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This paper is concerned with two-person zero-sum games for continuous-time Markov chains, with

possibly unbounded payoff and transition rate functions, under the discounted payoff criterion. We give

conditions under which the existence of the value of the game and a pair of optimal stationary

strategies is ensured by using the optimality (or Shapley) equation. We prove the convergence of the

value iteration scheme to the game’s value and to a pair of optimal stationary strategies. Moreover,

when the transition rates are bounded we further show that the convergence of value iteration is

exponential. Our results are illustrated with a controlled queueing system with unbounded transition

and reward rates.
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1. Introduction

Zero-sum stochastic dynamic games have been widely studied in the literature. Existing

work can be roughly classified into four main groups. The first deals with discrete-time

games (see, for instance, Basar and Olsder 1999; Filar and Vrieze 1997; Hernández-Lerma

and Lasserre 2001; Sennott 1994; Shapley 1953); the second with differential games (e.g.

Ardanuy and Alcalá 1992; Hamadène 1999; Ramachandran 1999); and the third with semi-

Markov games in which the players can choose their actions only at certain (random)

epochs, and which, therefore, can be reduced to discrete-time games (see Lal and Sinha

1992, for instance). In this paper, we study a fourth class of stochastic games, namely,

games in which the state process evolves according to a continuous-time Markov chain, and

the players can select their actions continuously in time. This fourth class has been studied

by Lai and Tanaka (1984), Tanaka and Homma (1978) and Tanaka and Wakuta (1978).

However, the latter references are all restricted to the case where the transition and payoff

rates are both bounded, and, moreover, each player uses only stationary strategies. Here, we

consider a much more general case.

More precisely, we consider zero-sum games for continuous-time Markov chains with a

discounted payoff criterion. The transition and payoff rates are both allowed to be
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unbounded, and each player may use randomized, time-varying, Markov strategies. We give

conditions under which the optimality (or Shapley or dynamic programming) equation has a

unique solution, which is used to show that the game has a value, as well as the existence

of a pair of optimal stationary strategies. In addition, we prove the convergence of the value

iteration scheme to the game’s value and that it yields a pair of optimal stationary

strategies. Moreover, when the transition rates are bounded we further show that the

convergence of value iteration is exponential. Our results are illustrated with a controlled

queueing system with unbounded transition and reward rates.

The rest of this paper is organized as follows. Sections 2 and 3 introduce the game model

and the family of admissible strategies, respectively. The optimality criterion we are

concerned with is presented in Section 4. Our main optimality results are stated in Section

5 and illustrated with examples in Section 6. Their proofs are postponed to Section 8 after

some technical preliminaries in Section 7. We conclude in Section 9 with some general

remarks.

2. The game model

In this section we introduce the (continuous-time, time-homogeneous) two-person zero-sum

stochastic game model:

fS, A, B, K A, K B, q, rg, (2:1)

where S is the state space, a denumerable set, and A and B are the action spaces for players

1 and 2, respectively, which are assumed to be Polish (i.e., complete and separable metric)

spaces. The sets K A � S 3 A and K B � S 3 B are Borel sets that represent the constraint

sets. That is, for each state i 2 S, the i-section in K A, namely

A(i) :¼ fa 2 Aj(i, a) 2 K Ag,

represents the set of admissible actions for player 1 in state i; similarly, the i-section in K B,

B(i) :¼ fb 2 Bj(i, b) 2 K Bg,

stands for the family of admissible actions for player 2 in state i. Let

K :¼ f(i, a, b)ji 2 S, a 2 A(i), b 2 B(i)g, (2:2)

which is a Borel subset of S 3 A 3 B.

The component q in (2.1) is the matrix of the game’s transition rates [q( jji, a, b)]

satisfying q( jji, a, b) > 0 for all (i, a, b) 2 K and i 6¼ j, and which is assumed to be

conservative, that is, X
j2S

q( jji, a, b) ¼ 0, 8 (i, a, b) 2 K, (2:3)

and stable, that is,

q(i) :¼ sup
a2A(i),b2B(i)

qi(a, b) , 1, 8 i 2 S, (2:4)
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where qi(a, b) :¼ �q(iji, a, b) for all a 2 A(i) and b 2 B(i). Moreover, q( jji, a, b) is a

measurable function on A 3 B for each fixed i, j 2 S.

Finally, r : K ! R :¼ (�1, þ1) is the reward rate function for player 1 (or the cost

rate function for player 2).

The game is played as follows. Players 1 and 2 observe continuously the current state of

the system. Whenever the system is at state i 2 S at time t > 0, they independently choose

actions at 2 A(i) and bt 2 B(i) according to some admissible ‘strategies’ introduced in

Definition 3.1 below. As a consequence of this, the following happens: (1) player 1 receives

a reward rate r(i, at, bt); (2) player 2 incurs a cost rate r(i, at, bt); and (3) the system

moves to a new state j 6¼ i with a possibly non-homogeneous transition probability function

determined by the transition rates [q( jji, at, bt)]. The goal of player 1 is to maximize his/

her reward, whereas that of player 2 is to minimize his/her cost with respect to some

performance criterion VÆ, which in our present case is defined by (4.1) below.

3. Strategies

We begin this section with some notation. If X is a Polish space, we denote by B(X ) its

Borel � -algebra, and by P(X ) the Borel space of probability measures on X , endowed with

the topology of weak convergence.

A randomized Markov strategy for player 1, denoted by �1, is a family (�1
t , t > 0) of

stochastic kernels satisfying the following conditions:

(1) for each t > 0 and i 2 S, �1
t (�ji) is a probability measure on A such that

�1
t (A(i)ji) ¼ 1;

(2) for every E 2 B(A) and i 2 S, �1
t (Eji) is a Borel measurable function in t > 0.

Without loss of generality, by (1) we may also regard �1
t (�ji) as a probability measure on A(i).

