼
ð1
0

e�ruR�(du): (3:5)

This time we have
Ð1
0
(r ^ r�1)k�(r)dr ¼

Ð1
0

b(u)R�(du), with

b(u) ¼ u�2

ðu
0

re�r dr þ
ð1
u

r�1e�r dr: (3:6)

Thus we have ð
S

º(d�)

ð1
0

b(u)R�(du) , 1, (3:7)

which is equivalent toð
S

º(d�)

ð1=2
0

log
1

u
R�(du)þ

ð1
1=2

u�2R�(du)

 !
, 1, (3:8)

since b(u) � log(1=u) as u # 0 and b(u) � u�2 as u " 1.

Proof of (2.14). The inclusion T (Rd) � L(Rd) is evident from Proposition 2.2 and Definition

2.1. If k�(r) is completely monotone, then so is k�(r)r
�1, since the product of completely

monotone functions is completely monotone. Hence T (Rd) � B(Rd).

For d ¼ 1, let us construct � 2 B(R) \ L(R) such that � =2 T (R). Let

k(r) ¼ e�a1 r � e�b1 r þ e�a2 r, r . 0,
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with 0 , a1 , b1 , a2, and let l(r) ¼ k(r)r�1. Then k(r) is not completely monotone, since

k(r) ¼
Ð1
0
e�ruQ(du) with a signed measure Q such that Q(fb1g) , 0. But l(r) is completely

monotone, since

l(r) ¼ e�a1 r � e�b1 r

r
þ e�a2 r

r
¼
ðb1
a1

e�ru duþ
ð1
a2

e�ru du:

Hence the distribution � given by �̂�(z) ¼ exp
Ð1
0
(eizr � 1)l(r)dr is in B(R)nT (R); � is in fact

a mixture of exponential distributions with parameters a1 and a2 by Steutel’s theorem (see

Sato 1999, Lemma 51.14; or Steutel and van Harn 2004, Chapter VI, Proposition 3.4). We

claim that for some choice of a1, b1, and a2, k(r) is decreasing so that � 2 L(R). Indeed, let

a1 ¼ 1� �, b1 ¼ 1, and a2 ¼ 1þ � with 0 , � , 1. Then k9(r) ¼ e�r(1� f (r)), with

f (r) ¼ (1� �)e�r þ (1þ �)e��r. We have f (r0) ¼ minr.0 f (r) when e2�r0 ¼ (1þ �)=(1� �).
Hence f (r0) ¼ 2(1� �2)1=2 ! 2 as � # 0. It follows that k9(r) , 0 for all r . 0 if � is small

enough. A d-dimensional example is given by taking this k(r) for the radial component of a

Lévy measure. h

Proof of Proposition 2.3. Let � ¼ �(A,�,ª). We use a general result (an analogue of Theorem

2.7 of Rajput and Rosinski 1989) for integrability of functions with respect to an Rd-valued

independently scattered random measure. In order to show that a measurable function f (t) is

fX ( �)
t g-integrable, it suffices to show that, for any 0 , t0 , 1,ð t0

0

hz, Azi f (t)2 dt , 1,ð t0
0

dt

ð
Rd

(j f (t)xj2 ^ 1)�(dx) , 1,ð t0
0

����hª, f (t)zi þ ð
Rd

(g( f (t)z, x)� g(z, f (t)x))�(dx)

����dt , 1,

where

g(z, x) ¼ eihz,xi � 1� ihz, xi=(1þ jxj2): (3:9)

(The first condition is equivalent to
Ð t0
0

f (t)2 dt , 1 if A 6¼ 0.) Hence, for our proof, it

suffices to show that ð1
0

hz, Azis2e�s ds , 1, (3:10)ð1
0

e�s ds

ð
Rd

(jsxj2 ^ 1)�(dx) , 1, (3:11)ð1
0

e�s

����hª, szi þ ð
Rd

(g(sz, x)� g(z, sx))�(dx)

����ds , 1: (3:12)

Among these (3.10) is evident; (3.11) holds since it is
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ð
Rd

jxj2�(dx)
ð1=jxj
0

s2e�s dsþ
ð
Rd

�(dx)

ð1
1=jxj

e�s ds , 1:

Since
Ð1
0

se�s ds , 1, (3.12) follows fromð1
0

e�s

����ð
Rd

(g(sz, x)� g(z, sx))�(dx)

����ds , 1: (3:13)

Indeed, we can show (3.13) asð1
0

se�s ds

ð
Rd

����hz, xi 1

1þ s2jxj2 �
1

1þ jxj2

� ������(dx)
< jzj

ð
Rd

jxj3
1þ jxj2 �(dx)

ð1
0

e�ssj1� s2j
1þ s2jxj2 ds

< jzjI1
ð
jxj<1

jxj3�(dx)þ jzj
ð
jxj.1

jxjI2(x)�(dx),

where

I1 ¼
ð1
0

e�ss(1þ s2)ds,

I2(x) ¼
ð1
0

s ds

1þ s2jxj2 þ
ð1
1

e�ss3 ds

1þ jxj2 ¼ log(1þ jxj2)
2jxj2 þ

Ð1
1

e�ss3 ds

1þ jxj2 :

No restriction on � ¼ �(A,�,ª) is needed. h

Proof of Proposition 2.4. (i) This is a consequence of Proposition 4.3 of Sato (2004), since

we have Proposition 2.3. A direct check of the integrability asserted is also possible, as we

have jRe C�(z)j þ jIm C�(z)j < c1 þ c2jzj2 with constants c1, c2 depending on �.
(ii) We have �� 2 ID(Rd) from Proposition 4.3 of Sato (2004). It follows from (i) that

C��(z) ¼
ð1
0

C�(sz)e
�s ds (3:14)

and hence, for u . 0, C��(u
�1z) ¼ u

Ð1
0

C�(vz)e
�uv dv. That is, for each z 2 Rd ,

u�1C��(u
�1z), u . 0, is the Laplace transform of C�(vz), v . 0. Therefore C�(vz) is

determined by C�� for almost every v . 0. Since C�(vz) is continuous in v, it is determined

for all v . 0. Now let v ¼ 1 to obtain our assertion.

(iii) Use fX ( �1)
t þ X

( �2)
t g, where fX ( �1)

t g and fX ( �2)
t g are independent.

(iv) By a general result (see Lemma 2.7 and Corollary 4.4 of Sato 2004),
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~AA ¼
ð1
0

(log(1=t))2 dtA,

~��(B) ¼
ð1
0

dt

ð
Rd

1B(x log(1=t))�(dx), B 2 B(Rd),

~ªª ¼
ð1
0

log(1=t) ª�
ð
Rd

x
1

1þ jxj2 �
1

1þ j(log(1=t))xj2

� �
�(dx)

� �
dt:

These imply (2.22)–(2.24) by change of variables.

(v) Assume that �n ¼ �(An,� n,ª n) ! � ¼ �(A,�,�) as n ! 1. Then C�n
(z) ! C�(z) and

tr An,
Ð
(jxj2 ^ 1)�n(dx), and jªnj are bounded. Since ��n and �� have cumulant functions

expressed as in (2.21) or (3.14) and since we have (iv), we can use the dominated

convergence theorem to obtain C��n
(z) ! C��(z), that is, ��n ! ��.

