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to the numerical methods in this model.
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1. Introduction

Analysis of age at onset is an important approach to segregation and linkage studies of

some complex genetic diseases. Among the many interesting models proposed for this

purpose was a class of multivariate proportional hazards models in which the dependence of

age at onset among family members is due to the segregation of an (unobserved) dominant

gene in the family (Li et al. 1998; Siegmund and McKnight 1998). This paper provides an

asymptotic theory for one of these models.

The following notation and model assumptions are used throughout the paper. Let Tik ,

Cik , and Zik denote respectively the age at onset, the censoring time, and the covariate of

the ith individual in the kth family. Here i ¼ 1, . . . , m, k ¼ 1, . . . , K, and m . 2. Let gik

be the genotype of the ith individual in the kth family at a certain locus. Assume that there

are two alleles at this locus and denote them by A and a. Thus, the genotype takes one of
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the three values, aa, aA, or AA. Let Sik ¼ I [ gik¼aA or AA] denote the susceptibility type.

Denote by q0 the population allele frequency of A.

Let Tk ¼ (T1k , . . . , Tmk), Ck ¼ (C1k , . . . , Cmk), Z k ¼ (Z1k , . . . , Z mk), and Sk ¼ (S1k ,

. . . , Smk). Assume that, given Z k and Sk, T1k , . . . , Tmk , C1k , . . . , Cmk are conditionally

independent, and for an individual having covariate z and susceptibility type s, the hazard

of disease onset at age t is

º0(t) exp(�
T
0 z þ �0s): (1:1)

Here, º0(�) is a non-negative deterministic baseline function; �0 2 RD, Zik 2 RD, and

�0 2 R. Assume further that (Ck , Z k) and Sk are independent. Let X ik ¼ Tik ^ Cik , the

minimum of Tik and Cik, and �ik ¼ I [Tik<Cik ].

Assume that (Tk , Ck , Z k , Sk) are independent and identically distributed for

k ¼ 1, . . . , K. The purpose of this paper is to provide an asymptotic theory for the

maximum likelihood estimation of (¸0, �0, �0, q0) based on f(X k , �k , Z k)jk ¼ 1, . . . , Kg,
where X k ¼ (X 1k , . . . , X mk), �k ¼ (�1k , . . . , �mk), and ¸0(t) ¼

Ð t

0
º0(u)du.

We note that �0 specifies the log of the risk ratio associated with the covariates Zik . If

�0 . 0, this model says that there is a single Mendelian diallelic locus governing the age-

specific disease rate in a dominant way, and the gene carriers have their risk of onset

increased by a factor of e�0 , compared to the non-carriers.

The assumption that (Ck , Z k) and Sk are independent means that the gene in question

has no effect on the covariates and has no correlation with the censoring variable. This is a

desirable situation in statistical modelling and a reasonable assumption in genetics.

Furthermore, it helps to simplify the theory.

We note that the assumption that (Tk , Ck , Z k , Sk) is an independent and identically

distributed sequence is imposed so that this model is amenable to empirical process theory

and standard semiparametric theory, and the asymptotic theory can be established. It would

be interesting to extend the theory to other settings. An interesting extension would be to

treat the covariate values of the subjects as being chosen by the experimenter and assume

that (Tk , Ck , Sk) is an independent, not necessarily identically distributed, sequence.

Although desirable, this extension is beyond the scope of the present paper.

The above model was studied by Li et al. (1998) and was referred to as the Cox gene

model. They proposed a generalized maximum likelihood estimation using a Monte Carlo

EM algorithm, and indicated that their estimation procedure performs well in a simulation

study and in the analysis of a real data set. In fact, they paid particular attention to the

computational aspects of the problem. Readers are encouraged to consult Li et al. (1998)

and Li and Thompson (1997) for additional background information on human genetics and

for references regarding other approaches.

We note that if Sk is observable, then (1.1) is the classical Cox model if the onset times

are independent given covariates. Readers are referred to Andersen et al. (1993) for

methods regarding this model.

In this paper, we give an asymptotic theory for the estimators of Li et al. (1998),

including consistency, asymptotic normality, and an asymptotic theory for the calculation of

the asymptotic variance. In view of the proportional hazards univariate frailty regression

models (Kosorok et al. 2004 and references therein), the Cox model with shared gamma
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frailty (Murphy 1994; 1995), and the Cox model with correlated gamma frailty (Parner

1998), our work provides an asymptotic theory for the Cox’s regression model with binary

frailty allowing for shared frailty within families.

All the results of this paper rest on an identifiability assumption. We provide a method to

check this identifiability assumption in the Appendix, and illustrate this method by showing

that nuclear families with three siblings satisfy the assumption. Mack et al. (1990) found

from simulation studies that simultaneous estimation of allele frequency and genetic relative

risk is not possible based on sib-pair data, and suggested using more complex family

structures as a means for obtaining more information. We also note that the simulation

study of Li et al. (1998) is based on 10 four-generation pedigrees with 46 individuals per

pedigree.

For the consistency, we first present an integral equation for the nonparametric maximum

likelihood estimate (NPMLE). This equation gives a precise characterization of the score

functions. Based on this, we apply empirical process theory to establish consistency,

following the approaches and techniques developed in Murphy (1994), Murphy et al.

(1997), Parner (1998), and Kosorok et al. (2004), among others. With the consistency, we

then treat the NPMLE as a solution to certain estimating equations and prove its asymptotic

normality by applying Theorem 3.3.1 in van der Vaart and Wellner (1996). We note that

this approach to asymptotic normality was taken in van der Vaart (1994; 1995; 1996),

Murphy (1995), and Parner (1998), among others. See also van der Vaart (1998) and van de

Geer (2000) for relevant empirical process theory and its applications in the study of

semiparametric models.

In the case where the regression parameter � and the genetic parameters � and q are the

parameters of interest, we apply the theory of observed profile information developed in

Murphy and van der Vaart (1999) to provide an estimate of the asymptotic variance.

Although the framework of this paper is outlined in the previous references, additional

work is needed to verify their general conditions to obtain these results (Murphy and van

der Vaart 2000; Bickel and Ritov 2000).

Besides providing theoretical support for the statistical methods developed in Li et al.

(1998), our work offers an alternative approach to the numerical methods of Li et al. (1998)

and Siegmund and McKnight (1998). For example, the integral equation may be used to

find approximations to the NPMLE, and the difficult problem of approximating the

asymptotic variance of the NPMLE may be approached in terms of the observed profile

information. These and other related computational issues are discussed in Chang et al.

(2004b).

The organization of this paper is as follows. Section 2 presents the likelihood function,

the identifiability assumption, the score functions, and the integral equation to be satisfied

by the NPMLE. Sections 3 and 4 establish the consistency and asymptotic normality,

respectively. Section 5 studies the problem of estimating �, �, and q, and presents the

asymptotic variance in terms of the observed profile information. Section 6 is a discussion

indicating possible extensions and future opportunities. Finally, the Appendix contains the

technical proofs and quotes important theorems used in this paper.
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2. Nonparametric maximum likelihood estimate

The parameter space we consider is ¨ ¼ f(¸, �, �, q)j¸ 2 L, � 2 B, � 2 U, q 2 Qg. Here,
L ¼ f¸ : [0, �] ! [0, 1)j¸(0) ¼ 0, ¸ is non-decreasing and right continuousg for some

positive real number �, B and U are compact subsets of RD and (0, 1), respectively, and Q
is a closed subinterval of (0, 1). The analysis in this paper is restricted to the interval

[0, �]; in order to obtain a reasonably simplified theory, an ideal � should be large enough

but still satisfy the property that there are subjects with ages at onset bigger than �.
Elements of L are considered as the restrictions to [0, �] of cumulative hazard functions.

The true parameters �0, �0, and q0 are assumed to be interior points of B, U, and Q,

respectively; and the true parameter ¸0 has a positive and bounded derivative on [0, �]. We

note that the assumption that ¸0 has a positive derivative on [0, �] is made to simplify the

presentation for the proof of identifiability, and some extension in this regard is possible.

We assume, for some i ¼ 1, . . . , m, that P(Tik . �jZ1k , . . . , Z mk) . 0 almost surely and

P(Cik > �jZ1k , . . . , Z mk) . 0 a.s. Here these conditional probabilities are under the true

model. We further assume that the support of Zik is bounded and the linear span of the

support of
Pm

i¼1 Zi1 has dimension D. We note that Zik can be discrete or continuous.

Because we are interested in estimating ¸0 on [0, �] using the likelihood, we assume

P(Cik < �jZ1k , . . . , Z mk) ¼ 1 a.s. for every i ¼ 1, . . . , m, to simplify the presentation

without loss of generality.

While the assumptions in Section 1 are motivated by practical problems and make good

intuitive sense, the above detailed description of the parameter space and related regularity

conditions helps facilitate the development of a rigorous asymptotic theory. In particular, we

will provide conditions under which the likelihood for a single family, considered as

functions, on the sample space, indexed by the parameter values, defines different functions

on the sample space by different parameter values. This property is referred to as

identifiability of parameters in this paper and is needed in the study of consistency (see, for

example, van der Vaart 1998, p. 62).

It follows that the likelihood for the kth family is

~LL(k),¸,�,�,q �
X
s2S

p(s, q)
Ym

i¼1

º(X ik)e
�T Zikþ�si

h i�ik

exp �¸(X ik)e
�T Zikþ�si

h i( )
, (2:1)

if the derivative of ¸ exists. Here p(s, q) � p(s1, . . . , sm, q) is the probability that the

susceptibility vector takes the value (s1, . . . , sm) when the dominant allele A has frequency q.