We denote by
Qm

1 the family of all randomized Markov strategies for player 1. Moreover, a

strategy �1 ¼ (�1
t , t > 0) 2

Qm
1 is called stationary if, for each i 2 S, there is a probability

measure �1(�ji) 2 P(A(i)) such that

�1
t (�ji) � �1(�ji), 8t > 0:

We denote this policy by (�1(�ji), i 2 S). The set of all stationary strategies for player 1 is

denoted by
Qs

1. The sets of all randomized Markov strategies
Qm

2 and all stationary strategiesQs
2 for player 2 are defined similarly, with P(B(i)) in lieu of P(A(i)).

For each pair of strategies (�1, �2) :¼ ((�1
t , �

2
t ), t > 0) 2

Qm
1 3

Qm
2 , the associated

transition and reward rates are defined, respectively, as follows: for each i, j 2 S and t > 0,

q( jji, t, �1, �2) :¼
ð

B(i)

ð
A(i)

q( jji, a, b)�1
t (daji)�2

t (dbji), (3:1)

r(t, i, �1, �2) :¼
ð

B(i)

ð
A(i)

r(i, a, b)�1
t (daji)�2

t (dbji): (3:2)

In particular, when �1 and �2 are both stationary, we write (3.1) and (3.2) as q( jji, �1, �2)

Zero-sum continuous-time Markov games 1011



and r(i, �1, �2), respectively. In addition, the associated Q-matrix is Q(t, �1, �2) :¼
[q( jji, t, �1, �2)]. As is well known (see Anderson 1991; Chung 1960; Feller 1940; Hou

and Guo 1998; or Hou 1994) any (probably substochastic) transition function

p(s, i, t, j, �1, �2) for which Q(t, �1, �2) is its transition rate matrix (i.e.

@ p(s, i, t, j, �1, �2)

@ t
j t¼s ¼ q( jji, s, �1, �2)

for all i, j 2 S and s > 0), is called a Q-process. A Q-process p(s, i, t, j, �1, �2) is said to be

honest if
P

j2S p(s, i, t, j, �1, �2) ¼ 1 for all i 2 S and t > s > 0; see Anderson (1991),

Chung (1960) or Feller (1940) for more details.

In the spirit of the conditions in Feller (1940) for the existence of such Q-processes, we

will restrict ourselves to control strategies in the classes
Q

1 and
Q

2 defined as follows:

Definition 3.1. For k ¼ 1, 2,
Q

k is any subset of randomized Markov strategies for player k

such that
Q

k contains
Qs

k and satisfies a continuity condition on the corresponding

transition rates in t > 0 for each strategy in
Q

‘ with ‘ 6¼ k. Hence, q( jjt, i, �1, �2) is

continuous in t > 0 for each i, j 2 S and (�1, �2) 2
Q

1 3
Q

2.

Remark 3.1. Observe that
Q

1 3
Q

2 is non-empty because it contains
Qs

1 3
Qs

2. Moreover,

we provide an example in Section 6 showing that
Q

1 and
Q

2 can be chosen to be strictly

larger than
Qs

1 and
Qs

2, respectively.

For each fixed pair (�1, �2) 2
Q

1 3
Q

2, since the matrix [q( jji, a, b)] is conservative

and stable (see (2.3), (2.4)), Q(t, �1, �2) is also conservative and stable. Hence, for each

�1 2
Q

1 and �2 2
Q

2 the existence of a Q-process, such as the minimum Q-process

denoted by pmin(s, i, t, j, �) (i.e., pmin(s, i, t, j, �) < p(s, i, t, j, �) for any Q-process

p(s, i, t, j, �)), is guaranteed; but it is not necessarily regular (i.e. unique and honest), that

is, we might have
P

j2S pmin(s, i, t, j, �) , 1 for some i 2 S and t > s > 0; see Feller

(1940) and Chung (1960). Thus, for a Q-process to be regular and also for our payoff

criterion (4.1) to be well defined, throughout this paper we make the following assumption:

Assumption A. For each pair of strategies (�1, �2) 2
Q

1 3
Q

2, there is a regular Q-process

with transition rate matrices fQ(t, �1, �2), t > 0g.

To ensure that Assumption A holds we may use, for instance, the following fact.

Proposition 3.1. Each of the following conditions implies that Assumption A holds:

(a) The transition rates are bounded, that is, kqk :¼ supi2S q(i) , 1 with q(i) as in

(2.4).

(b) There exist N non-negative functions wn on S and a positive constant c such that,

for all (i, a, b) 2 K,
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X
j2S

q( jji, a, b)wn( j) < wnþ1(i), for n ¼ 1, . . . , N � 1,

and, furthermore, X
j2S

q( jji, a, b)wN ( j) < 0

and

q(i) < c(w1(i) þ . . . þ wN (i)), for all i 2 S: (3:3)

Proof. By (2.3) we see that condition (a) implies (b) with w1(i) :¼ kqk for all i 2 S and

N ¼ 1. Thus, it suffices to verify that (b) implies Assumption A, which is done after Lemma

7.3 below. h

Remark 3.2. (a) The conditions in Feinberg (2004), Lai and Tanaka (1984), Puterman (1994),

Sennott (1999), Tanaka and Homma (1978), Tanaka and Wakuta (1978) and Yushkevich and

Fainberg (1979) imply Assumption A because all of these references require the transition

rates to be bounded. On the other hand, in Section 6 we introduce a queueing system with

unbounded transition rates for which Assumption A is true.

(b) For each (�1, �2) 2
Q

1 3
Q

2, we denote by P(s, t, �1, �2) :¼ [ p(s, i, t, j, �1, �2)]

the regular Q-process, that is the transition probability function, and by fx(t, �1, �2)g the

associated right-continuous Markov chain. Further, for each initial state i 2 S at time s > 0,

P
�1,�2

s,i and E�1,�2

s,i denote the corresponding probability measure and expectation operator

determined by P(s, t, �1, �2), respectively.