Conversely, assume that ~��n ¼ ��n ! ~��. Let ( ~AAn, ~��n, ~ªªn) and (An, �n, ªn) be the triplets

of ~��n and �n. We claim that f�ng is precompact. The following four conditions2 combined

are necessary and sufficient for precompactness of {�ng: (a) supn tr An , 1; (b)

supn

Ð
Rd (jxj2 ^ 1)�n(dx) , 1; (c) lim l!1supn

Ð
jxj. l

�n(dx) ¼ 0; (d) supnjªnj , 1. Since

f ~��ng is precompact, these four relations already hold with (An, �n, ªn) replaced by

( ~AAn, ~��n, ~ªªn). We denote them by (~aa)–(~dd). Then (a) follows from (2.22) and (~aa); (b) follows
from (~bb) since, by (2.23),ð

Rd

(jxj2 ^ 1)~��n(dx) ¼
ð1
0

e�s ds

ð
Rd

(jsxj2 ^ 1)�n(dx)

>

ð
jxj<1

jxj2�n(dx)

ð1
0

s2e�s dsþ
ð
jxj.1

�n(dx)

ð1
1

e�s ds;

and (c) is obtained from (~cc) becauseð
jxj. l

~��n(dx) ¼
ð1
0

e�s ds

ð
jxj. l=s

�n(dx) >

ð1
1

e�s ds

ð
jxj. l

�n(dx):

To see (d), use (~dd) and the estimate

sup
n

����ð
Rd

xjxj2
1þ jxj2 �n(dx)

ð1
0

e�ss(1� s2)

1þ s2jxj2 ds

���� , 1,

which is a consequence of (b) as in the proof of (3.13). This finishes the proof of

precompactness of f�ng. We can now choose a subsequence f�n9g of f�ng convergent to

some �. Thus ��n9 ! �� and �� ¼ ~��. It follows from (ii) that � does not depend on the

choice of the subsequence. Hence �n ! �.
(vi) Let X t ¼ X

( �)
t . Let X 9t ¼ X1 � X (1� t)� for 0 < t , 1. Then fX 9t : 0 < t , 1g is a

process identical in law with fX t : 0 < t , 1g (Proposition 41.8 of Sato 1999). Let ~ff (t) be
a function on [0, 1) equal to log(1=(1� t)) for 0 < t , 1 and 0 otherwise. Then ~ff (t) is

2There is an error in E12.5 of Sato (1999); a condition corresponding to (c) should be added.
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fX tg-integrable similarly to f (t) of Proposition 2.3, and we have
Ð 1
s
log(1=t)dX 9t

¼
Ð 1�s

0
~ff (t)dX t. Hence (2.25).

In order to show (2.26), first note that
Ð 1
s
log(1=t)dX t tends to

Ð 1
0
log(1=t)dX t a.s. as

s # 0, since
Ð
B
f (t)dX t, B 2 B0

[0,1), is an independently scattered random measure. By

Theorem 4.7 of Sato (2004),ð1
s

log
1

t
dX t ¼

ð1
s

dX t

ð1
t

1

u
du ¼

ð1
s

du

u

ðu
s

dX t ¼
ð1
s

X u

u
du� X s log

1

s
:

We have X s log(1=s) ! 0 a.s. as s # 0 by Proposition 47.11 of Sato (1999). Therefore

lims#0
Ð 1
s
(Xu=u)du exists a.s and (2.26) holds. h

Proof of Theorem A. Let � 2 ID(Rd) and ~�� ¼ ��. Let � ¼ �( �) and ~�� ¼ �( ~��). Then (2.17)

holds. Thus, if � ¼ 0, then ~�� ¼ 0 and ~�� 2 B(Rd). Assume that � is non-zero and has polar

decomposition (º, ��). Then, for any non-negative measurable function f ,ð
Rd

f (x)~��(dx) ¼
ð1
0

e�s ds

ð
Rd

f (sx)�(dx) ¼
ð1
0

e�s ds

ð
S

º(d�)

ð1
0

f (sr�)��(dr)

¼
ð
S

º(d�)

ð1
0

��(dr)r
�1

ð1
0

e�s=r f (s�)ds ¼
ð
S

º(d�)

ð1
0

f (s�)~ll�(s)ds,

where ~ll�(s) is defined by (2.18). Define a measure ~QQ� on (0, 1) by

~QQ�(B) ¼
ð1
0

1B(r
�1)r�1��(dr), B 2 B((0, 1)):

Then ~QQ�(B) is measurable in � and ~ll�(s) is the Laplace transform of ~QQ�. Hence ~ll� is

completely monotone. Letting ~ºº ¼ º and ~���(dr) ¼ ~ll�(r)dr, we see that (~ºº, ~���) is a polar

decomposition of ~�� and that ~�� 2 B(Rd).

Conversely, suppose that ~�� 2 B(Rd) with triplet ( ~AA, ~��, ~ªª). If ~�� ¼ 0, then ~�� ¼ �� with

� ¼ �( ~AA=2,0,~ªª) by Proposition 2.4(iv). Suppose that ~�� 6¼ 0. Then, in a decomposition (~ºº, ~���)
of ~��, we have ~���(dr) ¼ ~ll�(r)dr, where ~ll�(r) is completely monotone in r and measurable in

�. Thus there are measures ~QQ� like the measures Q� in Remark 3.2. Now define

��(B) ¼
ð1
0

1B(u
�1)u�1 ~QQ�(du):

Then �� is a measure on (0, 1) for each � andð1
0

f (r)��(dr) ¼
ð1
0

f (u�1)u�1 ~QQ�(du)

for all non-negative measurable functions f on (0, 1). Notice that it follows thatð1
0

f (r) ~QQ�(dr) ¼
ð1
0

f (u�1)u�1��(du)

for all non-negative measurable functions f on (0, 1). Hence we have (2.18). Let º ¼ ~ºº.
Then
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ð
S

º(d�)

ð1
0

(r2 ^ 1)��(dr) ¼
ð
S

~ºº(d�)

ð1
0

(u�2 ^ 1)u�1 ~QQ�(du)

¼
ð
S

~ºº(d�)

ð1
0

u�1 ~QQ�(du)þ
ð1
1

u�3 ~QQ�(du)

� �
, 1

by (3.4). Define � by (2.8). Then � is the Lévy measure of an infinitely divisible distribution

and we can verify that ð1
0

e�s ds

ð
Rd

f (sx)�(dx) ¼
ð
Rd

f (x)~��(dx)

for all non-negative measurable functions f on Rd . Define A and ª by (2.22) and (2.24) and

let � ¼ �(A,�,ª). Then ~�� ¼ ��. h

Proof of Theorem B. Let � 2 L(Rd) and ~�� ¼ ��. Let � ¼ �( �) and ~�� ¼ �( ~��). If � ¼ 0, then

~�� ¼ 0 and ~�� 2 T (Rd). Assume that � 6¼ 0. Then � has a polar decomposition º,
��(dr) ¼ k�(r)r

�1 dr with decreasing k�(r). We claim that ~�� 2 T (Rd). For any non-

negative measurable f ,ð
f (x)~��(dx) ¼

ð1
0

e�s ds

ð
f (sx)�(dx) ¼

ð1
0

e�s ds

ð
S

º(d�)

ð1
0

f (sr�)k�(r)r
�1 dr

¼
ð1
0

e�s ds

ð
S

º(d�)

ð1
0

f (r�)k�(rs
�1)r�1 dr

¼
ð
S

º(d�)

ð1
0

f (r�)r�1 dr

ð1
0

k�(rs
�1)e�s ds:

Define ~kk�(r) by the first equality in (2.20). Recall that k�(r) tends to 0 as r ! 1. Let k
#
� (u)

be the right-continuous modification of k�(1=u). Then

�
ð
1[a,1)(v)dk�(v) ¼ lim

a9"a
k�(a9) ¼ k

#
� (a

�1) ¼
ð
1(0,a�1](u)dk

#
� (u)

¼
ð
1[a,1)(u

�1)dk
#
� (u)

for all a . 0. More generally,

�
ð1
0

g(v)dk�(v) ¼
ð1
0

g(u�1)dk
#
� (u)

for any non-negative measurable function g on (0, 1). Then

~kk�(r) ¼ �
ð1
0

e�s ds

ð1
r=s

dk�(v) ¼ �
ð1
0

dk�(v)

ð1
r=v

e�s ds

¼ �
ð1
0

e�r=v dk�(v) ¼
ð1
0

e�ru dk
#
� (u): (3:15)
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It follows that ~kk�(r) is completely monotone. Hence ~�� 2 T (Rd).

Conversely, suppose ~�� 2 T (Rd) with triplet ( ~AA, ~��, ~ªª). If ~�� ¼ 0, then ~�� ¼ �� with �
Gaussian and hence ~�� 2 �(L(Rd)). Suppose ~�� 6¼ 0. Then we have a decomposition (~ºº, ~���)
of ~�� with ~���(dr) ¼ ~kk�(r)r

�1 dr, where ~kk�(r) is completely monotone. Thus ~kk�(r) is the

Laplace transform of some ~RR�(du). Let k
#
� (u) ¼ ~RR�((0, u]) and let k�(v) be the right-

continuous modification of k
#
� (1=v). The calculation in (3.15) shows the first equality in

(2.20). Hence we haveð
Rd

f (x)~��(dx) ¼
ð1
0

e�s ds

ð
S

~ºº(d�)

ð1
0

f (sr�)k�(r)r
�1 dr

for all non-negative measurable functions f (x). Define º ¼ ~ºº and let � be the measure with

polar decomposition º, k�(r)r�1 dr. Then we have (2.23) andð
Rd

(jxj2 ^ 1)�(dx) ¼
ð
S

º(d�)

ð1
0

(r2 ^ 1)k�(r)r
�1 dr

¼
ð
S

~ºº(d�)

ð1
0

(r2 ^ 1)k
#
� (r

�1)r�1 dr ¼
ð
S

~ºº(d�)

ð1
0

(r ^ r�1)dr

ð1=r
0

~RR�(du)

¼
ð
S

~ºº(d�)

ð1
0

~RR�(du)

ð1^(1=u)
0

r dr þ
ð1
0

~RR�(du)

ð1=u
1

r�1 dr

 !