S is the set of all possible values of Sk ¼ (S1k , . . . , Smk), and º(t) ¼ d¸=dt(t). We know that

p(s, q) depends on the family structure, and we assume that p(s, q) is a smooth function and

has a known functional form in this paper.

In this paper we need the following assumptions.

Assumption I Identifiability. For each ¸ that is absolutely continuous with respect to ¸0,
~LL(1),¸,�,�,q ¼ ~LL(1),¸0,�0,�0,q0 a.s. implies ¸ ¼ ¸0 on [0, �], � ¼ �0, � ¼ �0, q ¼ q0.
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Assumption II. There exists t� in the support of the conditional distribution of Ci1 given Zi1

for every i ¼ 1, . . . , m such that if

a1

@

@ y0
þ a2

@

@ y1
þ a3

@

@�
þ a4

@

@q

� �����
( y0, y1,�,q)¼(1,¸0( t�),�0,q0)

log
X

s

p(s, q)
Ym

i¼1

(y0e
�si)�i1 exp(�y1e

�T
0

Zi1þ�si )

( )
¼ 0,

for every possible value of (�11, . . . , �m1, Z11, . . . , Z m1), then a1 ¼ a2 ¼ a3 ¼ a4 ¼ 0.

Remark 1. Assumption I formalizes the identifiability of the parameters in our model.

Assumption II puts a restriction on the log-likelihood of our model, which includes the

expression p(s, q). In Appendix A.1, we show that Assumption II implies Assumption I.

Appendix A.1 also includes a method to check the validity of Assumption II under the

condition of random mating and Mendelian segregation. This method is illustrated by

showing that a family consisting of three siblings satisfies Assumption II, and that if �0 6¼ 0

and t� 2 (0, �], then Assumption II is valid even with m ¼ 1. We note that identifiability of

the mixed proportional hazards model has been studied by Elbers and Ridder (1982),

Heckman and Singer (1984), Heckman and Taber (1994), Kortram et al. (1995), and Kosorok

et al. (2004), among others.

Remark 2. Assumption II is concerned with the behaviour of the model at time t�. This
assumption offers a way to study the invertibility of the information operator as well as the

identifiability of the parameters in this model.

Because (2.1) could become arbitrarily large within the class of absolutely continuous ¸,

we consider in the following the likelihood

LK (¸, �, �, q) �
YK

k¼1

X
s2S

p(s, q)
Ym

i¼1

(˜¸(X ik)e
�T Zikþ�si )�ik exp(�¸(X ik)e

�T Zikþ�si)

( )
: (2:2)

Here ˜¸(t) ¼ ¸(t)�¸(t�) .

The NPMLE ( ^̧̧ K , �̂�K , �̂�K , q̂qK) we propose is the maximizer of (2.2) over

L� 3 B3 U 3Q, where L� � L comprises step functions. In fact, ^̧̧
K has positive jumps

precisely at all X ik with �ik ¼ 1.

It is interesting to see that this NPMLE is also the NPMLE in the sense of Kiefer and

Wolfowitz (1956), as is the partial likelihood estimate in Cox’s regression model (Johansen

1983). In fact, we can follow the idea of Johansen (1983) to construct a model for jump

processes depending on a non-negative increasing function ¸ with the property that if ¸ is

absolutely continuous, it reduces to the Cox gene model (2.1). The likelihood for this model

is
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YK

k¼1

X
s

p(s, q)
Ym

i¼1

Y
u<�

[e�
T zikþ�si I (0,Tik^Cik ](u)¸(du)]

~XX ik (du)

~XX ik(du)!
� e�

Ð �

0
e�

T zikþ�si

I (0,Tik^Cik ](u)¸(du)

( )" #
,

where ~XX ik(�) ¼ I [Tik ,1)(� ^ Cik), which has compensator
Ð t

0
e�

T zikþ�sik I (0,Tik^Cik ](u)¸(du), is one

of the jump processes in question. Considering the last part of this likelihood, we know it is

maximized only when ¸ is a step function with possible jumps at X ik with �ik ¼ 1; this

shows that the NPMLE based on (2.2) is also the NPMLE in the sense of Kiefer and

Wolfowitz (1956).

We assume that all the random variables are defined on a sample space � with a specific

� -field. Let ø 2 � and K be fixed. Observe from (2.2) that

jLK (¸, �, �, q)j

<
YK

k¼1

X
s2S

p(s, q)
Ym

i¼1

¸(X ik)e
�T Zikþ�sie�¸(X ik )e

�T Zikþ�si

n o�ik

e�¸(X ik )e
�T Zikþ�si

n o1��ik

" #
:

Using the compactness of B 3 U 3Q and the fact that lim y!1 ye� y ¼ 0, we conclude that:

Theorem 2.1. ^̧̧ K(�) , M K for some M K . 0, and the NPMLE ( ^̧̧ K , �̂�K , �̂�K , q̂qK ) exists.

In the rest of this section, we present the score functions and some integral equations to

be satisfied by the NPMLE.

Let BV [0, �] denote the set of all real-valued functions on [0, �] with finite variation. For

h1 2 BV [0, �], h2 2 RD, h3 2 R1, h4 2 R1, we define the score functions as follows. Let

¸�(t) ¼
Ð t

0
(1þ �h1(u))d¸(u). We define

‘1,(¸,�,�,q)[h1](X 1, �1, Z1) ¼
d

d�
log L1(¸�, �, �, q)

����
�¼0

,

‘2,(¸,�,�,q)[h2](X 1, �1, Z1) ¼
d

d�
log L1(¸, �þ �h2, �, q)

����
�¼0

,

‘3,(¸,�,�,q)[h3](X 1, �1, Z1) ¼
d

d�
log L1(¸, �, �þ �h3, q)

����
�¼0

,

‘4,(¸,�,�,q)[h4](X 1, �1, Z1) ¼
d

d�
log L1(¸, �, �, q þ �h4)

����
�¼0

:

Let

f k(¸, �, �, q, s) ¼ p(s, q)
Ym

i¼1

exp (�si)½ ��ik exp �¸(X ik) exp(�
T Zik þ �si)

� � !
,

which is random, although the randomness is not indicated explicitly in the left-hand

notation. Then
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‘1,(¸,�,�,q)[h1](X1, �1, Z1)

¼
Xm

i¼1

�i1h1(X i1)�

X
s

f 1(¸, �, �, q, s)
Xm

i¼1

exp (�T Zi1 þ �si)

ð X i1

0

h1(t)d¸(t)

 !
X

s

f 1(¸, �, �, q, s)
, (2:3)

‘2,(¸,�,�,q)[h2](X1, �1, Z1)

¼ hT
2

Xm

i¼1

�i1 Zi1 �

X
s

f 1(¸, �, �, q, s)
Xm

i¼1

Zi1¸(X i1) exp (�
T Zi1 þ �si)

 !
X

s

f 1(¸, �, �, q, s)

0
BBBB@

1
CCCCA, (2:4)

‘3,(¸,�,�,q)[h3](X1, �1, Z1)

¼ h3

X
s

f 1(¸, �, �, q, s)
Xm

i¼1

�i1si �
Xm

i¼1

si¸(X i1) exp (�
T Zi1 þ �si)

 !
X

s

f 1(¸, �, �, q, s)
, (2:5)

‘4,(¸,�,�,q)[h4](X 1, �1, Z1) ¼ h4

X
s

@ f 1(¸, �, �, q, s)=@q

X
s

f 1(¸, �, �, q, s)
, (2:6)

where
P

s denotes summation over s 2 S.

Derivations for (2.3), (2.4), (2.5), and (2.6) are straightforward and hence omitted.

By Theorem 2.1, it is clear that a necessary condition for ( ^̧̧ K , �̂�K , �̂�K , q̂qK) to be the

NPMLE is PK‘1,( ^̧̧ K ,�̂�K ,�̂�K ,q̂q K )
[h1] ¼ 0. Here, PK means taking expectation relative to the

empirical distribution for the data f(X k , �k , Z k)jk ¼ 1, . . . , Kg; that is, PK g �
K�1

PK
k¼1 g(X k , �k , Z k), for a function g defined on the range of (X k , �k , Z k). In fact,

we will show that the NPMLE converges to the true value almost surely, hence �̂�K , �̂�K , and

q̂qK are interior point of B, U, and Q respectively for large K. This shows

PK‘ j,( ^̧̧ K ,�̂�K ,�̂�K ,q̂qK )
[h j] ¼ 0 for all large K and j ¼ 1, 2, 3, 4.

The following lemma gives an integral equation for ^̧̧
K, which is useful in establishing

the consistency, in Section 3, and the numerical method, in Chang et al. (2004b). Let

W K (¸, �, �, q; u) ¼ 1

K

XK

k¼1

Xm

i¼1

X
s

f k(¸, �, �, q, s) exp (�T Zik þ �si)

X
s

f k(¸, �, �, q, s)
I (0,X ik ](u),
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GK (u) ¼
1

K

XK

k¼1

Xm

i¼1

I [Tik ,1)(u ^ Cik),

W (¸, �, �, q; u) ¼ E W1(¸, �, �, q; u),

G(u) ¼ E G1(u):

Lemma 2.1.