4. Discounted payoff criterion

For each pair of strategies (�1, �2) 2
Q

1 3
Q

2, initial data (s, i) 2 S :¼ [0, 1) 3 S and a

given discount factor Æ . 0, the discounted payoff criterion VÆ(s, i, �1, �2) is defined as

VÆ(s, i, �1, �2) :¼
ð1

s

e�Æ( t�s)E�1,�2

s,i r(t, x(t, �1, �2), �1, �2)dt

¼
ð1

s

e�Æ( t�s)
X
j2S

p(s, i, t, j, �1, �2)r(t, j, �1, �2)

" #
dt: (4:1)

To introduce our optimality criterion we also need the following concepts. The functions on S

defined as

L(s, i) :¼ sup
�12—1

inf
�22—2

VÆ(s, i, �1, �2) and U (s, i) :¼ inf
�22—2

sup
�12—1

VÆ(s, i, �1, �2) (4:2)

are called the lower value and the upper value, respectively, of the discounted payoff game. It

is clear that
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L(s, i) < U (s, i), 8 (s, i) 2 S: (4:3)

Definition 4.1. If L(s, i) ¼ U (s, i) for all (s, i) 2 S, then the common function is called the

value of the game and is denoted by V.

Definition 4.2. Suppose that the game has a value V. Then a strategy ��1 in
Q

1 is said to be

optimal for player 1 if

inf
�22—2

VÆ(s, i, ��1, �2) ¼ V (s, i), 8 (s, i) 2 S: (4:4)

Similarly, ��2 2
Q

2 is optimal for player 2 if

sup
�12—1

VÆ(s, i, �1, ��2) ¼ V (s, i), 8 (s, i) 2 S: (4:5)

If �
� k 2

Q
k is optimal for player k (k ¼ 1, 2), then (��1, ��2) is called a pair of optimal

strategies (also known as a saddlepoint).

To ensure that the discounted payoff criterion VÆ(s, i, �1, �2) is a finite-valued function

we shall suppose the following.

Assumption B. There exist N non-negative functions wn, n ¼ 1, 2, . . . , N, such that, for all

(i, a, b) 2 K, X
j2S

q( jji, a, b)wn( j) < wnþ1(i), for n ¼ 1, . . . , N � 1, (4:6)

and X
j2S

q( jji, a, b)wN ( j) < 0: (4:7)

Observe that Assumption B is similar to – but not the same as – the condition in

Proposition 3.1(b). In particular, Assumption B does not necessarily imply (3.3).

Let

W (i) :¼ w1(i) þ . . . þ wN (i), for all i 2 S: (4:8)

Since [q( jji, a, b)] is conservative, Assumption B still holds if we replace wN with wN þ 1.

Thus, from now on we suppose that W > 1.

Remark 4.1. (a) By (2.3), if the transition rates are bounded – that is, kqk , 1 as in, for

instance, Feinberg (2004), Lai and Tanaka (1984), Puterman (1994), Sennott (1999), Tanaka

and Homma (1978), Tanaka and Wakuta (1978) and Yushkevich and Fainberg (1979) – then

Assumption B trivially holds with N ¼ 1 and w1 :¼ kqk. Moreover, if Assumption B holds

and, in addition, q(i) < cW (i) for all i 2 S and some constant c . 0, then, by Proposition

3.1, our Assumption A is also true. On the other hand, suppose that Assumption B holds and,
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furthermore, there exists a sequence fSm, m > 1g of subsets of S such that Sm " S,

supi2Sm
q(i) , 1, and limm!1[inf j62Sm

W ( j)] ¼ þ1. Then from Guo and Hernández-Lerma

(2003b) we see that for each pair of strategies (�1, �2) 2
Q

1 3
Q

2 the associated Q-process

with transition rate matrices Q(t, �1, �2) is regular, and so Assumption A is not required.

(b) Our Assumption B was motivated by conditions in Lippman (1973, 1975) and Van

Nunen and Wessels (1978) for discounted semi-Markov decision processes (e.g., the case

where B(i) is a singleton fbig for each i 2 S), which in a sense are stronger than

Assumption B. To see this, let us suppose that B(i) ¼ fbig for each i 2 S, and consider

Lippman’s (1973, 1975) conditions, which are also used in Van Nunen and Wessels (1978).

As in Lippman (1973, 1975), let p(�ji, a) :¼ p(�ji, a, bi) and r(i, a) :¼ r(i, a, bi) be the

transition probability and the one-period reward, respectively, for each i 2 S and

a 2 A(i) � A. Further, Æ . 0 is the discount factor, and t(�ji, a) is the probability

distribution of the time until the next transition, given the current state i 2 S and the action

a 2 A. With this notation, we have what we will refer to as

Lippman’s conditions: there exists a function w(�) > 1 on S, an integer N > 1, a number

� (0 < � , 1) and positive numbers c and M such that, for all i 2 S, a 2 A,

(L1) �(i, a) �
Ð1

0
e�Æ� t(d�ji, a) < �,

(L2) jr(i, a, bi)jw(i)�N < M ,

(L3)
P

j2S w n( j) p( jji, a, bi) < [w(i) þ c]n, for n ¼ 1, . . . , N .

Obviously, these conditions are different from our Assumption B. However, in the case

B(i) ¼ fbig we get the following.

Proposition 4.1. Under Lippman’s conditions, for our game model we have:

(a) the transition rates are bounded, that is kqk ¼ supi2S q(i) , 1;

(b) Assumption B holds.

Proof. (a) Since

�(i, a) �
ð1

0

e�Æ� t(d�ji, a) ¼
ð1

0

e�Æ� d(1 � eq(iji,a,bi)�) ¼ �q(iji, a, bi)

Æ� q(iji, a, bi)
,

by (L1) we have �q(iji, a, bi) < Æ�=(1 � �) for all i 2 S and a 2 A. This gives part (a).

(b) Since p( jji, a, bi) ¼ q( jji, a, bi)=(�q(iji, a, bi)) when i 6¼ j and p(iji, a, bi) ¼ 0, by

part (a) and (L3) with n ¼ 1 we haveX
j2S

q( jji, a, bi)w( j) ¼ (�q(iji, a, bi))
X
j2S

p( jji, a)w( j) þ q(iji, a, bi)w(i)

< �q(iji, a, bi)[w(i) þ c] þ q(iji, a, bi)w(i) <
Æ�c

1 � �
:

Let w1 ¼ w, w2 ¼ Æ�c=(1 � �). Then Assumption B is true (with N ¼ 2). h

Finally, to ensure the existence of a pair of optimal stationary strategies, in addition to
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Assumptions A and B we impose the following continuity–compactness conditions, in

which W (�) is the function in (4.8).