¼
ð
S

~ºº(d�)
1

2

ð1
0

~RR�(du)þ
1

2

ð1
1

u�2 ~RR�(du)þ
ð1
0

log
1

u
~RR�(du)

� �
, 1

by (3.8) for ~RR� in place of R�. Hence, � is the Lévy measure of some � ¼ �(A,�,ª) in L(Rd).

Here we choose A and ª to satisfy (2.22) and (2.24). Thus ~�� ¼ ��. h

4. Proof of Theorems C and D

We give the proofs of Theorems C and D together with some general results on complete

closedness in the strong sense.

Proof of Theorem C. (i) Let � 2 ID(Rd) and ~�� ¼ ��. Let � ¼ �( �) and ~�� ¼ �( ~��). We haveð
jxj.2

logjxj~��(dx) ¼
ð1
0

e�s ds

ð
jxj.2=s

log(sjxj)�(dx)

¼
ð
Rd

ð1
2=jxj

e�s log s dsþ e�2=jxj logjxj
 !

�(dx) ¼
ð
Rd

h(x)�(dx),

say. Then h(x) ¼ o(jxj2) as jxj # 0 and h(x) � logjxj as jxj ! 1. Thus,
Ð
jxj.2

log

jxj~��(dx) , 1 if and only if
Ð
jxj.2

logjxj�(dx) , 1.

(ii) If � 2 IDlog(R
d), then

Ð1
0

jC�(e
� t z)jdt , 1 and
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C��(z) ¼
ð1
0

C�(e
� t z)dt (4:1)

(see the references given for (2.2) and (2.3)). If � 2 ID(Rd), then
Ð1
0
e�sjC�(sz)jds , 1 and

C��(z) ¼
ð1
0

e�sC�(sz)ds (4:2)

by Proposition 2.4(i). Let � 2 IDlog(R
d). Using �� 2 IDlog(R

d) in (i), we have

C���(z) ¼
ð1
0

dt

ð1
0

e�sC�(e
� t sz)ds, (4:3)

C���(z) ¼
ð1
0

e�s ds

ð1
0

C�(e
� t sz)dt: (4:4)

We claim that ð1
0

e�s ds

ð1
0

jC�(e
� t sz)jdt , 1, for z 2 Rd : (4:5)

If this is proved, then we can interchange the order of the integrations in (4.3) and (4.4) and

obtain ��� ¼ ���.
The proof of (4.5) is as follows. Let � ¼ �(A,�,ª). Then

jC�(z)j <
1

2
(tr A)jzj2 þ jªj jzj þ

ð
jg(z, x)j�(dx),

where g(z, x) is given by (3.9). Hence

jC�(e
� t sz)j < 1

2
(tr A)e�2 t s2jzj2 þ jªje� t sjzj þ

ð
Rd

jg(z, e� t sx)j�(dx)

þ
ð
jg(e� t sz, x)� g(z, e� t sx)j�(dx) ¼ I1 þ I2 þ I3 þ I4,

say. Finiteness of
Ð1
0
e�s ds

Ð1
0
(I1(s, t)þ I2(s, t))dt is straightforward. Noting that

jg(z, x)j < czjxj2=(1þ jxj2) with a constant cz depending on z, we haveð1
0

e�s ds

ð1
0

I3(s, t)dt < cz

ð
Rd

�(dx)

ð1
0

e�s ds

ð1
0

(e� t sjxj)2
1þ (e� t sjxj)2 dt

¼ cz

ð
�(dx)

ð1
0

e�s ds

ð sjxj
0

u

1þ u2
du

¼ cz

2

ð
�(dx)

ð1
0

e�s log(1þ s2jxj2)ds

<
ccz

2

ð
Rd

jxj2�(dx)
ð ffiffi2p

=jxj

0

e�ss2 dsþ ccz

ð
Rd

�(dx)

ð1ffiffi
2

p
=jxj

e�s(log sþ logjxj)ds,
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which is finite since
Ð
jxj<2

jxj2�(dx) , 1 and
Ð
jxj.2

logjxj�(dx) , 1. Here c is a constant

such that log(1þ v) < c(v1(0,2](v)þ (log v)1(2,1)(v)) for v . 0. Concerning I4, note that

jg(az, x)� g(z, ax)j ¼ jhaz, xij jxj2j1� a2j
(1þ jxj2)(1þ jaxj2) < jzj jxj3(jaj þ jaj3)

(1þ jxj2)(1þ jaxj2)

for a 2 R. Thenð1
0

I4(s, t)dt < jzj
ð
Rd

jxj3�(dx)
1þ jxj2

ð1
0

e� t sþ e�3 t s3

1þ e�2 t s2jxj2 dt

¼ jzj
ð
Rd

jxj3�(dx)
1þ jxj2

ð sjxj
0

ujxj�1 þ u3jxj�3

(1þ u2)u
du

<
�

2
jzj
ð
Rd

jxj2�(dx)
1þ jxj2 þ jzj

ð
Rd

�(dx)

1þ jxj2
ð sjxj
0

u2 du

1þ u2
¼ J1 þ J2,

say. Here J1 does not depend on s andð1
0

e�s J2(s)ds ¼ jzj
ð
Rd

�(dx)

1þ jxj2
ð1
0

u2 du

1þ u2

ð1
u=jxj

e�s ds

< jzj
ð
Rd

�(dx)

1þ jxj2
ð1
0

u2e�u=jxj duþ
ð1
1

e�u=jxj du

� �

¼ jzj
ð
Rd

jxj3�(dx)
1þ jxj2

ð1=jxj
0

u2e�u duþ jzj
ð
Rd

jxje�1=jxj

1þ jxj2 �(dx) , 1:

This completes the proof of (4.5).

It follows from (4.3) and (4.5) that

C���(z) ¼
ð1
0

dt

ð1
0

C�(uz)e
t�ue t

du ¼
ð1
0

C�(uz)e
�uu�1 du

¼ �
ð1
0

C�(uz)de1(u) ¼
ð1
0

C�(e
�
1 (t)z)dt (4:6)

for � 2 IDlog(R
d). For such �, we have from (4.5) thatð1

0

jC�(e
�
1 (t)z)jdt , 1: (4:7)

The function e�1 (t) is fX ( �)
t g-integrable for every � ¼ �(A,�,ª) 2 IDlog(R

d). This is

because, for each t0 2 (0, 1), the integrals
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ð t0
0

hz, Azie�1 (t)2 dt,
ð t0
0

dt

ð
Rd

(jxe�1 (t)j2 ^ 1)�(dx),

ð t0
0

jhª, zije�1 (t)dt,
ð t0
0

dt

ð
Rd

jg(e�1 (t)z, x)� g(z, e�1 (t)x)j�(dx)

are finite. Indeed,ð t0
0

dt

ð
Rd

(je�1 (t)xj2 ^ 1)�(dx) ¼
ð1
e�
1
( t0)

e�ss�1 ds

ð
Rd

(jsxj2 ^ 1)�(dx) , 1

like (3.11), and finiteness of the other integrals is shown similarly. It follows from (4.3) and

(4.4) that, if � 2 IDlog(R
d), then

Ð1
0
e�1 (t)dX

( �)
t exists and equals ��� in distribution.

It remains to show that
Ð1
0
e�1 (t)dX

( �)
t does not exist if � 2 ID(Rd)nIDlog(R

d). It is easy

to see that

e1(s) � e�ss�1 (s ! 1), e1(s) � log(1=s) (s # 0):

It follows that

e�1 (t) � ce� t (t ! 1), e�1 (t) � log(1=t) (t # 0)

with some constant c . 0, for we have

lim
t!1

e�1 (t)
e� t

¼ lim
s#0

s

e�e1(s)
¼ lim

s#0
ee1(s)þlog s ¼ exp

ð1
1

e�uu�1 du�
ð1
0

(1� e�u)u�1 du

� �
,

lim
t#0

e�1 (t)
log(1=t)

¼ lim
s!1

s

�log e1(s)
¼ lim

s!1

1

�e91(s)=e1(s)
¼ lim

s!1

e1(s)

e�ss�1
¼ 1:

Let � 2 ID(Rd) and suppose that
Ð1
0
e�1 (t)dX

( �)
t exists and has distribution ~��. Let tn ! 1

and denote ~��n ¼ L(
Ð t n
0

e�1 (t)dX
( �)
t ). Then ~��n ! ~��. Let ~��n ¼ �( ~��n), ~�� ¼ �( ~��), and � ¼ �( �).