^̧̧
K (t) ¼

ð t

0

1

W K( ^̧̧ K , �̂�K , �̂�K , q̂qK ; u)
dGK (u), (2:7)

¸0(t) ¼
ð t

0

1

W (¸0, �0, �0, q0; u)
dG(u): (2:8)

Proof. Since PK‘1,( ^̧̧ K ,�̂�K ,�̂�K ,q̂q K )
[h1] ¼ 0 for every h1 2 BV [0, �], we set h1(t) ¼ I (0,u](t) in

(2.3) and obtain, for every u,

XK

k¼1

Xm

i¼1

�ik I (0,u](X ik) ¼
XK

k¼1

X
s

f k( ^̧̧ K , �̂�K , �̂�K , q̂qK , s)
Xm

i¼1

e�̂�
T
K Zikþ�̂�K si

ðu

0

I (0,X ik ](t)d
^̧̧

K (t)

 !
X

s

f k( ^̧̧ K , �̂�K , �̂�K , q̂qK , s)
:

(2:9)

Rewriting (2.9), we obtain

XK

k¼1

Xm

i¼1

I [Tik ,1)(u ^ Cik) ¼
ðu

0

XK

k¼1

Xm

i¼1

X
s

f k( ^̧̧ K , �̂�K , �̂�K , q̂qK , s)e�̂�
T
K Zikþ�̂�K si

X
s

f k( ^̧̧ K , �̂�K , �̂�K , q̂qK , s)
I (0,X ik ](t)d

^̧̧
K (t),

(2:10)

which immediately gives (2.7).

The proof of (2.8) proceeds in the same way as that for (2.7) by noting that

E ‘1,(¸0, �0, �0, q0)[h1](X 1, �1, Z1) ¼ 0

for every h1 2 BV [0, �]. Therefore, the details of the proof are omitted. h

3. Consistency of NPMLE

The purpose of this section is to prove the following theorem.

Theorem 3.1. sup t2[0,�]j ^̧̧ K (t)�¸0(t)j, k�̂�K � �0kD, �̂�K � �0, and q̂qK � q0 converge to 0

almost surely, as K tends to infinity.
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Here and in the following, k � kD is the Euclidean norm on RD. We need a few lemmas

before presenting the proof.

Lemma 3.1.

sup
u2[0,�]

¸2LM ,�2B,�2U,q2Q

jW K(¸, �, �, q; u)� W (¸, �, �, q; u)j

converges to 0 almost surely, as K goes to infinity, where LM ¼ f¸ 2 Lj¸(�) < Mg with

0 , M , 1.

Lemma 3.2. Let ¸ 2 LM , � 2 B, � 2 U, and q 2 Q be given. Then

sup
t2[0,�]

����
ð t

0

1

W K (¸, �, �, q; u)
d(GK (u)� G(u))

����
converges to 0 almost surely, as K goes to infinity.

Lemma 3.1 and Lemma 3.2 are proved in Appendix A.2 and A.3, respectively, as

applications of empirical process theory. Using Lemmas 3.1 and 3.2, we show that:

Lemma 3.3.

sup
t2[0,�]

����
ð t

0

1

W K(¸, �, �, q; u)
dGK (u)�

ð t

0

1

W (¸, �, �, q; u)
dG(u)

����
converges to 0 almost surely.

Proof. Consider

sup
t2[0,�]

����
ð t

0

1

W K (¸, �, �, q; u)
dGK (u)�

ð t

0

1

W (¸, �, �, q; u)
dG(u)

����
< sup

t2[0,�]

����
ð t

0

1

W K(¸, �, �, q; u)
d(GK � G)(u)

����
þ sup

t2[0,�]

����
ð t

0

1

W K(¸, �, �, q; u)
� 1

W (¸, �, �, q; u)

� �
dG(u)

����: (3:1)

From the definition of W K , there exists c2 . 0 such that

W K (¸, �, �, q; u) >
c2

K

XK

k¼1

Xm

i¼1

I (0,X ik ](�),

for (¸, �, �, q) in ¨ and u in [0, �]; we know from the law of large numbers that W K is

bounded away from 0 almost surely for all large K. Combining this with Lemmas 3.1, 3.2

and (3.1), we immediately obtain Lemma 3.3. h
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Lemma 3.4. lim supK!1 ^̧̧
K (�) , 1 a.s.

Proof. Let

~̧̧
K (t) ¼

ð t

0

1

W K (¸0, �0, �0, q0; u)
dGK (u): (3:2)

It follows from Lemmas 3.3 and 2.1 that sup t2[0,�]j ~̧̧ K(t)�¸0(t)j converges to 0 almost

surely. Let Ak ¼ [X ik ¼ � for some i ¼ 1, . . . , m]. Since
P

k P(Ak) ¼ 1 and the events

fAkg are independent, we have P(Ak i:o:) ¼ 1 by the Borel–Cantelli lemma. Here, the

abbreviation i.o. stands for ‘infinitely often’.

Suppose the conclusion of this lemma does not hold. Then there exists an ø 2 [Ak i:o:]
satisfying sup t2[0,�]j ~̧̧ K (t)�¸0(t)j ! 0 such that for ^̧̧

K (� ^̧̧
Kføg), lim supK!1 ^̧̧

K (�)
¼ 1. Since B3 U 3Q is compact, we can obtain a subsequence fK jg such that

( �̂�K j
, �̂�K j

, q̂qK j
) ! ( ~��, ~��, ~qq) and ^̧̧

K j
(�) ! 1.

Because ( ^̧̧ K j
, �̂�K j

, �̂�K j
, q̂qK j

) maximizes LK j
, we know that

0 <
1

K j

log LK j
( ^̧̧ K j

, �̂�K j
, �̂�K j

, q̂qK j
)� 1

K j

log LK j
( ~̧̧ K j

, �0, �0, q0) (3:3)

¼ 1

K j

XK j

k¼1

log

X
s

p(s, q̂qK j
)
Ym

i¼1

˜ ^̧̧
K j
(X ik)e

�̂�TK j
Zikþ�̂�K j

si

h i
�ike

� ^̧̧
K j
(X ik )e

�̂�T
K j

Zikþ �̂�K j
si

X
s

p(s, q0)
Ym

i¼1

˜ ~̧̧
K j
(X ik)e

�T
0

Zikþ�0 si

h i�ik

e
� ~̧̧

K j
(X ik )e

�T
0

Zikþ�0 si

8>>>><
>>>>:

9>>>>=
>>>>;
(I Ak

þ I Ac
k
)

< log
1

K j

XK j

k¼1

X
s

p(s, q̂qK j
)
Ym

i¼1

˜ ^̧̧
K j
(X ik)e

�̂�TK j
Zikþ�̂�K j

si

h i�ik

e
� ^̧̧

K j
(X ik )e

�̂�T
K j

Zikþ �̂�K j
si

X
s

p(s, q0)
Ym

i¼1

˜ ~̧̧
K j
(X ik)e

�T
0

Zikþ�0 si

h i�ik

e�
~̧̧

K j
(X ik )e

�T
0

Zikþ�0 si

I A k

8>>>><
>>>>:

9>>>>=
>>>>;

þ log
1

K j

XK j

k¼1

X
s

p(s, q̂qK j
)
Ym

i¼1

˜ ^̧̧
K j
(X ik)e

�̂�TK j
Zikþ�̂�K j

si

h i�ik

e�
^̧̧

K j
(X ik )e

�̂�T
K j

Zikþ �̂�K j
si

X
s

p(s, q0)
Ym

i¼1

˜ ~̧̧
K j
(X ik)e

�T
0

Zikþ�0 si

h i�ik

e�
~̧̧

K j
(X ik )e

�T
0

Zikþ�0 si

I Ac
k

8>>>><
>>>>:

9>>>>=
>>>>;
:

The last inequality of (3.3) follows from Jensen’s inequality.

It follows from the definition of W K that there exist c1 and c2 in (0, 1) such that

c2

K

XK

k¼1

Xm

i¼1

I (0,X ik ](u) < W K (¸, �, �, q; u) <
c1

K

XK

k¼1

Xm

i¼1

I (0,X ik ](u), (3:4)

for every K and for every (¸, �, �, q, u) in its domain L3 B3 U 3Q3 [0, �].
Using (2.7) and (3.2), we know that
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˜ ^̧̧
K j
(X ik)

˜ ~̧̧
K j
(X ik)

¼
W K j

(¸0, �0, �0, q0; X ik)

W K j
( ^̧̧ K j

, �̂�K j
, �̂�K j

, q̂qK j
; X ik)

: (3:5)

It follows from (3.4) and (3.5) that

0 ,
c2

c1
< lim j!1

˜ ^̧̧
K j
(X ik)

˜ ~̧̧
K j
(X ik)

< lim j!1
˜ ^̧̧

K j
(X ik)

˜ ~̧̧
K j
(X ik)

<
c1

c2
: (3:6)

Using (3.6), the fact that ( �̂�K j
, �̂�K j

, q̂qK j
) ! ( ~��, ~��, ~qq), that ~̧̧

K j
converges to ¸0 on [0, �],

and that K�1
j

PK j

k¼1

Qm
i¼1 e

� ^̧̧
K j
(X ik ) I Ak

! 0 as j ! 1, we can show that the difference of

log-likelihood functions in (3.3) goes to �1 as j ! 1. This leads to a contradiction, and the

proof is thus complete. h

Proof of Theorem 3.1. Consider ø 2 � for which lim supK!1 ^̧̧
K (�) , 1, sup t2[0,�]jGK (t)

� G(t)j ! 0, and sup t2[0,�]j ~̧̧ K (t)�¸0(t)j ! 0. Here ~̧̧
K is given by (3.2). Observing from

(2.7) that

j ^̧̧ K (s)� ^̧̧
K (t)j < O(1)jGK(s)� GK (t)j < O(1)jG(s)� G(t)j þ o(1),

for s, t 2 [0, �], we can make use of the compactness of B 3 U 3Q and the arguments in

proving the Arzelà-Ascoli theorem (see, for example, Rudin 1976, Theorem 7.25) to show

that there exists a subsequence fK jg for which ( ^̧̧ K j
, �̂�K j

, �̂�K j
, q̂qK j

) converges uniformly to

some (¸�, ��, ��, q�). We will show that (¸�, ��, ��, q�) ¼ (¸0, �0, �0, q0).