Assumption C. For each i 2 S:

(1) A(i) and B(i) are compact sets;

(2) r(i, a, b) and q( jji, a, b) are continuous in (a, b) 2 A(i) 3 B(i);

(3) the function
P

j2S q( jji, a, b)W ( j) is continuous in (a, b) 2 A(i) 3 B(i);

(4) there is a constant M such that

jr(i, a, b)j < MW (i), 8 (i, a, b) 2 K;

(5) there exists a non-negative function ~WW on S and positive constants ~MM, c and ~cc such

that

q(i)W (i) < ~MM ~WW (i),
X
j2S

q( jji, a, b) ~WW ( j) < c ~WW (i) þ ~cc, 8(i, a, b) 2 K:

Remark 4.2. (a) Assumptions B and C(1)–C(4) are a variant of hypotheses used in Guo and

Hernández-Lerma (2003a), Guo and Liu (2001), and Guo and Zhu (2002) for continuous-

time Markov control processes, and of hypotheses used in Hernández-Lerma and Lasserre

(1999) for discrete-time Markov control processes. Assumption C(5) is for the existence of a

pair of optimal stationary strategies.

(b) If the transition and reward rates are bounded (see Lai and Tanaka 1984; Tanaka and

Homma 1978; Tanaka and Wakuta 1978), then Assumptions A, B, C(4) and C(5) hold.

Moreover, an example in which the transition and reward rates are both unbounded and (all

parts of) Assumptions A, B and C hold will be given in Section 6. On the other hand, if

r(i, a, b) is uniformly bounded on K then Assumption C(4) trivially holds, whereas

Assumption C(5) and the continuity condition for u ¼ W in Assumption C(3) are not

required.

To state our results, we use the weighted supremum norm k � kW for real-valued functions

u on S, defined as

kukW :¼ sup
i2S

[W (i)�1ju(i)j], (4:9)

and the Banach space

B(S) :¼ fuj kukW , 1g:

We will also use the following facts, which are essentially known already, but we state

them here for completeness and ease of reference.

Proposition 4.2. Suppose that Assumptions A, B and C hold, and let �k be an arbitrary

strategy in
Q

k (k ¼ 1, 2).

(a) If there exists u 2 B(S) such that
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Æu(i) ¼ r(t, i, �1, �2) þ
X
j2S

q( jji, t, �1, �2)u( j), 8 (t, i) 2 S,

then u(i) ¼ VÆ(s, i, �1, �2) for all (s, i) 2 S. (Recall that S :¼ [0, 1) 3 S.)

(b) If there exists u 2 B(S) such that

Æu(i) < r(t, i, �1, �2) þ
X
j2S

q( jji, t, �1, �2)u( j), 8 (t, i) 2 S,

then u(i) < VÆ(s, i, �1, �2) for all (s, i) 2 S.

(c) Similarly, if there exists u 2 B(S) such that

Æu(i) > r(t, i, �1, �2) þ
X
j2S

q( jji, t, �1, �2)u( j), 8 (t, i) 2 S,

then u(i) > VÆ(s, i, �1, �2) for all (s, i) 2 S.

(d) For each (�1, �2) 2
Qs

1 3
Qs

2, VÆ(0, i, �1, �2) is the unique solution in B(S) of the

equation

Æu(i) ¼ r(i, �1, �2) þ
X
j2S

q( jji, �1, �2)u( j), 8 i 2 S,

and, furthermore, VÆ(0, i, �1, �2) ¼ VÆ(s, i, �1, �2) for all (s, i) 2 S.

Proof. These results follow from Lemma 6.2 in Guo and Hernández-Lerma (2003a); see also

Proposition 3.3 in Hernández-Lerma (1994) or Guo and Zhu (2002) and Lemma 7.3(a)

below. h

5. Main results

We now state our main results. To do so, for any two states i, j 2 S, any two probability

measures � 2 P(A(i)), ł 2 P(B(i)), and any pair (�1, �2) 2
Qs

1 3
Qs

2, let

q( jji, �, ł) :¼
ð

B(i)

ð
A(i)

q( jji, a, b)�(da)ł(db): (5:1)

r(i, �, ł) :¼
ð

B(i)

ð
A(i)

r(i, a, b)�(da)ł(db), (5:2)

q( jji, �, �2) :¼ q( jji, �, �2(�ji)),

q( jji, �1, ł) :¼ q( jji, �1(�ji), ł):

Under Assumption B, let

Rk :¼ wk þ . . . þ wN , for k ¼ 1, 2, . . . , N : (5:3)
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Theorem 5.1. Suppose that Assumptions A, B, and C hold.

(a) Let u0(i) :¼ �M
PN

k¼1Æ
�k Rk(i) and un(i) :¼ Tun�1(i) for each i 2 S and n > 1,

where

Tu(i) :¼ sup
�2P(A(i))

inf
ł2P(B(i))

r(i, �, ł)

1 þ Æþ q(i)
þ 1 þ q(i)

1 þ Æþ q(i)

X
j2S

q( jji, �, ł)

1 þ q(i)
þ �ij

� �
u( j)

( )
,

and �ij is the Kronecker delta. Then the limit limn!1 un :¼ u� exists and belongs to

B(S).

(b) u� is a solution of the optimality equation

Æu(i) ¼ sup
�2P(A(i))

inf
ł2P(B(i))

fr(i, �, ł) þ
X
j2S

q( jji, �, ł)u( j)g, 8 i 2 S: (5:4)

(c) There exists a pair of stationary strategies (��1, ��2) 2
Qs

1 3
Qs

2 such that, for all

i 2 S,

Æu�(i) ¼ r(i, ��1, ��2) þ
X
j2S

q( jji, ��1, ��2)u�( j) (5:5)

¼ sup
�2P(A(i))

r(i, �, ��2) þ
X
j2S

q( jji, �, ��2)u�( j)

( )
(5:6)

¼ inf
ł2P(B(i))

r(i, ��1, ł) þ
X
j2S

q( jji, ��1, ł)u�( j)

( )
(5:7)

¼ sup
�2P(A(i))

inf
ł2P(B(i))

r(i, �, ł) þ
X
j2S

q( jji, �, ł)u�( j)

( )
: (5:8)

(d) u�(i) ¼ L(s, i) ¼ U (s, i) for all (s, i) 2 S, which means that the value V of the game

exists and that the solution u� of (5.4) is unique and equals V.