Then
Ð
f (x)~��n(dx) !

Ð
f (x)~��(dx) for all bounded continuous functions f vanishing on a

neighbourhood of 0 (Sato 1999, Theorem 8.7). Choose t0 . 0 such that e�1 (t) > ce� t=2 for

t . t0. Since ~��n(B) ¼
Ð t n
0

dt
Ð
1B(e

�
1 (t)x)�(dx), we obtainð

jxj.1

~��n(dx) ¼
ð t n
0

dt

ð
1fjxj.1=e�

1
( t)g(x)�(dx) >

ð t n
t0

dt

ð
1fjxj.2e t=cg(x)�(dx)

¼
ð
Rd

�(dx)

ð
( t0, t n]\(0,log(cjxj=2))

dt !
ð
flog(cjxj=2). t0g

(log(cjxj=2)� t0)�(dx):

Hence
Ð
jxj.a

logjxj�(dx) , 1 for some a, that is, � 2 IDlog(R
d).

(iii) is a consequence of (i) and (ii) combined with Theorems A and B. h

As in Maejima et al. (1999), a class M of distributions on Rd is said to be completely

closed in the strong sense if the following are satisfied:

(ccs1) M is a subclass of ID(Rd).

(ccs2) �1, �2 2 M implies �1 � �2 2 M .
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(ccs3) �n 2 M (n ¼ 1, 2, . . .) and �n ! � imply � 2 M.

(ccs4) If X is an Rd-valued random variable with L(X ) 2 M , then L(aX þ b) 2 M

for any a . 0 and b 2 Rd .

(ccs5) � 2 M implies �s� 2 M for any s . 0.

In the following we sometimes omit Rd in writing IDlog(R
d), Lm(R

d) or Tm(R
d).

Lemma 4.1. Let M be a class of distributions on Rd, completely closed in the strong sense.

Then the following statements are true.

(i) The classes �(M) and �(M \ IDlog(R
d)) are subclasses of M .

(ii) �(M \ IDlog(R
d)) ¼ f� 2 L(Rd) : r(� )b 2 M for all b . 1g, where r(� )b is defined by

(2.30) with � in place of �.
(iii) The classes �(M) and �(M \ IDlog(R

d)) are completely closed in the strong sense.

Proof. (i) Let � 2 M and X t ¼ X
( �)
t . Let � ¼ �� ¼ L(I), where I ¼

Ð 1
0
log(1=t)dX t. For

any sn # 0 let �n ¼ L(In), where In ¼
Ð 1
sn

log(1=t)dX t. By Proposition 4.5 of Sato (2004), In
is the limit in probability of a sequence

Ð 1
sn

f m(t)dX t as m ! 1, where f m(t) is a non-

negative step function for each m. We see that L(
Ð 1
sn

f m(t)dX t) 2 M from (ccs2), (ccs4) and

(ccs5). Thus �n 2 M by (ccs3). As n ! 1, In tends to I in probability and thus �n ! � .
Hence � 2 M . The proof that �� 2 M for � 2 M \ IDlog is similar, using (2.3).

(ii) Suppose that � 2 M \ IDlog and � ¼ ��. Then � 2 L by (2.2). Notice that

b�1

ð1
0

e� t dX t ¼
ð1
0

e�( tþlog b) dX t ¼d
ð1
log b

e� t dX t,

ð1
0

e� t dX t ¼
ð1
log b

e� t dX t þ
ðlog b

0

e� t dX t,

for X t ¼ X
( �)
t and b . 1, and thus r(� )b ¼ L(

Ð log b

0
e� t dX t). Hence r(� )b 2 M as in the proof

of (i).

Conversely, suppose that � 2 L and r(� )b 2 M for all b . 1. Choosing � 2 IDlog with

�� ¼ � , we see that Cr(� )

b

(z) ¼
Ð log b

0
C�(e

� t z)dt. Let gb(z) be the cumulant function of

(r(� )b )(1=log b)� 2 M . Then gb(z) ¼ (1=log b)
Ð log b

0
C�(e

� t z)dt, which tends to C�(z) as b # 1.

Hence (r(� )b )(1=log b)� ! � and � 2 M .

(iii) Properties (ccs1)–(ccs3) for �(M) follow from Proposition 2.4. To see (ccs4), note

that
Ð 1
0
log(1=t)dt ¼ 1 and a

Ð 1
0
log(1=t)dX

( �)
t þ b ¼

Ð 1
0
log(1=t)dX 9t, where X 9t ¼ aX

( �)
t

þ tb. For (ccs5), note that sC��(z) ¼ s
Ð 1
0
C�(z log(1=t))dt ¼

Ð 1
0
C�s�(z log(1=t))dt.

Similarly, we can prove (ccs1), (ccs2), (ccs4) and (ccs5) for ~MM ¼ �(M \ IDlog). To prove

(ccs3), suppose that �n 2 ~MM and �n ! � as n ! 1. Then, by (ii), r(� n)
b 2 M . Since the

characteristic function of r(� n)
b equals �̂� n(z)=�̂� n(b

�1z), which tends to a continuous function

�̂� (z)=�̂� (b�1z) as n ! 1, r(� n)
b tends to some r 2 M . We have �̂� (z) ¼ �̂� (b�1z)brr(z). Hence

� 2 ~MM again by (ii). h
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Proof of Corollary to Theorem C. By Lemma 4.1(iii) it follows from Theorem A(i) that

B(Rd) is completely closed in the strong sense. Hence, by Lemma 4.1(ii), we obtain (2.33)

from (2.28) of Theorem C. h

Proof of Theorem D. Let us prove (2.36). Although (2.41) and the complete closedness in

the strong sense of Lm(R
d) are known facts, it is more natural to reprove them and to prove

the complete closedness in the strong sense of Tm(R
d), together with the proof of (2.36). For

m ¼ 0, (2.36) has already been proved in Theorem B. To prove it for m ¼ 1, first note that L0
is completely closed in the strong sense by Lemma 4.1(iii) and (2.2). Hence, so is T0 by

(2.36) for m ¼ 0. Lemma 4.1(ii) says that L1 ¼ �(L0 \ IDlog). Now we have

T1 ¼ �(T0 \ IDlog) ¼ �(�(L0) \ IDlog) ¼ �(�(L0 \ IDlog))

¼ ��(L0 \ IDlog) ¼ �(L1),

using definition (2.34) of T1, Lemma 4.1(ii), Theorem C(i) and Theorem C(ii) consecutively.

This is (2.36) for m ¼ 1. Continuing this procedure, we obtain (2.36), (2.40), (2.41), and the

complete closedness in the strong sense of Lm(R
d) and Tm(R

d) for all finite m. It follows that

(2.36) also holds for m ¼ 1. Moreover, (2.40) and (2.41) also hold for m ¼ 1, since

T1 ¼ f� 2 L : r( �)b 2 T1 for every b . 1g from (2.34), and similarly for L1.
Let us show (2.37). Denote by SÆ ¼ SÆ(R

d) the class of Æ-stable distributions on Rd . It

is enough to show that �(SÆ) ¼ SÆ. This is evident in the case Æ ¼ 2 (Gaussian). Let

� 2 SÆ with 0 , Æ , 2. Then it has k-function k�(r) ¼ r�Æ. Thus by (2.20), �� has

k-function
Ð1
0

r�ÆsÆe�s ds ¼ ˆ(Æþ 1)r�Æ. Thus �� 2 SÆ. On the other hand, this shows

that, for any ~�� 2 SÆ, there is a � 2 SÆ such that ~�� ¼ ��.
The assertion Tm � Lm for all finite m is a consequence of (2.36) and Lemma 4.1(i). But

we have to show that the inclusion is strict. Define

IDlogn (Rd) ¼ � 2 ID(Rd) :

ð
jxj.2

(logjxj)n�(dx) , 1
( )

for n ¼ 1, 2, . . . . The condition here is equivalent to finiteness of
Ð
jxj.2

(logjxj)n�( �)(dx). Let
IDlog0 (R

d) ¼ ID(Rd). It is known that

�(IDlog nþ1 (Rd)) ¼ L(Rd) \ IDlog n(Rd), for n ¼ 0, 1, . . . , (4:8)

Lm(R
d) ¼ �mþ1(IDlogmþ1 (Rd)), for m ¼ 0, 1, . . . (4:9)

(see the references given after (2.41)). The proof of (2.14) actually showed that

B \ L0 \ IDlog n
�
6¼ T0 \ IDlog n for n ¼ 0, 1, . . . . Hence L0 \ IDlog n

�
6¼ T0 \ IDlogn for n ¼

0, 1, . . . . Applying � and using (2.40) and (2.41), we obtain L1 \ IDlog n
�
6¼ T1 \ IDlog n for

n ¼ 0, 1, . . . . Repeating this, we have Lm \ IDlog n
�
6¼ Tm \ IDlog n for m ¼ 0, 1, . . . and

n ¼ 0, 1, . . . . For n ¼ 0 this is (2.38).