We now explain that

^̧̧
K j
(t) ¼

ð t

0

1

W K j
( ^̧̧ K j

, �̂�K j
, �̂�K j

, q̂qK j
; u)

dGK j
(u)

¼
ð t

0

1

W K j
( ^̧̧ K j

, �̂�K j
, �̂�K j

, q̂qK j
; u)

dG(u)þ o(1)

¼
ð t

0

1

W ( ^̧̧ K j
, �̂�K j

, �̂�K j
, q̂qK j

; u)
dG(u)þ o(1)

¼
ð t

0

1

W (¸�, ��, ��, q�; u)
dG(u)þ o(1):

The first equality is Lemma 2.1, the second equality can be proved by using Lemma 3.1 and

the arguments for proving Lemma 3.2, the third equality follows from Lemma 3.1, and the

last equality follows from the uniform convergence of ( ^̧̧ K j
, �̂�K j

, �̂�K j
, q̂qK j

) and the Lebesgue

dominated convergence theorem. Consequently,

¸�(t) ¼
ð t

0

1

W (¸�, ��, ��, q�; u)
dG(u):

This, together with Lemmas 2.1 and 3.1, implies, uniformly in t, that
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d ^̧̧ K j

d ~̧̧ K j

(t) ¼
W K j

(¸0, �0, �0, q0; t)

W K j
( ^̧̧ K j

, �̂�K j
, �̂�K j

, q̂qK j
; t)

! W (¸0, �0, �0, q0; t)

W (¸�, ��, ��, q�; t)
¼ d¸�

d¸0

(t),

which is bounded and bounded away from 0 by (3.4).

Considering [d ^̧̧ K j
=d ~̧̧ K j

(x)][�¼1] as a function in (x, �) with ø fixed, we can use the

argument in the proof of Lemma 3.2 and properties concerning random functions and

Glivenko–Cantelli class (see, for example, van der Vaart 1998, p. 279) to obtain

1

K j

XK j

k¼1

log
Ym

i¼1

d ^̧̧ K j

d ~̧̧ K j

(X ik)

" #�ik

�E log
Ym

i¼1

d ^̧̧ K j

d ~̧̧ K j

(X i1)

" #�i1

¼
ð�
0

log
d ^̧̧ K j

d ~̧̧ K j

(t)d(GK j
(t)� G(t))

¼ o(1) a:s: (3:7)

In fact, the expectation in (3.7) is taken only over (X i1, �i1) with parameter estimator ^̧̧
K j

substituted after taking the expectation.

Because the set of functions

log
X

s

p(s, q)
Ym

i¼1

[e�
T Zi1þ�si]�i1 exp[�¸(X i1)e

�T Zi1þ�si]

 !
,

indexed by (¸, �, �, q) 2 LM 3 B3 U 3Q, is Glivenko–Cantelli, we can conclude that

1

K j

XK j

k¼1

log

X
s

p(s, q̂qK j
)
Ym

i¼1

e
�̂�TK j

Zikþ�̂�K j
si

h i�ik

e�
^̧̧

K j
(X ik )e

�̂�T
K j

Zikþ �̂�K j
si

 !

X
s

p(s, q0)
Ym

i¼1

e�
T
0

Zikþ�0 si

h i�ik

e�
~̧̧

K j
(X ik )e

�T
0

Zikþ�0 si

 !

� E log

X
s

p(s, q̂qK j
)
Ym

i¼1

e
�̂�TK j

Zi1þ�̂�K j
si

h i�i1

e�
^̧̧

K j
(X i1)e

�̂�T
K j

Zi1þ �̂�K j
si

 !

X
s

p(s, q0)
Ym

i¼1

e�
T
0

Zi1þ�0 si

h i�i1

e
� ~̧̧

K j
(X i1)e

�T
0

Zi1þ�0 si

 ! ¼ o(1) a:s: (3:8)

Here we use the same arguments concerning random functions in deriving (3.7). In particular,

the expectation in (3.8) is taken only over (X i1, �i1, Zi1) with parameter estimators

( ^̧̧ K j
, �̂�K j

, �̂�K j
, q̂qK j

) substituted after taking the expectation. The expectation in (3.9) is to be

understood in the same manner.

Using (3.7) and (3.8), we obtain
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0 <
1

K j

log LK j
( ^̧̧ K j

, �̂�K j
, �̂�K j

, q̂qK j
)� 1

K j

log LK j
( ~̧̧ K j

, �0, �0, q0)

¼ 1

K j

XK j

k¼1

log
Ym

i¼1

d ^̧̧ K j

d ~̧̧ K j

(X ik)

" #�ik

þ 1

K j

XK j

k¼1

log

X
s

p(s, q̂qK j
)
Ym

i¼1

e
�̂�TK j

Zikþ�̂�K j
si

h i�ik

exp � ^̧̧
K j
(X ik)e

�̂�TK j
Zikþ�̂�K j

si

h i !

X
s

p(s, q0)
Ym

i¼1

e�
T
0

Zikþ�0 si

h i�ik

exp � ~̧̧
K j
(X ik)e

�T
0

Zikþ�0 si

h i !

¼ E log

~LL
(1), ^̧̧ K j

,�̂�K j
,�̂�K j

,q̂q K j

~LL(1), ~̧̧ K j
,�0,�0,q0

þ o(1) a:s: (3:9)

Considering the ø chosen at the beginning of the proof for which (3.9) is also satisfied, using

Jensen’s inequality and the Kullback–Leibler divergence theorem (see, for example, van der

Vaart 1998, p. 62), we obtain ~LL(1),¸� ,��,��,q� ¼ ~LL(1),¸0,�0,�0,q0 . Since ¸� is absolutely

continuous relative to G and thus also to ¸0 by Lemma 2.1, we can use identifiability in

Assumption I to conclude that ¸� ¼ ¸0 on [0, �], �� ¼ �0, �� ¼ �0, q� ¼ q0. This

completes the proof. h

4. Asymptotic normality of NPMLE

We will prove the asymptotic normality by verifying the conditions in Theorem 3.3.1 and

Lemma 3.3.5 of van der Vaart and Wellner (1996), both stated in Appendix A.4 for

reference. For this purpose, a few lemmas are needed. Let H ¼ BV [0, �]3RD 3R1 3R1.

For (h1, h2, h3, h4) 2 H, we introduce the norm k(h1, h2, h3, h4)kH ¼ kh1kV þ kh2kD þ
jh3j þ jh4j, where kh1kV is the sum of the absolute value of h1(0) and the total variation of

h1 on [0, �]. Let H p be the subset of H with k(h1, h2, h3, h4)kH < p if p , 1. If p ¼ 1,

then the previous inequality is strict. Define (¸, �, �; q)(h) ¼
Ð �
0

h1d¸þ hT
2� þ h3�þ h4q,

where h ¼ (h1, h2, h3, h4), and consider the parameter space ¨ a subset of ‘1(H p),

the space of all bounded real-valued functions on H p under the supremum norm

kŁk‘1(H p) ¼ suph2H p
jŁ(h)j. We note that

( p=
ffiffiffiffi
D

p
)(k¸�¸0k� _ k�� �0kD _ j�� �0j _ jq � q0j) < kŁ� Ł0k‘1(H p)

< 4p (k¸�¸0k� _ k�� �0kD _ j�� �0j _ jq � q0j),

where k¸�¸0k� ¼ supkh1kV<1j
Ð �
0

h1 d(¸�¸0)j is the natural norm for a bounded linear

operator on the normed space BV [0, �].
Define �K : ¨ ! ‘1(H p) by
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�K (¸, �, �, q)(h1, h2, h3, h4) ¼ PK

X4
j¼1

‘ j,(¸,�,�,q)[h j]

¼ 1

K

XK

k¼1

X4
j¼1

‘ j,(¸,�,�,q)[h j](X k , �k , Z k):

To simplify the notation, let

�Ł,h ¼
X4
j¼1

‘ j,Ł[h j],

for Ł ¼ (¸, �, �, q) and h ¼ (h1, h2, h3, h4).

Let � : ¨ ! ‘1(H p) be defined by �(Ł)(h1, h2, h3, h4) ¼ E�1(Ł)(h1, h2, h3, h4).

Lemma 4.1.
ffiffiffiffi
K

p
(�K (Ł0)��(Ł0)) converges weakly to a Gaussian process W in ‘1(H p)

for every 0 , p , 1.

Proof. According to empirical process theory, it is sufficient to show that f�Ł0,hjh 2 H pg is a

Donsker class. Since �Ł0,h depends on h2, h3, and h4 linearly, it follows from Theorem 2.10.6

in van der Vaart and Wellner (1996) (Appendix A.4) that we only need to show that both

fh1(�)jh1 2 BV [0, �], kh1kV , pg and f
Ð �
0

h1(t)d¸0(t)jh1 2 BV [0, �], kh1kV , pg are

Donsker classes. Due to the fact that the class of functions with a common upper bound

of their total variations is Donsker (see, for example, van der Vaart 1998, Example 19.11),

they are both indeed Donsker. This completes the proof. h

Lemma 4.2. f�Ł,h � �Ł0,hj kŁ� Ł0k‘1(H p) , �, h 2 H pg is Donsker.