(e) (��1, ��2) in part (c) is a pair of optimal stationary strategies.

(f) For each n > 1 and i 2 S, there exists (��n (i), ł�n (i)) 2 P(A(i)) 3 P(B(i)) such that

r(i, ��n (i), ł�n (i)) þ
X
j2S

q( jji, ��n (i), ł�n (i))un( j)

¼ sup
�2P(A(i))

r(i, �, ł�n (i)) þ
X
j2S

q( jji, �, ł�n (i))un( j)

( )
(5:9)

¼ inf
ł2P(B(i))

r(i, ��n (i), ł) þ
X
j2S

q( jji, ��n (i), ł)un( j)

( )
: (5:10)
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Moreover, any limit point (��, ł�) of the sequence f��n , ł�ng in
Qs

1 3
Qs

2 is a pair

of optimal stationary strategies.

Theorem 5.1 (proved in Section 8) gives a very complete solution of the discounted

game. Indeed, it gives (i) the existence of the value of the game and (ii) of a pair of

optimal stationary strategies, as well as (iii) the convergence of the so-called value iteration

functions un to the game’s value and (iv) the ‘convergence’ (in the sense of part (f)) of the

value iteration strategies f��n , ł�ng to a pair of optimal stationary strategies. (For the one-

player discrete-time case, value iteration is studied in Filar and Vrieze (1997), Hernández-

Lerma and Lasserre (1999), Puterman (1994) and Tijms (1994).) Moreover, when the

transition rates are bounded, we can further show (and in Section 8 prove) that the

convergence is exponential, as follows.

Theorem 5.2. Suppose that

(i) Assumptions A, B and C(1)–C(4) hold, and

(ii) the discount factor is Æ . 1, and the transition rates are bounded, i.e. q :¼
kqk , 1.

Then

(a) the operator T is a contraction on B(S) with modulus ª :¼ (2 þ q)=(1 þ Æþ q) , 1;

(b) kT nu � u�kW < ªn(kukW þ M
PN

k¼1Æ
�k) for all n > 1 and u 2 B(S).

6. Examples

There are many applications of game theory to queueing systems; see, for instance, Altman

(2005) and the references therein. In this section we present two queueing games that

illustrate our results.

Example 6.1. Consider a single-server queueing system in which the state variable denotes

the total number of jobs (in service and waiting in the queue) at each time t > 0. There are

‘natural’ arrival and service rates, say º and �, respectively, in addition to service parameters

u(a) controlled by player 1, and arrival parameters v(b) controlled by player 2. Thus, when

the state of the system is i 2 S :¼ f0, 1, . . .g, player 1 takes an action a from a given set

A(i) � A, which may increase (u(a) > 0) or decrease (u(a) < 0) the service rate. These

actions produce a cost (or reward) denoted by c1(a) > 0 (or c1(a) < 0) per unit time.

Similarly, if the state is i 2 S, player 2 takes an action b from a set B(i) � B to reject

(v(b) < 0) or to attract (v(b) > 0) customers, and these actions result at a cost (or reward)

rate c2(b) > 0 (or c2(b) < 0). In addition, assuming that player 1 ‘owns’ the system, he/she

gets a reward r(i) :¼ pi for each unit of time during which the system remains in the state i,

where p . 0 is a fixed fee per customer. We formulate this model as a continuous-time

Markov game.
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The corresponding transition rate q( jji, a, b) and reward rate r(i, a, b) for player 1 are

given as follows: For i ¼ 0,

q(1j0, a, b) ¼ �q(0j0, a, b) :¼ u(a) þ v(b),

and for i > 1,

q( jji, a, b) ¼

�i þ u(a), if j ¼ i � 1,

�(�þ º)i � u(a) � v(b), if j ¼ i,

ºi þ v(b), if j ¼ i þ 1,

0, otherwise,

8>>>><
>>>>:

(6:1)

r(i, a, b) ¼ pi � c1(a) þ c2(b), for (i, a, b) 2 K, (6:2)

with K as in (2.2).

The aim here is to find conditions under which there exists a pair of optimal stationary

strategies achieving both the maximum discounted reward for player 1 and the minimum

discounted cost for player 2. To do so, we use the following assumptions:

(E1) u(a) þ v(b) > 0 for all a 2 A(0) and b 2 A(0); for each i > 1, �i þ u(a) > 0 for

all a 2 A(i) and ºi þ v(b) > 0 for all b 2 B(i). Moreover, 0 < º < �.

(E2) The action sets A and B are metric spaces, and A(i) and B(i) are compact for each

i 2 S.

(E3) c1(a), c2(b), u(a) and v(b) are bounded in the supremum norm and continuous

functions on their corresponding domains.

Under these conditions, we obtain the following.

Proposition 6.1. Under (E1)–(E3), the above queueing system satisfies the Assumptions A, B

and C. Therefore (by Theorem 5.1), there exists an optimal pair of stationary strategies.

Proof. We shall first verify Assumption B. Let w1(i) :¼ p�1 i for all i 2 S, and kuk :¼
supa2Aju(a)j, kvk :¼ supb2Bjv(b)j, kc1k :¼ supa2Ajc1(a)j, kc2k :¼ supb2Bjc2(b)j. Then, for

each (i, a, b) 2 K, under (E1) we have:

when i > 1,
X
j2S

q( jji, a, b)w1( j) ¼ p�1[(º� �)i � u(a) þ v(b)] < p�1(kuk þ kvk);

when i ¼ 0,
X
j2S

q( jji, a, b)w1( j) ¼ p�1[u(a) þ v(b)] < p�1(kuk þ kvk):

Let w2(i) � p�1(kc1k þ kc2k þ kuk þ kvk) for all i 2 S. Then, for each (i, a, b) 2 K, we

have
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X
j2S

q( jji, a, b)w1( j) < w2(i), (6:3)