Finally, we prove (2.39). It follows from Tm � Lm for finite m that T1 � L1. On the

other hand, we know that S � T1 and that T1 is completely closed in the strong sense.

Since L1 is the smallest class containing S and closed under convolution and convergence,

we have T1 � L1. h
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5. Proof of Theorem E

For a . 0, let ˜a be the difference operator ˜a f (u) ¼ f (uþ a)� f (u), u 2 R, and let ˜n
a

be its nth iteration. Clearly

˜n
a f (u) ¼

Xn
j¼0

(�1)n� j n

j

� �
f (uþ ja)

for n ¼ 0, 1, . . . . We say that a function f (u) is monotone of order n if ˜ j
a f (u) > 0,

j ¼ 0, 1, . . . , n, for any a . 0 and u 2 R. When f is monotone of order n for all

n ¼ 0, 1, . . . , f is called absolutely monotone. A characterization of distributions in the

class Lm(R
d) in terms of Lévy measures is given as follows (Sato 1980).

Proposition 5.1. Let � 2 L0(R
d) with � ¼ �( �) such that � ¼ 0 or � 6¼ 0 with spherical

component º and h-function h�(u).

(i) Let m 2 f1, 2, . . .g. Then � 2 Lm(R
d) if and only if either � ¼ 0, or � 6¼ 0 with h�(u)

being monotone of order mþ 1 in u for º-a.e. �.
(ii) We have � 2 L1(Rd) if and only if either � ¼ 0, or � 6¼ 0 with h�(u) being absolutely

monotone in u for º-a.e. �.

Proof of Theorem E. Let us denote by T 9m the class of � 2 L0 such that either � ¼ 0 or

� 6¼ 0 with h-function satisfying (2.42). First, notice that condition (2.42) is equivalent to the

condition that

h
( j)

� (�log r) is completely monotone in r . 0, for j ¼ 0, 1, . . . , m, º-a:e: �: (5:1)

Indeed, this clearly implies (2.42). On the other hand, if (2.42) holds, then

�(d=dr)(h(m�1)(�log r)) ¼ h(m)(�log r)r�1 is completely monotone, and thus, since

h(m�1) > 0, h(m�1)(�log r) is itself completely monotone, and so on. Since h�(�log r)

¼ k�(r), we have T 90 ¼ T0 by Definition 2.1. Let us prove T 9m ¼ Tm for all

finite m.

Part 1 (Proof that Tm � T 9m). Assume that 1 < m , 1 and let ~�� 2 Tm. By virtue of

(2.36) of Theorem D, there is � 2 Lm such that ~�� ¼ ��. Let � ¼ �( �) and ~�� ¼ �( ~��). If

� ¼ 0, then ~�� ¼ 0 and ~�� 2 T 9m. Assume that � 6¼ 0 and let k� and h� ( ~kk� and ~hh�) be the

k-function and h-function of � (~��). For notational simplicity, we omit � in writing these

functions. By Proposition 5.1, h is monotone of order mþ 1, and by Lemma 3.2 of Sato

(1980), h is m� 1 times continuously differentiable, h( j) is non-negative for

j ¼ 0, 1, . . . , m� 1, and h(m�1) is increasing and convex. Thus there exists the Radon–

Nikodym derivative h(m) of h(m�1) such that h(m) is non-negative and increasing. We take

h(m) as right-continuous. We see that, for j ¼ 1, . . . , m, h( j) is non-negative, increasing, and
satisfies h( j)(�1) ¼ 0 and h( j�1)(u) ¼

Ð u
�1 h( j)(v)dv. The function ~hh is of class C1,

because ~�� 2 Tm � T0. We claim that

22 O.E. Barndorff-Nielsen, M. Maejima and K. Sato



~hh( j)(�log r) ¼
ð1
0

e�ru dh( j)(log u), for j ¼ 0, 1, . . . , m: (5:2)

Since ~hh(�log r) ¼ ~kk(r), (5.2) holds for j ¼ 0 by virtue of (2.20). Assume that (5.2) is true for

a given j , m. Then, for any 0 , r1 , r2,ð r2
r1

~hh( j)(�log r)
dr

r
¼ �( ~hh( j)(�log r2)� ~hh( j)(�log r1))

¼ �
ð1
0

(e�r2u � e�r1u)dh( j)(log u) ¼
ð1
0

h( jþ1)(log u)
du

u

ð r2
r1

e�ruu dr

¼
ð1
0

du

ðu
0

dh( jþ1)(log v)

ð r2
r1

e�ru dr

¼
ð1
0

dh( jþ1)(log v)

ð1
v

du

ð r2
r1

e�ru dr ¼
ð r2
r1

dr

r

ð1
0

e�rv dh( jþ1)(log v)

since
Ð1
v

du
Ð r2
r1
e�ru dr ¼

Ð r2
r1
e�rv r�1 dr. Hence (5.2) holds with jþ 1 in place of j for almost

all r. As both sides of (5.2) are continuous, it follows that (5.2) holds for all r . 0. This

completes the proof of (5.2). Hence (5.1) holds, that is, ~�� 2 T 9m.

Part 2 (Proof that T 9m � Tm). We use induction in m. We already know that T 90 ¼ T0.

Given 1 < m , 1, assume that T 9m�1 � Tm�1. Let ~�� 2 T 9m. Then ~�� 2 T0 and we can find

� 2 L0 such that ~�� ¼ ��. In order to show ~�� 2 Tm, it is enough to show � 2 Lm, again by

Theorem D. Let ~�� ¼ �( ~��) and � ¼ �( �). If ~�� ¼ 0, then ~�� and � are Gaussian and � 2 Lm.

Suppose ~�� 6¼ 0. Omitting � in the subscript again, let k, h, ~kk, and ~hh be as in Part 1. Using

Part 1, we have T 9m�1 ¼ Tm�1. Since ~�� 2 T 9m � T 9m�1, we have � 2 Lm�1 and thus h is

monotone of order m. Moreover, the equality in (5.2) holds for j ¼ 0, 1, . . . , m� 1. It

follows from ~�� 2 T 9m that, for j ¼ 0, . . . , m, not only ~hh( j)(�log r) is completely monotone

but also ~hh( j)(�1) ¼ 0. Indeed, ~hh(�1) ¼ 0 since ~kk(1) ¼ 0, ~hh9(�1) ¼ 0 since ~hh(u2)
� ~hh(u1) ¼

Ð u2
u1

~hh9(u)du, and so on. Therefore, ~hh(m)(�log r) is the Laplace transform of a

measure � on (0, 1). Now

~hh(m�1)(�log r) ¼
ð1
r

~hh(m)(�log u)u�1 du ¼
ð1
r

u�1 du

ð1
0

e�uv� (dv)

¼
ð1
0

� (dv)

ð1
r

e�uvu�1 du ¼
ð1
0

� (dv)

ð1
v

e�ruu�1 du

¼
ð1
0

e�ruu�1� ((0, u])du:

This, together with the equality in (5.2) with j ¼ m� 1, implies that

dh(m�1)(log u) ¼ u�1� ((0, u])du. It follows that the Radon–Nikodym derivative of

h(m�1)(u) exists and has a non-negative increasing version h(m)(u). Indeed, h(m)(log u)

¼ � ((0, u]). Hence h is monotone of order mþ 1. Thus � 2 Lm, completing the proof. h
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Remark 5.1. It follows from Theorem E and (5.1) that � 2 T1(Rd) if and only if � 2 L(Rd)

and � ¼ �( �) is either � ¼ 0, or � 6¼ 0 having h-function h�(u) such that h
( j)
� (�log r) is

completely monotone in r . 0 for all j ¼ 0, 1, . . . , º-a.e. �, where º is the spherical

component of �. This property of the h-function is equivalent to the absolute monotonicity of

h�(u) in u, º-a.e. �. We can prove this directly, but this is also a consequence of T1 ¼ L1 in

(2.39) and of Proposition 5.1(ii).