We omit the proof of this lemma, because it only involves arguments similar to, though

more complicated than, those used in the proof of Lemma 4.1.

Lemma 4.3. limŁ!Ł0 suph2H p
E(�Ł,h � �Ł0,h)

2 ¼ 0.

The proof of Lemma 4.3 is also omitted, because it is straightforward.

Let lin¨ denote the set of all finite linear combinations of Ł� Ł0, for Ł 2 .̈

Lemma 4.4. Let p , 1. There is a continuous linear map _��Ł0 : lin¨ ! ‘1(H p) satisfying

k�(Ł)��(Ł0)� _��Ł0 (Ł� Ł0)k‘1(H p) ¼ s(kŁ� Ł0k‘1(H p)):

In addition, _��Ł0 has a continuous inverse on its range.

Proof. (i) Existence of _��Ł0 . Let Ł ¼ (¸, �, �, q). Using (2.3)–(2.6), we obtain the following

first-order Taylor expansion for �Ł,h(X 1, �1, Z1) as a function defined on ¨ � ‘1(H p):

876 I.-S. Chang, C.A. Hsiung, M.-C. Wang and C.-C. Wen



�Ł,h(X1, �1, Z1)� �Ł0,h(X1, �1, Z1) (4:1)

¼ � ¸(X 11)�¸0(X11), . . . , ¸(X m1)�¸0(X m1),

ðX11

0

h1(t)d ¸(t)�¸0(t)ð Þ, . . . ,
�

ðX m1

0

h1(t)d ¸(t)�¸0(t)ð Þ, �� �0, �� �0, q � q0, h2, h3, h4

�
þ s(kŁ� Ł0k‘1(H p))

for some linear function �, as Ł gets close to Ł0.
Examining (4.1) and (2.3)–(2.6) and considering the weaker form

j�(Ł)(h)��(Ł0)(h)� _��Ł0 (Ł� Ł0)(h)j ¼ s(j(Ł� Ł0)(h)j)

of Lemma 4.4, we can see that

�(Ł)(h)��(Ł0)(h)

¼ E �Ł,h(X1, �1, Z1)� �Ł0,h(X1, �1, Z1)½ �

¼ �
ð�
0

�1(h)(t)d ¸(t)�¸0(t)ð Þ þ �2(h)
T(�� �0)þ �3(h)(�� �0)þ �4(h)(q � q0)

� �

þ R(Ł)(h), (4:2)

for some continuous linear operator � ¼ (�1, �2, �3, �4) from H1 to H1, and remainder

term R(Ł) satisfying

lim
Ł!Ł0

sup
h2H p

jR(Ł)(h)j

kŁ� Ł0k‘1(H p)

¼ 0:

In fact, the above weaker form suggests

_��Ł0 (Ł� Ł0)(h) ¼
d

d�

����
�¼0

�(Ł0 þ �(Ł� Ł0))(h),

which can be computed easily and gives

_��Ł0 (Ł� Ł0)(h) (4:3)

¼ �
ð�
0

�1(h)(t)d ¸(t)�¸0(t)ð Þ þ �2(h)
T(�� �0)þ �3(h)(�� �0)þ �4(h)(q � q0)

� �
:

(ii) Invertibility of _��Ł0 . In order to show that _��Ł0 has a continuous inverse on its range,

it is sufficient to show that there is an � . 0 such that

inf
0 6¼Ł�Ł02lin¨

k _��Ł0 (Ł� Ł0)k‘1(H p)

kŁ� Ł0k‘1(H p)

> �:

According to Lemmas 4.5 and 4.6, we know that � : H1 ! H1 is continuously
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invertible. This implies that there exists r . 0 such that � �1(H r) � H p. Hence, using (4.3),

we know that

k _��Ł0 (Ł� Ł0)k‘1(H p)

> sup
h2H r

����
ð�
0

h1(u)d(¸�¸0)þ hT
2 (�� �0)þ h3(�� �0)þ h4(q � q0)

����
¼ kŁ� Ł0k‘1(H r):

This shows that

inf
06¼Ł�Ł02lin¨

k _��Ł0 (Ł� Ł0)k‘1(H p)

kŁ� Ł0k‘1(H p)

>
r

4p
ffiffiffiffi
D

p :

This completes the proof. h

Considering (4.3) and the negative second directional derivative of the log-likelihood of

the parametric submodel

(E1, E2) 7!

¸0 þ E1

ð�
0

h1 d¸0 þ E2

ð�
0

h�1 d¸0, �0 þ E1h2 þ E2h�2 , �0 þ E1h3 þ E2h�3 , q0 þ E1h4 þ E2h�4
� �

for E1, E2 near 0, we obtain the following equation connecting the information and the score:

ð�
0

�1(h)(u)h
�
1 (u)d¸0(u)þ h�T2 �2(h)þ h�3 �3(h)þ h�4 �4(h)

¼ E
X4
j¼1

‘ j,Ł0 [h j](X1, �1, Z1)

" # X4
j¼1

‘ j,Ł0 [h
�
j ](X 1, �1, Z1)

" #
, (4:4)

for (h1, h2, h3, h4) and (h�1 , h�2 , h�3 , h�4 ) in H1.

Lemma 4.5. � is one to one.

Proof. Assume � (h) ¼ 0. Using (4.4), we know that

X4
j¼1

‘ j,Ł0 [h j](X1, �1, Z1) ¼ 0 a:s: (4:5)

Considering X i1 near 0 from the right and �i1 ¼ 1 for every i ¼ 1, . . . , m in (4.5) and using

(2.3)�(2.6) and a similar argument in Appendix A.1, we obtain

878 I.-S. Chang, C.A. Hsiung, M.-C. Wang and C.-C. Wen



Xm

i¼1

h1(0)þ hT
2

Xm

i¼1

Zi1 þ h3

X
s

p(s, q0)
Ym

i¼1

e�0 si

 ! Xm

i¼1

si

 !

X
s

p(s, q0)
Ym

i¼1

e�0 si

 !

þ h4

X
s

@ p(s, q)=@qjq¼q0

Ym

i¼1

e�0 si

 !

X
s

p(s, q0)
Ym

i¼1

e�0 si

 ! ¼ 0:

Using the assumption that the linear span of the support of
Pm

i¼1 Zi1 has dimension D, we

know that h2 ¼ 0. Putting h2 ¼ 0 in (4.5) and considering X i1 near t� from the right for

i ¼ 1, . . . , m, we can similarly obtain

h1(t
�)
Xm

i¼1

�i1

" #
�
ð t�

0

h1 d¸0

X
s

f0(¸0(t
�), �0, �0, q0, s)

Xm

i¼1

e�
T
0

Zi1þ�0 si

 !
X

s

f 0(¸0(t
�), �0, �0, q0, s)

2
66664

3
77775

þ h3

X
s

f 0(¸0(t
�), �0, �0, q0, s)

Xm

i¼1

�i1si �
Xm

i¼1

si¸0(t
�)e�T0 Zi1þ�0 si

 !
X

s

f 0(¸0(t
�), �0, �0, q0, s)

2
66664

3
77775

þ h4

X
s

@ f 0(¸0(t
�), �0, �0, q, s)=@qjq¼q0X

s

f 0(¸0(t
�), �0, �0, q0, s)

2
664

3
775 ¼ 0,

where f 0(y, �, �, q, s) ¼ p(s, q)(
Qm

i¼1[e
�si]�i1 exp[�ye�

T Zi1þ�si]). Using Assumption II, we

know that h1(t
�) ¼

Ð t�
0

h1 d¸0 ¼ h3 ¼ h4 ¼ 0.

Putting h1(t
�) ¼

Ð t�
0

h1 d¸0 ¼ h2 ¼ h3 ¼ h4 ¼ 0 and considering �11 ¼ 1, �i1 ¼ 0 for

i ¼ 2, . . . , m, and X i1 near t� from the right for i ¼ 2, . . . , m in (4.5), we obtain

h1(X 11) ¼ B(X11, Z11, . . . , Z m1)
Ð X11

0
h1 d¸0 for almost every (X 11, Z11, . . . , Z m1), where
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B(X11, Z11, . . . , Z m1)

¼

X
s

p(s, q0)e
2�0 s1þ�T

0
Z11 exp �¸0(X11)e

�T
0

Z11þ�0 s1

h iYm

i¼2

exp �¸0(t
�)e�T0 Zi1þ�0 si

h i
X

s

p(s, q0)e
�0 s1 exp �¸0(X11)e

�T
0

Z11þ�0 s1

h iYm

i¼2

exp �¸0(t
�)e�T0 Zi1þ�0 si

h i :

Let zi1 be any point in the support of the distribution of Zi1. Define

g(t) ¼ B(t, z11, . . . , zm1)

ð t

0

h1 d¸0:

Then g ¼ h1 a:s: [¸0]. Since h1 is in BV [0, �], ¸0 has a positive and bounded derivative on

[0, �], and B(�, z11, . . . , zm1) is continuous, we know from g(�) ¼ B(�, z11, . . . , zm1)
Ð �
0

h1 d¸0

that g is continuous. From this, we can use the mean-value theorem for Riemann–Stieltjes

integrals (see, for example, Wheeden and Zygmund 1997, p. 28) to show that
Ð �
0

g d¸0 is a

differentiable function and has derivative g(�)º0(�). Since the derivative ofÐ �
0

g(s)d¸0(s)=exp(
Ð �
0

B(s, z11, . . . , zm1)d¸0(s)) is 0, we obtain g(�) ¼ bB(�, z11, . . . ,

zm1)e

Ð �

0
B(s,z11,

. .
.