X
j2S

q( jji, a, b)w2( j) < 0: (6:4)

Hence, Assumption B holds. Now let W :¼ w1 þ w2. Then, by Lemma 7.3(a) below and

(6.3)–(6.4), we obtain that, for all t > s > 0, �1 2
Q

1, �2 2
Q

2 and i 2 S,ð t

s

X
j2S

p(s, i, y, j, �1, �2)W ( j)dy , 1:

Therefore, for all t > s > 0, �1 2
Q

1, �2 2
Q

2 and i 2 S,ð t

s

X
j2S

p(s, i, y, j, �1, �2)[(ºþ �) j þ kuk þ kvk)]dy , 1,

which together with Proposition 2.1(c) in Guo and Hernández-Lerma (2003a) implies that

Assumption A holds. Finally, since jr(i, a, b)j < pi þ kc1k þ kc2k < pW (i) and q(i) <

(ºþ �þ kuk þ kvk)(i þ 1), letting ~MM(i) :¼ ~MM(i þ 1)2 with ~MM :¼ 9 p�1(kc1k þ kc2k þ kuk
þ kvk þ �þ ºþ 1)2 and using (E2) and (E3) together with (6.1), we see that Assumption C

holds. h

Example 6.2. In Example 6.1, we further suppose that A(i) ¼ fa1, a2g, B(i) ¼ fb1, b2g for

each i 2 S, except A(0) ¼ fa1g, with 0 , a1 , a2 , b1 , b2. Further, u(a) ¼ a, v(b) ¼ b.

Then, by Proposition 6.1, Assumptions A, B and C are satisfied for these data. We now define

non-stationary Markov policies ~��1 ¼ (~��1
t , t > 0) and ~��2 ¼ (~��2

t , t > 0) as

~��1
t (aji) ¼

1
2
e�a1 it, if a ¼ a1,

1 � 1
2
e�a1 it, if a ¼ a2,

1, if i ¼ 0, a ¼ a1,

8>><
>>: (6:5)

and

~��2
t (bji) ¼

1 � 1
2
e�b2 it, if b ¼ b1,

1
2
e�b2 it, if b ¼ b2,

(
(6:6)

respectively.

Moreover, let
Q

1 :¼
Qs

1 [ f~��1g,
Q

2 :¼
Qs

2 [ f~��2g. By (6.1), (6.5), (6.6) and (3.1) we

see that
Q

1 and
Q

2 satisfy the requirements in Definition 3.1, and
Q

1 �
Qs

1,
Q

1 6¼
Qs

1;Q
2 �

Qs
2,

Q
2 6¼

Qs
2.

Remark 6.1. It should be noted that in Examples 6.1 and 6.2 the reward and transition rates

are both unbounded.
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7. Technical preliminaries

In this section we present some results needed to prove Theorems 5.1 and 5.2. In the

remainder of the paper, a real-valued function on S is regarded as a column vector, and

operations on matrices and vectors are all componentwise.

Lemma 7.1. If Assumption B holds, then for each �1 2
Q

1 and �2 2
Q

2, and t > 0:

(a) Q(t, �1, �2)wn < wnþ1, for n ¼ 1, . . . , N � 1;

(b) Q(t, �1, �2)wN < 0.

Proof. This follows from (3.1), (4.6) and (4.7). h

Lemma 7.2. Under Assumptions B and C(1)–C(4), the functions r(i, �, ł) andP
j2S q( jji, �, ł)u( j) are continuous on P(A(i)) 3 P(B(i)) for each fixed u 2 B(S) and

i 2 S.

Proof. Under the stated assumptions, the two functions
P

j2S q( jji, a, b)W ( j) and r(i, a, b)

are continuous and bounded on A(i) 3 B(i) for each i 2 S. Hence, by the definition of weak

convergence of probability measures, we obtain the continuity of r(i, �, ł). Similarly,

replacing the probability measure Q(dyjx, a) in Hernández-Lerma and Lasserre (1999, p. 48)

with [q( jji, a, b)=q(i) þ �ij], the ‘extended Fatou Lemma’ 8.3.7(a) in Hernández-Lerma and

Lasserre (1999) gives the continuity of
P

j2S q( jji, �, ł)u( j). h

Lemma 7.3. If Assumptions A, B and C(4) hold, then for each pair of strategies

(�1, �2) 2
Q

1 3
Q

2, u 2 B(S) and t > s > 0,

(a) P(s, t, �1, �2)W <
PN

k¼1((k � 1)!)�1(t � s)(k�1)W;

(b)
Ð1

s
e�Æ( t�s) P(s, t, �1, �2)W dt < (

PN
k¼1Æ

�k)W;

(c) jU j < M(
PN

k¼1Æ
�k)W and jLj < M(

PN
k¼1Æ

�k)W, with U and L as in (4.2).

Proof. (a) It is well known (see Anderson 1991; Feller 1940; Hou 1994) that, given

the Q-matrices Q(t, �1, �2), the transition probability function P(s, t, �1, �2) :¼
[ p(s, i, t, j, �1, �2), i, j 2 S] can be constructed as

P(s, t, �1, �2) ¼
X1
n¼0

Pn(s, t, �1, �2), (7:1)

where

P0(s, t, �1, �2) :¼ diag(e
�
Ð t

s
qi(u,�1,�2)du

, i 2 S),

Pnþ1(s, t, �1, �2) :¼
ð t

s

P0(s, u, �1, �2)(Q(u, �1, �2) þ D(u, �1, �2))Pn(u, t, �1, �2)du, (7:2)

for n ¼ 0, 1, . . . , with
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D(u, �1, �2) :¼ diag(qi(u, �1, �2), i 2 S), qi(u, �1, �2) :¼ �q(iji, u, �1, �2),

for all u > 0 and i 2 S. Hence, by (7.1), to prove (a) it suffices to show that

Xm

n¼0

Pn(s, t, �1, �2)W <
XN

k¼1

1

(k � 1)!
(t � s)k�1 Rk , 8 m > 0, t > s > 0, (7:3)

with Rk as in (5.3). Obviously, R1 ¼ W and, moreover, (7.3) is of course valid when m ¼ 0.