6. Proof of Theorem F

We prove the characterization of B(Rd) and T (Rd) by elementary mixed-exponential

variables and elementary ˆ-variables in Rd .

Part 1 (Characterization of B(Rd)). Let B0 be the smallest class of distributions on Rd

closed under convolution and convergence and containing the distributions of all elementary

mixed-exponential variables in Rd . In order to prove B0 ¼ B(Rd), it is enough to check the

following facts:

(a) B(Rd) is closed under convolution and convergence.

(b) L(Ux) 2 B(Rd) for all elementary mixed-exponential variables Ux in Rd .

(c) �x 2 B0 for all x 2 Rd .

(d) If � ¼ �(0,�,0) 2 B(Rd), then � 2 B0.

(e) If � ¼ �(A,0,0), then � 2 B0.

Indeed, (a) and (b) imply B(Rd) � B0; (c)–(e) imply B(Rd) � B0.

Proof of (a). Closedness under convolution is evident. Since B(Rd) ¼ �(ID(Rd)),

closedness under convergence is proved in Proposition 2.4(v).

Proof of (b). Let

P(U 2 B) ¼
Xn
j¼1

c j

ð
B\(0,1)

a je
�a j s ds, B 2 B(R),

with c j . 0,
Pn

j¼1c j ¼ 1, and 0 , a1 , . . . , an , 1. Then, by Lemma 51.14 of Sato

(1999),

EeivU ¼ exp

ð1
0

(eivr � 1)l(r)dr, with l(r) ¼
ð1
0

e�ru
Xn
j¼1

1(a j ,a9j)(u)du,

for v 2 R with a1 , a91 , a2 , a92 , a3 , . . . , an , a9n ¼ 1. Hence, for x 6¼ 0,

CUx(z) ¼
ð1
0

(eihz,xir � 1)l(r)dr ¼
ð
S

�x=jxj(d�)

ð1
0

(eihz,�ijxjr � 1)l(r)dr

¼
ð
S

�x=jxj(d�)

ð1
0

(eihz,�ir � 1)l(r=jxj)dr=jxj, z 2 Rd :

Therefore L(Ux) 2 B(Rd).

Proof of (c) and (d). Let B0(Rþ) be the smallest class closed under convolution and
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convergence and containing all finite mixtures of exponential distributions. Then

�0 2 B0(Rþ) if and only if

C�0 (v) ¼
ð1
0

(eivr � 1)l(r)dr þ ir0v, v 2 R,

with r0 > 0 and with l(r) being completely monotone and satisfying
Ð1
0
(r ^ 1)l(r)dr , 1

(Theorem 51.10 of Sato 1999). Therefore, if l(r) is such a function and if � 2 ID(Rd)

satisfying

C�(z) ¼
ð1
0

(eihz,�
0ir � 1)l(r)dr þ ihz, �0ir0, z 2 Rd ,

with some �0 2 S and r0 > 0, then � 2 B0. Choosing l(r) ¼ 0, we obtain (c).

Consider � 2 ID(Rd) such that

C�(z) ¼
ð
S

º(d�)

ð1
0

(eihz,�ir � 1)l�(r)dr þ ihª0, zi, z 2 Rd , (6:1)

with ª0 2 Rd , l�(r) completely monotone,
Ð
S
º(d�)

Ð1
0
(r ^ 1)l�(r)dr , 1, and Supp(º)

being a finite set. Then � 2 B0 by the discussion above.

Next, consider � 2 ID(Rd) such that

C�(z) ¼
ð
S

º(d�)

ð1
0

g(z, r�)l�(r)dr,

with g as in (3.9) and with l�(r) being completely monotone andÐ
S
º(d�)

Ð1
0
(r2 ^ 1)l�(r)dr , 1. This is a general form of � ¼ �(0,�,0) 2 B(Rd). Using

Remark 3.2, write

C�(z) ¼
ð
S

º(d�)

ð
(0,1)

Q�(du)

ð1
0

g(z, r�)e�ru dr,

where we have (3.3) with a(u) of (3.2). We can choose finite measures ºn and Qn,�

(n ¼ 1, 2, . . .) such that Supp(ºn) is a finite set for each n, Supp(Qn,�) is a finite set for each

n and �, andð
S

ºn(d�)

ð
(0,1)

a(u) f (u, �)Qn,�(du) !
ð
S

º(d�)

ð
(0,1)

a(u) f (u, �)Q�(du)

for any bounded continuous function f (u, �) on (0, 1)3 S. Using the measure �n

corresponding to ºn and Qn,�, let �n be such that C�n
(z) ¼

Ð
g(z, x)�n(dx). Then, noticing

that
Ð
S
º(d�)

Ð1
0
(r ^ 1)l�(r)dr , 1 is equivalent to

Ð
S
º(d�)

Ð
(0,1)

a0(u)Q�(du) , 1 with

a0(u) ¼ u�2
Ð u
0
ve�v dvþ u�1e�u (thus a0(u) � u�1 as u # 0 and a0(u) � u�2 as u ! 1), we

see that C�n
(z) is of the form (6.1). Hence �n 2 B0. Denote

f z(u, �) ¼ a(u)�1

ð1
0

g(z, r�)e�ru dr: (6:2)

Then f z(u, �) is bounded and continuous in (u, �) 2 (0, 1)3 S, since
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ð1
0

jg(z, r�)je�ru dr < cz

ð1
0

r2(1þ r2)�1e�ru dr < cz

ð1
0

(r2 ^ 1)e�ru dr ¼ cza(u),

with cz as in the proof of (4.5). Thus we have
Ð
g(z, x)�n(dx) !

Ð
g(z, x)�(dx), that is,

�n ! �. Hence � 2 B0.

Proof of (e). Let � ¼ �(A,0,0), Gaussian with mean 0. We claim that � 2 B0. For the

function f z(u, �) in (6.2), let us show that

lim
u!1

f z(u, �) ¼ � 1

2
hz, �i2: (6:3)

Indeed,

f z(u, �) ¼
1

a(u)

ð1
0

(eihz,�ir � 1� ihz, �ir)e�ru dr þ ihz, �i
a(u)

ð1
0

r3

1þ r2
e�ru dr

¼ 1

ua(u)

ð1
0

(eihz,�ir=u � 1� ihz, �ir=u)e�r dr þ ihz, �i
ua(u)

ð1
0

(r=u)3

1þ (r=u)2
e�r dr,

and the first term in the last expression tends to �1
2
hz, �i2 and the second term tends to 0,

since a(u) � 2u�3 and eihz,�ir=u � 1� ihz, �ir=u � �1
2
hz, �i2 r2=u2, while (ua(u))�1jeihz,�ir=u

� 1� ihz, �ir=uj < 1
2
jhz, �ij2 r2 uniformly for large u. In addition to (6.3),

j f z(u, �)j <
cz

a(u)

ð1
0

r2

1þ r2
e�ru dr <

cz

ua(u)

ð1
0

(r=u)2

1þ (r=u)2
e�r dr

< czu
2

ð1
0

r2

u2 þ r2
e�r dr < 2cz

for u so large that a(u) > u�3. Let X be a Gaussian random variable on Rd with distribution

� and let º(B) ¼ E(1B(X=jX j)jX j2) for B 2 B(S). Define �n as

C�n
(z) ¼

ð
S

º(d�)

ð
(0,1)

�n(du) f z(u, �),

where �n is the �-distribution located at n. Then �n 2 B0 by (d) and C�n
(z) tends to

�1
2

Ð
S
hz, �i2º(d�). This means �n ! �, sinceð

S

hz, �i2º(d�) ¼ E(hz, X=jX ji2jX j2) ¼ E(hz, X i2) ¼
Xd
j, l¼1

E(z jzl X jX l) ¼ hz, Azi:

Thus we have � 2 B0.