,z m1)d¸0(s) for some constant b. By g(0) ¼ 0, we obtain g ¼ 0 identically and

hence h1 ¼ 0 a.s. [¸0]. Putting h1 ¼ 0 a.s. [¸0] and h2 ¼ h3 ¼ h4 ¼ 0 in �1(h) ¼ 0, we

obtain from (4.6) below that h1(u)W (Ł0; u) ¼ 0 for u 2 [0, �]. Since W (Ł0, �) is uniformly

bounded away from 0 on [0, �], h1 ¼ 0 identically. This completes the proof. h

Lemma 4.6. � is continuously invertible.

Proof. Define A : H1 ! H1 by A(h1, h2, h3, h4) ¼ h1(�)W (Ł0; �), h2, h3, h4ð Þ. Since

W (Ł0, �) is uniformly bounded away from 0 on [0, �], A is continuous, linear, and invertible.

Let K ¼ � � A. Hence � ¼ A(I þ A�1K). It is sufficient to show that I þ A�1K is

continuously invertible. According to Lemma 4.5, I þ A�1K is one to one. This, together

with Theorem 4.25 in Rudin (1973), implies that I þ A�1K is invertible if A�1K is

compact. For this, we need to show that K is compact.

Let K ¼ (K1, K2, K3, K4). We only show K1 is compact, since the compactness of K2,

K3, and K4 can be shown similarly. Since a bounded linear operator with finite-dimensional

range is compact, we need only show that K1 is compact on f(h1, 0, 0, 0)jh1 2 BV [0, �]g.
Observing from (4.3) that

�
ð�
0

�1(h1, 0, 0, 0)d(¸�¸0) ¼ _��Ł0 (¸�¸0, 0, 0, 0)(h1, 0, 0, 0)

¼ d

d�

����
�¼0

�(¸0 þ �(¸�¸0), �0, �0, q0)(h1, 0, 0, 0),

we can show that
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�1(h1, 0, 0, 0)(u) (4:6)

¼ h1(u)W (Ł0; u)

� E

X
s

f 1(Ł0, s)
Xm

i¼1

e�
T
0

Zi1þ�0 si I [X i1.u]

Xm

i¼1

e�
T
0

Zi1þ�0 si

ðX i1

0

h1d¸0

" #
X

s

f 1(Ł0, s)

8>>>><
>>>>:

�

X
s

f 1(Ł0, s)
Xm

i¼1

e�
T
0

Zi1þ�0 si I [X i1.u]

" # ! X
s

f 1(Ł0, s)
Xm

i¼1

e�
T
0

Zi1þ�0 si

ðX i1

0

h1 d¸0

" # !

X
s

f 1(Ł0, s)

 !2

9>>>>>=
>>>>>;
:

Hence

K1(h1, 0, 0, 0)(u)

¼ �E

X
s

f 1(Ł0, s)
Xm

i¼1

e�
T
0

Zi1þ�0 si I [X i1.u]

 ! Xm

i¼1

e�
T
0

Zi1þ�0 si

ð X i1

0

h1 d¸0

 !" #
X

s

f 1(Ł0, s)

8>>>><
>>>>:

�

X
s

f 1(Ł0, s)
Xm

i¼1

e�
T
0

Zi1þ�0 si I [X i1.u]

" # ! X
s

f 1(Ł0, s)
Xm

i¼1

e�
T
0

Zi1þ�0 si

ðX i1

0

h1 d¸0

" # !

X
s

f 1(Ł0, s)

 !2

9>>>>>=
>>>>>;
,

which immediately implies that

kK1(h1, 0, 0, 0)kV < c

ð�
0

kh1kV d¸0(t), (4:7)

for every h1 2 BV [0, �] and for some constant c. This shows K1 is compact on

f(h1, 0, 0, 0)jh1 2 BV [0, �]g by Helly’s lemma. This completes the proof. h

Remark 3. � is called the information operator. It has a very complicated form in our

calculations. We give a complete proof of the asymptotic normality of Ł̂ŁK , without presenting

an explicit formula for � .

Theorem 4.1.
ffiffiffiffi
K

p
(( ^̧̧ K , �̂�K , �̂�K , q̂qK )� (¸0, �0, �0, q0)) converges weakly to a tight

Gaussian process G � � _���1
(¸0,�0,�0,q0)

W on ‘1(H p) with mean zero and covariance process
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cov G(h), G(~hh)
	 


¼
ð�
0

h1 ~��1(~hh)d¸0 þ hT
2
~��2(~hh)þ h3 ~��3(~hh)þ h4 ~��4(~hh), (4:8)

where ~��1, ~��2, ~��3, ~��4ð Þ ¼ ~�� : H1 7! H1 is the inverse of � ¼ (�1, �2, �3, �4) given in

(4.2).

Proof. Since Lemmas 4.1–4.4 combined indicate that the conditions in the Theorem 3.3.1

and Lemma 3.3.5 in van der Vaart and Wellner (1996) are satisfied, we obtain the weak

convergence of ffiffiffiffi
K

p
( ^̧̧ K , �̂�K , �̂�K , q̂qK )� (¸0, �0, �0, q0)
� �

:

We will now calculate its asymptotic variance. It follows from �(Ł0) ¼ 0, Lemma 4.1,

and (4.4) that
ffiffiffiffi
K

p
�K(¸0, �0, �0, q0) converges weakly to a tight Gaussian process W in

‘1(H p) with

var W(h)ð Þ ¼
ð�
0

�1(h)(u)h1(u)d¸0(u)þ hT
2�2(h)þ h3�3(h)þ h4�4(h): (4:9)

Let Ł0 ¼ (¸0, �0, �0, q0). It follows from (4.3) and Theorem 3.3.1 of van der Vaart and

Wellner (1996) thatð�
0

�1(h)d
ffiffiffiffi
K

p
( ^̧̧ K �¸0)

� �
þ � T

2 (h)
ffiffiffiffi
K

p
(�̂�K � �0)

� �

þ �3(h)
ffiffiffiffi
K

p
(�̂�K � �0)

� �
þ �4(h)

ffiffiffiffi
K

p
(q̂qK � q0)

� �

¼ � _��Ł0

ffiffiffiffi
K

p
( ^̧̧ K , �̂�K , �̂�K , q̂qK)� (¸0, �0, �0, q0)
� �� �

(h)

¼
ffiffiffiffi
K

p
�K (¸0, �0, �0, q0)��(¸0, �0, �0, q0)ð Þ(h)þ o p�(1): (4:10)

Setting g ¼ � (h) in (4.10) and using (4.9), we know thatð�
0

g1d
ffiffiffiffi
K

p
( ^̧̧ K �¸0)

� �
þ gT

2

ffiffiffiffi
K

p
(�̂�K � �0)

� �
þ g3

ffiffiffiffi
K

p
(�̂�K � �0)

� �
þ g4

ffiffiffiffi
K

p
(q̂qK � q0)

� �
is asymptotically normal with mean 0 and varianceð�

0

g1 ~��1(g)d¸0 þ gT
2
~��2(g)þ g3 ~��3(g)þ g4 ~��4(g): (4:11)

Using (4.11), we immediately obtain (4.8). h

5. Observed profile information

In this section we focus our attention on the estimation of �, �, and q, and present the

efficient score function, the efficient Fisher information, and the asymptotic normality of
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(�̂�K , �̂�K , q̂qK). We also apply the theory of observed profile information, developed in

Murphy and van der Vaart (1999), to calculate the asymptotic variance.

For h 2 H1, let ~��234(h) ¼ (~��2(h)
T , ~��3(h) , ~��4(h))

T. Let ei be the (D þ 2)-dimensional

row vector with a 1 in the ith position and zeros elsewhere, for every i ¼ 1, . . . , D þ 2.

Define the (D þ 2)3 (D þ 2) matrix � by ��1 ¼ ~��234(0, e1) , . . . , ~��234(0, eDþ2)ð ÞT. We

note that � is positive definite and symmetric.

We define

‘234,Ł[(h
T
2 , h3, h4)](X1, �1, Z1) ¼ ‘2,Ł[h2](X 1, �1, Z1)þ ‘3,Ł[h3](X1, �1, Z1)

þ ‘4,Ł[h4](X1, �1, Z1),

for h2 2 RD, h3 2 R, and h4 2 R. Viewing (hT
2 , h3, h4) as a (D þ 2)-dimensional row

vector, we can consider ‘234,Ł[�](X 1, �1, Z1) as a (D þ 2)-dimensional column vector;

‘234,Ł[�](X1, �1, Z1) will be abbreviated as ‘234,Ł.
We also define

g� ¼ ��

~��1(0, e1)

..

.

~��1(0, eDþ2)

0
B@

1
CA:

Then we have the following lemmas concerning the efficient score function and the efficient

Fisher information. These concepts for semiparametric models were studied by Bickel et al.

(1993) and van der Vaart (1998), among others.