Now, by induction, suppose that (7.3) holds for some m > 1. Noting that

[Q(u, �1, �2) þ D(u, �1, �2)] > 0, by Fubini’s theorem, (7.2) and the induction hypothesis,

together with Lemma 7.1, we can obtain that

Xmþ1

n¼1

Pn(s, t, �1, �2)W

¼
ð t

s

P0(s, u, �1, �2)(Q(u, �1, �2)

þ D(u, �1, �2))
Xm

n¼0

Pn(u, t, �1, �2)W du

<
XN�1

k¼1

ð t

s

P0(s, u, �1, �2)
(t � u)k�1

(k � 1)!
Rkþ1 du

þ
XN

k¼1

ð t

s

P0(s, u, �1, �2)D(u, �1, �2)
(t � u)k�1

(k � 1)!
Rkdu

¼
XN

k¼2

(t � s)k�1

(k � 1)!
Rk þ R1 � P0(s, t, �1, �2)R1

¼
XN

k¼1

(t � s)k�1

(k � 1)!
Rk � P0(s, t, �1, �2)W , (7:4)

which gives (7.3) for m þ 1. Hence, (7.3) holds for all m > 0, and so part (a) follows.

(b) and (c) follow from (a). h

We next complete the proof of Proposition 3.1 using Lemma 7.3(a). Note that the Q-

process p(s, i, t, j, �1, �2) in (7.1) is minimal when the Q-process is not unique, that is,

p(s, i, t, j, �1, �2) < p(s, i, t, j, �1, �2) for all i, j 2 S, t > s > 0 and any Q-process

p(s, i, t, j, �1, �2); see for instance Anderson (1991), Feller (1940) and Hou (1994).

Moreover, by (2.4) and condition (b) in Proposition 3.1, we have [�q(iji, t, �1, �2)]

< q(i) < cW (i) for all i 2 S and t > 0, and so Lemma 7.3(a) yields
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ð t

s

X
j2S

p(i, s, u, j, �1, �2)[�q( jj j, u, �1, �2)]du , 1:

Hence, by (7.1) we obtain limn!1
Ð t

s

P
j2S pn(i, s, u, j, �1, �2)[�q( jj j, u, �1, �2)]du ¼ 0

which, together with the corollary in Feller (1940), yields Proposition 3.1.

8. Proof of Theorems 5.1 and 5.2

Proof of Theorem 5.1. (a) Let us express the operator T on B(S) as

Tu(i) :¼ sup
�2P(A(i))

inf
ł2P(B(i))

r(i, �, ł)

Æþ m(i)
þ m(i)

Æþ m(i)

X
j2S

q( jji, �, ł)

m(i)
þ �ij

� �
u( j)

( )
, 8i 2 S,

(8:1)

where m(i) :¼ 1 þ q(i) . 0 for each i 2 S. Obviously, T is monotone. Moreover, un :¼
T un�1 ¼ T nu0 for each n > 1, with u0 :¼ �M

PN
k¼1Æ

�k Rk . Thus, for each i 2 S,

� 2 P(A(i)), and ł 2 P(B(i)), by Lemma 7.1 and (8.1) we obtain

u1(i) > � MW (i)

Æþ m(i)
� m(i)

Æþ m(i)

M
PN

k¼1Æ
�k Rkþ1(i)

m(i)
þ M

XN

k¼1

Æ�k Rk(i)

" #

¼ � MW (i)

Æþ m(i)
� M

Æ�1 m(i)

Æþ m(i)
R1(i)

� �
� M

XN

k¼2

Æ�kþ1

Æþ m(i)
þ Æ�k m(i)

Æþ m(i)

� �
Rk(i)

¼ �M
XN

k¼1

Æ�k Rk(i) ¼ u0(i): (8:2)

Therefore

�M
XN

k¼1

Æ�k Rk ¼ u0 < u1 < . . . < un . . . ,

and so un " u� for some function u�. Hence, assuming for a moment that u� is in B(S), we

have Tu� > Tun ¼ unþ1 for all n > 1, which gives

Tu� > u�: (8:3)

We shall now prove that u� 2 B(S). To do so, it suffices to show that un < �u0 for all

n > 0, that is,

un(i) < M
XN

k¼1

Æ�k Rk(i), 8n > 0 and i 2 S: (8:4)

We prove (8.4) by induction.

When n ¼ 0, (8.4) is obvious because u0 < 0 < �u0. Suppose now that (8.4) holds for
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some n > 0. Then, as in the proof of (8.2), by the induction hypothesis, Assumption C(4)

and Lemma 7.1, we have

junþ1(i)j < MW (i)

Æþ m(i)
þ sup

�2P(A(i))

inf
ł2P(B(i))

m(i)

Æþ m(i)

X
j2S

q( jji, �, ł)

m(i)
þ �ij

� �
M

XN

k¼1

Æ�k Rk( j)

" #( )

<
MW (i)

Æþ m(i)
þ m(i)

Æþ m(i)

M
PN�1

k¼1 Æ
�k Rkþ1(i)

m(i)
þ M

XN

k¼1

Æ�k Rk(i)

" #

¼ M
XN

k¼1

Æ�k Rk(i),

which implies that (8.4) holds for n þ 1, and so it holds for all n > 1 and i 2 S. Thus, the

proof of (a) is completed.