We have shown that B0 ¼ B(Rd). The second statement of the theorem follows from this

fact. To see this, let B00 be the class of all � for which we can find �n ! � such that each

�n is the distribution of the sum of a finite number of independent elementary mixed-

exponential random variables in Rd . Then obviously B00 � B0. It is also easy to see that

B00 is closed under convolution. If �(n) 2 B00, n ¼ 1, 2, . . . , and �(n) ! �, then � 2 B00

since the topology of weak convergence is a metric topology. Thus B00 � B0 from the

definition of B0.
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Part 2 (Characterization of T (Rd)). We can give a proof similar to that for B(Rd). Let T 0

be the smallest class of distributions on Rd closed under convolution and convergence and

containing the distributions of all elementary ˆ-variables in Rd . This time it is enough to

prove the statements (a)T – (e)T which are the statements (a)–(e) in Part 1 with replacement

of B(Rd), B0, and ‘elementary mixed-exponential variables’ by T (Rd), T 0, and ‘elementary

ˆ-variables’.
The proof of (a)T is from Theorem B and Lemma 4.1. To see (b)T , we have only to note

that, for any real ˆ-distributed variable U ,

EeivU ¼ exp

ð1
0

(eivr � 1)ae�br r�1 dr, v 2 R,

with some a . 0 and b . 0, and that, for any x 6¼ 0,

CUx(z) ¼
ð1
0

(eihz,xir � 1)ae�br r�1 dr ¼
ð
S

�x=jxj(d�)

ð1
0

(eihz,�ir � 1)ae�br=jxj r�1 dr:

To see �x 2 T 0 for x 6¼ 0, note that

njxj
ð1
0

(eihz,xir � 1)e�njxjr r�1 dr ¼ njxj
ð1
0

(eihz,xir=(njxj) � 1)e�r r�1 dr ! ihz, xi

as n ! 1, since njxjr�1(eihz,xir=(njxj) � 1) tends to ihz, xi boundedly by jhz, xij. That is, �x is

approximated by distributions of elementary ˆ-variables if x 6¼ 0. Evidently �0 2 T 0, since

Uxn ! 0 as xn ! 0. Hence we obtain (c)T .

The proof of (d)T is similar to that of (d). In this case a general � ¼ �(0,�,0) in T (Rd)

satisfies

C�(z) ¼
ð
S

º(d�)

ð
(0,1)

R�(du)

ð1
0

g(z, r�)e�ru r�1 dr,

where R� satisfies (3.7) with b(u) of (3.6). Instead of f z(u, �) we use

hz(u, �) ¼ b(u)�1

ð1
0

g(z, r�)e�ur r�1 dr,

which is bounded and continuous in (u, �) 2 (0, 1)3 S. The statement (e)T is proved like

(e), by using limu!1hz(u, �) ¼ �1
2
hz, �i2. This completes the proof that T 0 ¼ T (Rd).

The last sentence of the theorem for T (Rd) is proved as in Part 1.

7. Examples

Example 7.1 Tempered stable distributions of Rosiński. Let 0 , Æ , 2. Rosiński (2004)

calls a distribution � 2 ID(Rd) tempered Æ-stable if � ¼ �(A,�,ª) is such that A ¼ 0 and � has

polar decomposition

�(B) ¼
ð
S

º(d�)

ð1
0

1B(r�)r
�Æ�1q�(r)dr, (7:1)
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where q�(r) is completely monotone in r, measurable in �, and

º(S) , 1, q�(0þ) ¼ 1, q�(þ1) ¼ 0: (7:2)

We denote by S
�
Æ ¼ S

�
Æ (R

d) the class of tempered Æ-stable distributions on Rd in Rosiński’s

sense. Notice that, by the uniqueness of polar decomposition in the sense of Lemma 2.1,

S
�
Æ \S

�
Æ9 consists only of �-distributions if Æ 6¼ Æ9. Rosiński (2004) studies Lévy processes

fX tg with L(X 1) 2 S
�
Æ and shows their functional limit theorems for small t and for large t,

their absolute continuity on path spaces with respect to some Æ-stable Lévy processes, and

their series representations.

Fix the dimension d arbitrarily. Omitting Rd in T (Rd), T1(R
d), L1(R

d) and so on, we

make the following statements.

(i) For every 0 , Æ , 2, S
�
Æ � T . This is obvious since r�Æq�(r) is completely

monotone whenever q�(r) is.

(ii) If 1 < Æ , 2, then S
�
Æ � T1.

(iii) If 2
3
< Æ , 2, then S

�
Æ � L2.

(iv) If 1
4
< Æ , 2, then S

�
Æ � L1.

(v) Let 0 , Æ , 1
4
. If � is in S

�
Æ with q�(r) ¼ c(�)e�b(�)r for all � in a set of positive

º-measure, where c(�) and b(�) are positive measurable functions of �, then � =2 L1

and consequently � =2 T1.

The proofs are as follows. Let � 2 S
�
Æ . The k-function of � is k�(r) ¼ r�Æq�(r). We

suppress the subscript � in k�(r), h�(u), q�(r) and Q�(dv). Then

h(u) ¼ eÆuq(e�u),

h9(u) ¼ ÆeÆuq(e�u)� e(Æ�1)uq9(e�u),

h 0(u) ¼ Æ2eÆuq(e�u)� (2Æ� 1)e(Æ�1)uq9(e�u)þ e(Æ�2)uq 0(e�u),

h-(u) ¼ Æ3eÆuq(e�u)� (3Æ2 � 3Æþ 1)e(Æ�1)uq9(e�u)

þ 3(Æ� 1)e(Æ�2)uq 0(e�u)� e(Æ�3)uq-(e�u):

Recall that q(r) is completely monotone. If 1 < Æ , 2, then h9(�log r) ¼
Ær�Æq(r)� r1�Æq9(r) is completely monotone and hence � 2 T1 by Theorem E. We have

h9(u) > 0 for all 0 , Æ , 2 and h 0(u) > 0 for 1
4
< Æ , 2 since

h 0(�log r) ¼ r�Æ[Æ2q(r)� (2Æ� 1)rq9(r)þ r2q 0(r)]

¼ r�Æ

ð1
0

((rvþ Æ� 1
2
)2 þ Æ� 1

4
)e�rvQ(dv),

where Q ¼ Q� is the probability measure on (0, 1) satisfying q(r) ¼
Ð1
0
e�rvQ(dv). Thus

� 2 L1 if 1
4
< Æ , 2. If 0 , Æ , 1

4
and if q(r) is as is assumed in (v), then, for � in a set of

positive º-measure,
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h 0(�log r) ¼ cr�Æ((rbþ Æ� 1
2
)2 þ Æ� 1

4
)e�rb , 0

for r ¼ (1
2
� Æ)=b and hence � =2 L1. If

2
3
< Æ , 2, then

h-(�log r) ¼ r�Æ

ð1
0

[Æ3 þ (3Æ2 � 3Æþ 1)rvþ 3(Æ� 1)r2v2 þ r3v3]e�rvQ(dv) > 0,

since g(w) ¼ Æ3 þ (3Æ2 � 3Æþ 1)wþ 3(Æ� 1)w2 þ w3 is non-negative for w > 0 (notice

that g9(w) > 0 for w > 0 and g(0) > 0).

The simplest case of � 2 S
�
Æ (R) is given by

C�(z) ¼ c

ð1
0

(eizx � 1)x�Æ�1e�bx dx

with 0 , Æ , 1 and positive constants c and b. This is the distribution of the Esscher

transform of an Æ-stable subordinator at a fixed time. The relation with L1(R) of this � was

discussed in Maejima et al. (2000, p. 397). When Æ ¼ 1
2
this gives an inverse Gaussian

distribution. Thus � 2 L1(R) and �� 2 T1(R) for an inverse Gaussian �.

Example 7.2. As mentioned near the end of Section 2, many examples of distributions in

T (R) supported on Rþ are given in Bondesson (1992) and Steutel and van Harn (2004).

Using Proposition 2.4(iv) for � 2 ID(R), we can prove that �� has support equal to R if and

only if � has support equal to R. Hence, by Theorem B, distributions in T (R) with support R

can be constructed by � if we have self-decomposable distributions with support R. For such

self-decomposable distributions as well as other examples, see Jurek (1997). Further, using

Theorem D, we can construct concrete examples of distributions in Tm(R), m ¼ 1, 2, since

we have several examples of distributions in Lm(R), m ¼ 1, 2, with explicit densities.