Lemma 5.1. The efficient score function for the estimation of (�, �, q) is

~‘‘0 ¼ ‘234,Ł0 � ‘1,Ł0 [g�] :

Proof. We need to show that ~‘‘0 is orthogonal to ‘1,Ł0 [g1] for every g1 2 BV [0, �]. We

observe that

ei�
�1E ~‘‘0 ‘1,Ł0 [g1](X1, �1, Z1)

¼ E ‘234,Ł0 [ei�
�1](X 1, �1, Z1)� ‘1,Ł0 [ei�

�1 g�](X1, �1, Z1)
	 


‘1,Ł0 [g1](X1, �1, Z1)

¼ E ‘2,Ł0 [~��2(0, ei)](X 1, �1, Z1)þ ‘3,Ł0 [~��3(0, ei)](X 1, �1, Z1)ð

þ ‘4,Ł0 [~��4(0, ei)](X1, �1, Z1)þ ‘1,Ł0 [~��1(0, ei)](X 1, �1, Z1)Þ‘1,Ł0 [g1](X 1, �1, Z1)

¼
ð
�1 ~�� (0, ei)ð Þg1 d¸0

¼ 0,

by (4.4). This completes the proof. h

Lemma 5.2. � ¼ E ~‘‘0 ~‘‘0
T.
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We omit the proof of Lemma 5.2 because it is a straightforward application of (4.4).

Setting h ¼ ~�� (0, ei) in (4.10), we obtain

ei

ffiffiffiffi
K

p �̂�K � �0
�̂�K � �0
q̂qK � q0

0
@

1
A ¼

ffiffiffiffi
K

p
(PK � P0)

X4
j¼1

‘ j,Ł0 [ ~�� j(0, ei)]

 !
þ oP�(1)

¼
ffiffiffiffi
K

p
(PK � P0) ei�

�1 ~‘‘0
	 


þ oP�(1),

which means

ffiffiffiffi
K

p �̂�K � �0
�̂�K � �0
q̂qK � q0

0
@

1
A ¼ ��1

ffiffiffiffi
K

p
(PK � P0) ~‘‘0 þ oP�(1): (5:1)

It follows from (5.1) that
ffiffiffiffi
K

p
((�̂�K � �0)T , �̂�K � �0 , q̂qK � q0)

T has asymptotic variance ��1.

� is called the efficient Fisher information matrix.

Let

M K (�T, �, q)T
	 


¼ sup
¸2LM

1

K
log LK (¸, �, �, q),

which is called the profile likelihood function for estimating (�, �, q). We recall that LM was

given in Lemma 3.1. Then � can be approximated by using the following theorem.

Theorem 5.1. Let ª1, ª2, . . . be a sequence of random variables such that ªK converges to 0

in probability and (
ffiffiffiffi
K

p
ªK )

�1 ¼ O p(1). Then

�2
M K (�̂�TK , �̂�K , q̂qK )

T þ ªKvK

� �
� M K (�̂�TK , �̂�K , q̂qK )

T
� �

ª2K
(5:2)

converges in probability to vT�v, for every sequence vK in RDþ2 converging in probability to v.

Using (5.2), we can show that

� M K (�̂�TK , �̂�K , q̂qK )
T þ ªK ei þ ªKe j

� �
� M K (�̂�TK , �̂�K , q̂qK )

T þ ªK ei

� �h

� M K (�̂�TK , �̂�K , q̂qK )
T þ ªKe j

� �
þ M K (�̂�TK , �̂�K , q̂qK )

T
� �i

=ª2K

converges in probability to the (i, j)th entry of �.

The proof of Theorem 5.1 is essentially a verification of the Theorem 2.1 in Murphy and

van der Vaart (1999) concerning submodels. Because it is tedious and makes use of

arguments appearing earlier already in this paper, we omit it and refer readers to Chang et

al. (2004a) for details.
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6. Discussion

We have established the consistency and the asymptotic normality of the NPMLE for the

Cox gene model. In particular, we have obtained a consistent estimate of the asymptotic

variance for the estimates of the finite-dimensional parameter of interest. These provide

justifications for the approach proposed by Li et al. (1998). We have also provided a

method to study the identifiability of the parameters and shown that, for a suitable choice of

the parameter space, these parameters are identifiable for pedigrees consisting of three

siblings.

Although we have only looked at the dominant model, our approach can be extended to

study recessive or more general models, where different genetic risks are associated with

different genotypes aa, aA, and AA.

It is desirable to propose numerical methods for NPMLE based on the theory in this

paper. In fact, Chang et al. (2004b) makes use of the integral equations in Lemma 2.1 and

the self-consistency equations derived from the score functions for �, �, and q to

approximate the estimates ^̧̧
K , �̂�K , �̂�K , and q̂qK respectively, and utilizes Theorem 5.1 on

profile likelihood to approximate the variances of �̂�K , �̂�K , and q̂qK . Simulations in Chang et

al. (2004b) indicate that these numerical methods are quite satisfactory in terms of both

speed and accuracy.

As we mentioned in Introduction, it would be interesting to extend the present theory to

the situation where covariate values of the subjects are chosen by the experimenter and the

sequence (Tk , Ck , Sk) is assumed independent.

In addition, it is desirable to study the hypothesis that there is some gene effect on the

age at onset of a given disease. Because the null hypothesis that there is no gene effect may

be represented by � ¼ 0 or q ¼ 0, which is not in the parameter space studied in this paper,

further study of the likelihood is needed.

As pointed out in Li et al. (1998), an important extension of the Cox gene model would

incorporate the data on a known or putatively linked marker. This allows the possibility of

combined segregation and linkage analysis (Guo and Thompson 1992). We are keenly

interested in developing an asymptotic theory for these extensions, and the relevant

numerical methods.

Appendix

A.1. Identifiability

Proposition A.1. Assumption II implies Assumption I.

Proof. Assuming ~LL(1),¸,�,�,q ¼ ~LL(1),¸0,�0,�0,q0 a.s. with ¸ being absolutely continuous relative

to ¸0, we know that
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Ym

i¼1

d¸

d¸0

(X i1)

� ��i1

¼

X
s

p(s, q0)
Ym

i¼1

e�
T
0

Zi1þ�0 si

h i�i1

exp �¸0(X i1)e
�T
0

Zi1þ�0 si

h i !

X
s

p(s, q)
Ym

i¼1

e�
T Zi1þ�si

h i�i1

exp �¸(X i1)e
�T Zi1þ�si

h i ! a:s: (A:1)

Let zi1 be any point in the support of the distribution Zi1. Let

�n ¼
�11 ¼ 1, �21 ¼ . . . ¼ �m1 ¼ 0; Zi1 2 zi1 �

1

c(n)
, zi1 þ

1

c(n)

� �
for i ¼ 1, . . . , m;

X 11 2 t�, t� þ 1

c(n)

� �
, X i1 2 t� � 1

c(n)
, t� þ 1

c(n)

� �
for i ¼ 2, . . . , m

2
6664

3
7775,

where c(n) is a sequence tending to infinity. If m ¼ 1, then �n is defined to be

�11 ¼ 1, X 11 2 t�, t� þ 1

c(n)

� �
, Z11 2 z11 �

1

c(n)
, z11 þ

1

c(n)

� �� �
:

Since t� is in the support of the conditional distribution of Ci1 given Zi1 and ¸0 has a

positive derivative on [0, �], we know from the conditional independence of T11, . . . ,
T m1, C11, . . ., Cm1 given Z11, . . . , Z m1, S11, . . . , Sm1 that P(�n) . 0, and the closure of

fX 11(ø)jø 2 �ng contains [t�, t� þ 1=c(n)) for large positive integers n. Using these, we

can conclude from (A.1) that lim t# t� d¸(t)=d¸0 exists. We denote this limit by y�.
Without loss of generality, we assume P(C11 > �jZ11, . . . , Z m1) . 0. Here the

conditional probability refers to the one under the true model parameter. If m > 2, we

can use the same arguments in the previous paragraph to consider

�9n ¼
�11 ¼ 1, �21 ¼ . . . ¼ �m1 ¼ 0; X i1 2 t� � 1

c(n)
, t� þ 1

c(n)

� �
for i ¼ 2, . . . , m;

Zi1 2 zi1 �
1

c(n)
, zi1 þ

1

c(n)

� �
for i ¼ 1, . . . , m

2
664

3
775,

and conclude from (A.1) that

X
s

p(s, q)
d¸

d¸0

(X11)e
�T z11þ�s1 exp[�¸(X 11)e

�T z11þ�s1 ]

� � Ym

i¼2

exp[�¸(t�)e�T zi1þ�si]

" #

¼
X

s

p(s, q0) e�
T
0

z11þ�0 s1 exp[�¸0(X 11)e
�T
0

z11þ�0 s1 ]
h i Ym

i¼2

exp[�¸0(t
�)e�T0 zi1þ�0 si]

" #
, (A:2)

for almost every X 11 2 [0, �]. If m ¼ 1, then (A.2) becomesX
s

p(s, q)
d¸

d¸0

(X 11)e
�T z11þ�s1 exp[�¸(X11)e

�T z11þ�s1 ]

� �

¼
X

s

p(s, q0) e�
T
0

z11þ�0 s1 exp[�¸0(X11)e
�T
0

z11þ�0 s1 ]
h i

:
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Making use of differential calculus, we know from (A.2) that it is sufficient to show that

(y�, ¸(t�), �, �, q) ¼ (1, ¸0(t
�), �0, �0, q0) to establish the identifiability.