(b) To prove this part, we need only show that (8.3) holds with equality because it is

easily seen that (5.4) is equivalent to the fixed-point equation u ¼ Tu. Now, for each fixed

n > 1, i 2 S and � 2 P(A(i)), we have proved that un is in B(S), whereas, by Assumption

C(1), P(B(i)) is compact. Thus, by Lemma 7.2 there exists ł�n 2 P(B(i)), which may

depend on i and �, such that

unþ1(i) > inf
ł2P(B(i))

r(i, �, ł)

Æþ m(i)
þ m(i)

Æþ m(i)

X
j2S

q( jji, �, ł)

m(i)
þ �ij

� �
un( j)

( )

¼ r(i, �, ł�n )

Æþ m(i)
þ m(i)

Æþ m(i)

X
j2S

q( jji, �, ł�n )

m(i)
þ �ij

� �
un( j): (8:5)

Since P(B(i)) is compact, without loss of generality we may suppose that

ł�n ! ł� 2 P(B(i)). Therefore, as �M
PN

k¼1Æ
�k W (i) < un " u� < M

PN
k¼1Æ

�k W (i) for

all n > 1, by the ‘extended Fatou Lemma’ 8.3.7(b) in Hernández-Lerma and Lasserre (1999)

and Lemma 7.2 above, letting n ! 1 in (8.5), we obtain

u�(i) >
r(i, �, ł�)

Æþ m(i)
þ m(i)

Æþ m(i)

X
j2S

q( jji, �, ł�)

m(i)
þ �ij

� �
u�( j)

> inf
ł2P(B(i))

r(i, �, ł)

Æþ m(i)
þ m(i)

Æþ m(i)

X
j2S

q( jji, �, ł)

m(i)
þ �ij

� �
u�( j)

( )
: (8:6)

As (8.6) holds for all � 2 P(A(i)) and i 2 S, we conclude that

u� > Tu�,

which, together with (8.3), gives u� ¼ Tu�. Therefore, part (b) is proved.

(c) For each i 2 S, � 2 P(A(i)) and ł 2 P(B(i)), let
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H(i, �, ł) :¼ r(i, �, ł)

Æþ m(i)
þ m(i)

Æþ m(i)

X
j2S

q( jji, �, ł)

m(i)
þ �ij

� �
u�( j):

Obviously, H(i, �, ł) is concave in � and convex in ł (as it is linear in both of them). Thus,

Fan’s (1953) minimax theorem gives part (c).

(d) Let �� i 2
Qs

i (i ¼ 1, 2) be as in part (c). For any �1 ¼ (�1
t ) 2

Q
1, we have

�1
t (�ji) 2 P(A(i)) for all t > 0 and i 2 S, and from (5.6), (3.1)–(3.2) and (5.1)–(5.2) we

have

Æu�(i) > r(t, i, �1, ��2) þ
X
j2S

q( jjt, i, �1, ��2)u�( j), 8 (t, i) 2 S: (8:7)

By (8.7) and Proposition 4.2(c) we obtain that

u�(i) > VÆ(s, i, �1, ��2), 8 �1 2 —1 and (s, i) 2 S,

which in turn implies that

u�(i) > U (s, i), 8 (s, i) 2 S: (8:8)

A similar argument gives

u�(i) < VÆ(s, i, ��1, �2), 8 �2 2 —2 and (s, i) 2 S,

so that

u�(i) < L(s, i), 8 (s, i) 2 S: (8:9)

By (8.9) and (8.8) we obtain

L(s, i) > u�(i) > U (s, i), 8 (s, i) 2 S,

which, together with (4.3), gives part (d).

(e) follows from (d), (5.5) and Proposition 4.2(a).

Finally, as in the proof of part (c), for each fixed n > 1 and i 2 S, Fan’s (1953) minimax

theorem gives the existence of the sequence f(��n (i), ł�n (i))g satisfying (5.9)–(5.10). By the

‘extended Fatou Lemma’ 8.3.7(b) in Hernández-Lerma and Lasserre (1999) and our Lemma

7.2 above, letting n ! 1 in (5.9)–(5.10), we have that (5.5)–(5.7) hold with (�1�, ��2)

replaced by (��, ł�). Then, as in the proof of Theorem 5.1(e), we conclude that part (f) is

also true. h

Proof of Theorem 5.2. (a) A straightforward calculation using (4.6)–(4.8) shows thatX
j2S

q( jji, a, b)W ( j) < W (i), 8 (i, a, b) 2 K: (8:10)

Thus, if q :¼ kqk , 1, then replacing q(i) in the proof of Theorem 5.1 with q, it follows

from (8.1), (8.10) and (4.9) that
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jTu(i) � Tv(i)j < 1 þ q

1 þ Æþ q
ku � vkW

X
j2S

q( jji, �, ł)

1 þ q
W ( j) þ W (i)

" #

<
1 þ q

1 þ Æþ q
ku � vkW

W (i)

1 þ q
þ W (i)

� �

¼ ªku � vkW W (i),

and so

kTu � TvkW < ªku � vkW , 8u, v 2 B(S), (8:11)

with ª :¼ (2 þ q)=(1 þ Æþ q). Hence, as Æ . 1, we conclude from (8.11) that T is a

contraction on B(S) with modulus ª , 1. This fact immediately yields part (a), as well as the

existence of a unique solution (or fixed point) u� 2 B(S) to the optimality equation u ¼ Tu.

(b) By Theorem 5.1(a)–(d) and (8.4) we obtain

ju�(i)j < M
XN

k¼1

Æ�k Rk(i) < M
XN

k¼1

Æ�k W (i):

Hence

ku�kW < M
XN

k¼1

Æ�k , (8:12)

which, together with (8.11), gives part (b). h

9. Concluding remarks

In this paper we have studied zero-sum games for continuous-time Markov chains with

respect to a discounted payoff criterion. Under reasonably mild assumptions we have shown

that the game has a value, and also the existence of a unique solution to the optimality

equation (also known as the Shapley or dynamic programming equation), and the existence

of a pair of optimal stationary strategies. In addition, we have shown the convergence of the

value iteration scheme. We believe that our formulation and approach are sufficiently

general and, thus, provide a way to analyse other important problems, such as minimax

control problems, which, as far as we know, have not been previously studied for

continuous-time Markov chains. Research on these topics is in progress.

Other types of results are possible in the context of Theorem 5.1. For instance, we can

easily obtain a ‘martingale characterization’ of optimal strategies, similar to that in

Hernández-Lerma and Lasserre (2001) for discrete-time ergodic games.

We should also mention that our proof techniques can be simplified, of course, if we

impose additional assumptions. For instance, if the payoff rate function r(i, a, b) is

bounded, then Assumptions B and C, as well as some of our arguments can be simplified in

an obvious manner.
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To conclude, it is worth noting that the recursive definition of the sequence fung in

Theorem 5.1(a) may provide a useful way to compute, or at least to approximate, the value

u� of the game, as in the ‘bounded’ case of Theorem 5.2.
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