Let fˆ(a)
t g be a ˆ-process with scale parameter a . 0. We have, for t . 0,

P(ˆ(a)
t 2 B) ¼ at

ˆ(t)

ð
B\(0,1)

x t�1e�ax dx, B 2 B(R):

Then the distribution of logˆ(a)
t has density

at

ˆ(t)
exp(tx� aex), x 2 R,

for t . 0. Linnik and Ostrovskii (1977, Chapter 2, Section 6, Example 3) shows that this

distribution is infinitely divisible with triplet (0, �, ª) with

�(dx) ¼ 1(�1,0)(x)jxj�1(1� ex)�1e tx dx

and some ª (see also Jurek 1997; Sato 1999, E 18.19). Thus L(logˆ(a)
t ) 2 L(R) for all t . 0

and a . 0. Let fYtg be a strictly Æ-stable subordinator (0 , Æ , 1), E(e�uYt ) ¼ exp(�btuÆ),

u > 0, with some b . 0, and let fZ tg be a symmetric Æ9-stable Lévy process (0 , Æ9 < 2),

E(eizZ t ) ¼ exp(�ctjzjÆ9), z 2 R, with some c . 0. Akita and Maejima (2002) showed the

following:

(i) L(logˆ(a)
t ) 2 L1(R) for t > 1

2
.

(ii) L(logˆ(a)
t ) 2 L2(R) for t > 1.
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(iii) L(log Yt) 2 L1(R) for t . 0.

(iv) L(logjZ tj) 2 L1(R) for t . 0.

Applying the mapping � to these distributions, we get examples of T1(R) and T2(R). In

particular, �(L(logˆ(a)
t )) has Lévy measure

1(�1,0)(x)

ð1
0

e tx=s�s

1� ex=s
ds

� �
dx

jxj

and belongs to T1(R) for t > 1
2
and to T2(R) for t > 1. The generating triplets of L(log Yt)

and L(logjZ tj) can be obtained by the method of the proofs of (iii) and (iv) in Akita and

Maejima (2002). They are purely non-Gaussian. The Lévy measure of L(log Yt) is

1(0,1)(x)
(e�Æx � e�x)dx

(1� e�Æx)(1� e�x)x

for any t . 0 if b ¼ 1, and that of L(logjZ tj) is

1(�1,0)(x)
ex

1� e2x
þ 1(0,1)(x)

e�Æ9x � e�2x

(1� e�2x)(1� e�Æ9x)

� �
dx

jxj

for any t . 0 if c ¼ 1. The explicit distributions for Æ ¼ 1
2
and Æ9 ¼ 1 are

P(log Yt 2 B) ¼ t

2�1=2

ð
B

exp � 1

2
x� t2

4
e�x

� �
dx, for b ¼ 1,

P(logjZ tj 2 B) ¼ 2t

�

ð
B

ex

e2x þ t2
dx, for c ¼ 1:

Recall that L(Yt) ¼ L(1=ˆ( t2=4)
1=2 ) for this Yt with Æ ¼ 1

2
and b ¼ 1.

Example 7.3. Let fX tg be Brownian motion on Rd with drift ª 2 Rd , that is, fX tg is the

Lévy process with L(X t) ¼ �( tI ,0, tª), where I is the d 3 d unit matrix. Let fZ tg be a

subordinator such that L(Z t) is a generalized ˆ-convolution (equivalently, L(Z t) is in T (R)

and has support in Rþ). Subordination of fX tg by fZ tg gives a Lévy process fYtg on Rd .

That is, Yt ¼ X Z t
, where fX tg and fZ tg are independent. Assume that L(Z t) is not a �-

distribution. Let � t ¼ L(Yt). In the case d ¼ 1, Halgreen (1979) showed that � t 2 L(R) for

any ª. Then Takano (1989; 1990) showed that in the case d > 2 one had a different

phenomenon: if ª ¼ 0, then � t 2 L(Rd), but, under some additional assumption on the so-

called U -measure of the generalized ˆ-convolution L(Z1), if ª 6¼ 0, then � t =2 L(Rd) for all

t . 0.

Generalized inverse Gaussian distributions are in the class of generalized ˆ-convolutions
(Halgreen 1979). If L(Z t) is a generalized inverse Gaussian, then the explicit expression for

the density of L(Yt) using modified Bessel functions is obtained by Barndorff-Nielsen

(1977; 1978); the process fYtg is referred to as a generalized hyperbolic motion, the finite-

dimensional laws of fYtg being of the generalized hyperbolic type.

Let us assume for the rest of this example that fZ tg is the ˆ-process with scale

parameter 1. This is a special case of the generalized inverse Gaussian. We have
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b� t� t(z) ¼ (1þ 2�1jzj2 � ihª, zi)� t:

The expression for the density of � t, t . 0, mentioned above, is in this case

c(t, ª)jxj t�(d=2)Kt�(d=2)((2þ jªj2)1=2jxj)ehª,xi

with c(t, ª) ¼ 2(2�)�d=2ˆ(t)�1(2þ jªj2)�( t�d=2)=2. Here Kt�(d=2) is the modified Bessel

function of the third kind with index t � d=2. In particular, �(dþ1)=2 has density

c exp(�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ jªj2

p
jxj þ hª, xi)

with a normalizing constant c. We can prove the following for every t . 0.

(i) Let d ¼ 1. Then � t 2 T (R) and � t =2 L1(R) (hence � t =2 T1(R)), irrespective of

whether ª ¼ 0 or ª 6¼ 0.

(ii) Let d > 2. If ª ¼ 0, then � t 2 L(Rd), � t =2 T (Rd), and � t =2 L1(R
d). If ª 6¼ 0, then

� t =2 L(Rd) (hence � t =2 T (Rd)).

To prove (i), choose º ¼ �þ1 þ ��1. It is known that � t 2 L with k-function

k�(r) ¼
t exp[�(

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ ª2

p
� ª)r], for � ¼ þ1,

t exp[�(
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ ª2

p
þ ª)r], for � ¼ �1:

�
Hence k�(r) is completely monotone and � t 2 T . The fact that � t =2 L1(R) is observed by

Maejima et al. (2000, p. 397).

We now prove (ii). As is shown by Takano (1989), the Lévy measure of � t has polar

decomposition º(d�), ��(dr) where º is the Lebesgue measure on the (d � 1)-dimensional

unit sphere S and

��(dr) ¼ 2t ehª,�ir Ld=2(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ jªj2

p
r)r�1 dr (7:3)

with Ld=2(u) ¼ (2�)�d=2ud=2Kd=2(u).

If ª 6¼ 0, then � t =2 L(Rd), which is a special case of Takano (1990).

Now assume that ª ¼ 0. Write p ¼ d=2 and k(r) ¼ r pK p(r). Since k9(r) ¼
�r pK p�1(r) , 0, we have � t 2 L(Rd) (this is also a consequence of a general result;

see Sato 2001). Furthermore,

k 0(r) ¼ r pK p�2(r)� r p�1K p�1(r) ¼ 2� p r2 p�2

ð1
0

e�s�r2=(4s)s� p(2s� 1)ds

by the well known integral representation of the modified Bessel function ((30.28) of Sato

1999). Note that
Ð 1=2
0

e�s�r2=(4s)s� p(2s� 1)ds ! �1 as r # 0 (here we use the fact that

d > 2). Thus k 0(r) , 0 when r is small enough. Hence k(r) is not completely monotone and

� t =2 T (Rd). For the function h(u) ¼ k(e�u) we have h 0(u) ¼ k 0(e�u)e�2u þ k9(e�u)e�u , 0

for some u, and hence � t =2 L1(R
d).
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The authors thank Vı́ctor Pérez-Abreu for his stimulating remarks in the course of the

preparation of this paper. They are grateful to the referees for valuable comments.

References

Akita, K. and Maejima, M. (2002) On certain self-decomposable self-similar processes with

independent increments. Statist. Probab. Lett., 59, 53–59.

Barndorff-Nielsen, O. (1977) Exponentially decreasing distributions for the logarithm of particle size.

Proc. Roy. Soc. Lond. Ser. A, 353, 401–419.

Barndorff-Nielsen, O. (1978) Hyperbolic distributions and distributions on hyperbolae. Scand. J.

Statist., 5, 151–157.

Barndorff-Nielsen, O.E. and Thorbjørnsen, S. (2002a) Lévy laws in free probability. Proc. Natl. Acad.

Sci. USA, 99, 16 568–16 575.

Barndorff-Nielsen, O.E. and Thorbjørnsen, S. (2002b) Lévy processes in free probability. Proc. Natl.
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