Considering X i1 near 0 from the right for i ¼ 1, . . . , m in (A.1), we can use the same

arguments in the lines following (A.1) to show lim t#0 d¸(t)=d¸0 exists and

Ym

i¼1

e(�0��)T Zi1 ¼
~yy m
X

s

p(s, q)
Ym

i¼1

e�si

X
s

p(s, q0)
Ym

i¼1

e�0 si

, (A:3)

where ~yy ¼ lim t#0 d¸(t)=d¸0. Since the linear span of
Pm

i¼1 Zi1 has dimension D, we know

from (A.3) that � ¼ �0.
Setting � ¼ �0 in (A.1) and considering X i1 near t� from the right for i ¼ 1, . . . , m, we

obtain

log
X

s

p(s, q)
Ym

i¼1

y�e�si
� ��i1

exp �¸(t�)e�T0 Zi1þ�si

h i !

¼ log
X

s

p(s, q0)
Ym

i¼1

e�0 si½ ��i1 exp �¸0(t
�)e�T0 Zi1þ�0 si

h i !
: (A:4)

Since each �i1 and Zi1 in (A.4) can take many different values, (A.4) defines many equations.

Noting that the left-hand side of (A.4) is a function of (y�, ¸(t�), �, q), we can apply the

inverse function theorem (see, for example, Rudin 1976, p. 221) to check whether

(y�, ¸(t�), �, q) ¼ (1, ¸0(t
�), �0, q0) is the unique solution in a neighbourhood of

(1, ¸0(t
�), �0, q0) in R4. This amounts to choosing four of these equations and checking

if the determinant of the Jacobian of the function in question is zero. This is guaranteed by

Assumption II. This completes the proof. h

Proposition A.2. If random mating and Mendelian segregation are assumed, then there exist

parameter values so that Assumption II is valid for families consisting of three siblings; if

�0 6¼ 0 and t� 2 (0, �], it is also valid when there is only one member in each family.

Proof. Assume that the pedigree consists of three siblings. Fixing Z11, Z21, and Z31 and

considering (�11, �21, �31) ¼ (0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1) in the mapping

(y0, y1, �, q) 7! log
X

s

p(s, q)
Y3
i¼1

y0e
�si½ ��i1 exp �y1e

�T
0

Zi1þ�si

h i !
,

we obtain a function F from R4 to R4. A straightforward calculation using the assumption of

random mating and Mendelian segregation shows that p(s, q) is a fourth-order polynomial in

q. For example, p(1, 0, 0, q) ¼ 1
2
q(1� q)3 þ 3

16
q2(1� q)2. It is easy to see that the

determinant of the Jacobian of F is a real analytic function, and that this determinant is

not identically zero, because it is not zero for y0 ¼ 1, y1 ¼ 1, q ¼ 1
2
, and an appropriate �.
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We note that a real analytic function is identically zero on a connected region only if its

value is zero on any open subset in it. This implies that the determinant can be zero only on a

nowhere dense closed subset of R4. Therefore, as long as the determinant is not zero at

(1, ¸0(t
�), q0, �0), Assumption II is satisfied on a neighbourhood of it. This completes the

proof for the case each family consisting of three siblings.

Assuming there is only one member in each family and considering the function F

specified by (�11, Z11) ¼ (0, z9), (0, z 0), (1, z9), (1, z 0) with z9 6¼ z 0 in the range of Z11, we

can establish the statement using the same arguments for the case that each family consists

of three siblings. This completes the proof. h

A.2. Proof of Lemma 3.1

Let

g(¸, �, �, q, u, X k , �k , Z k) ¼
Xm

i¼1

X
s

f (¸, �, �, q, s, X k , �k , Z k) exp (�
T Zik þ �si)

X
s

f (¸, �, �, q, s, X k , �k , Z k)
I (0,X ik ](u),

where f (¸, �, �, q, s, X k , �k , Z k) ¼ f k(¸, �, �, q, s). Then

W K (¸, �, �, q; u)� W (¸, �, �, q; u)

¼ 1

K

XK

k¼1

g(¸, �, �, q, u, X k , �k , Z k)� Eg(¸, �, �, q, u, X k , �k , Z k)ð Þ

¼ PK g � Eg(X 1, �1, Z1):

For every fixed s, we know that

f (¸, �, �, q, s, X k , �k , Z k)

¼ �s(¸(X 1k), �
T Z1k þ �s1, (exp (�s1))

�1 k , . . . , ¸(X mk), �
T Z mk þ �sm, ( exp (�sm))

�mk ),

for some smooth function �s. Using this and the fact that the set of functions mapping Zik to

�T Zik þ �si, indexed by � 2 B and � 2 U, is Donsker (van der Vaart and Wellner 1996,

Theorem 2.7.1) and that the set of functions mapping X ik to ¸(X ik), indexed by ¸ 2 LM, is

also Donsker (van der Vaart and Wellner 1996, Example 2.10.4), we can conclude that the

Donsker property is preserved by �s (van der Vaart and Wellner 1996, Theorem 2.10.6 and

related results). Since there are only finitely many possible values of s ¼ (s1, . . . , sm), we can

apply the above arguments concerning permanence of the Donsker property to conclude that

G ¼ fg(¸, �, �, q, u, �, �, �)j¸ 2 LM , � 2 B, � 2 U, q 2 Q, u 2 [0, �]g is also a Donsker

class. This implies that
ffiffiffiffi
K

p
(PK g � Eg(X1, �1, Z1)) converges weakly to a tight Borel

measurable Gaussian element in ‘1(G), as K goes to infinity. Thus PK g � Eg(X1, �1, Z1)

converges weakly to zero as a random element in ‘1(G). This completes the proof.
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A.3. Proof of Lemma 3.2

It follows from the permanence of the Donsker property and the fact that the class of non-

negative increasing functions with a common upper bound is Donsker that the class of

functions
Pm

i¼1 I [Tik ,1)(u ^ Cik) ¼
Pm

i¼1 I (0,u](X ik) � �ik , indexed by u, is Donsker and hence

Glivenko–Cantelli (van der Vaart and Wellner 1996, Examples 2.10.4, 2.10.7, and 2.10.8).

This shows that sup t2[0,�]jGK (t)� G(t)j goes to zero almost surely. Using (3.4), the strong

law of large numbers, and the condition P(X ik > �) . 0, we have that W K (¸, �, �, q; u) is

bounded and bounded away from 0 on [0, �] for all large K. Combining this, the uniform

convergence of GK , and the following integration by partsð t

0

1

W K (¸, �, �, q; u)
d(GK (u)� G(u))

¼ GK (u)� G(u)

W K (¸, �, �, q; u)

����
t

0

�
ð t

0

GK (u)� G(u)ð Þd 1

W K (¸, �, �, q; u)

� �
,

we immediately obtain the desired result.

A.4. Three results due to van der Vaart and Wellner

We quote three important results used in this paper.

Theorem A.1 (van der Vaart and Wellner 1996, Theorem 2.10.6). Let F1, . . . , F k be

Donsker classes with kPkF i
¼ sup f i2F i

jPf ij , 1 for each i. Let � : Rk 7! R satisfy

j� s f (x)� � s g(x)j2 <
Xk

l¼1

f l(x)� g l(x)ð Þ2,

for every f , g 2 F1 3 � � �3 F k and x. Then the class � s (F1, . . . , F k) is Donsker,

provided � s ( f 1, . . . , f k) is square integrable for at least one ( f 1, . . . , f k).

The following theorem and lemma are applied in this paper with the same notation, apart

from changing n into K, and P into E.

Theorem A.2 (van der Vaart and Wellner 1996, Theorem 3.3.1). Let �n and � be random

maps and a fixed map, respectively, from ¨ into a Banach space such thatffiffiffi
n

p
(�n ��)(Ł̂Łn)�

ffiffiffi
n

p
(�n ��)(Ł0) ¼ o p�(1þ

ffiffiffi
n

p
kŁ̂Łn � Ł0k),

and such that the sequence
ffiffiffi
n

p
(�n ��)(Ł0) converges in distribution to a tight random

element Z. Let Ł 7! �(Ł) be Fréchet differentiable at Ł0 with a continuously invertible

derivative _��0. If �(Ł0) ¼ 0, Ł̂Łn satisfies �n(Ł̂Łn) ¼ o p� (n
�1=2), and converges in outer

probability to Ł0, then
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ffiffiffi
n

p
_��Ł0 (Ł̂Łn � Ł0) ¼ �

ffiffiffi
n

p
(�n ��)(Ł0)þ o p�(1):

Consequently,
ffiffiffi
n

p
(Ł̂Łn � Ł0) ! � _���1

Ł0
Z.

In the case of independent and identically distributed observations, the theorem may be

applied with �n(Ł)h ¼ Pn �Ł,h and �(Ł)h ¼ P�Ł,h for given measurable functions �Ł,h,

indexed by ¨ and arbitrary index set H. In this case,
ffiffiffi
n

p
(�n ��)(Ł) ¼ fGn �Ł,h : h 2 Hg

is the empirical process indexed by the classes of functions f�Ł,h : h 2 Hg.

Lemma A.1 (van der Vaart and Wellner 1996, Lemma 3.3.5). Suppose that the class of

functions

f�Ł,h � �Ł0,h : kŁ� Ł0k , �, h 2 Hg

is P-Donsker for some � . 0 and

sup
h2H

P(�Ł,h � �Ł0,h)
2 ! 0, as Ł ! Ł0:

If Ł̂Łn converges in outer probability to Ł0, then

kGn(�Ł̂Łn,h
� �Ł0,h)kH ¼ o p�(1þ

ffiffiffi
n

p
kŁ̂Łn � Ł0k):
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