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Random partitions can be thought of as a consistent family of exchangeable random partitions of the

sets f1, 2, . . . , ng for n > 1. Historically, random partitions were constructed by sampling an infinite

population of types and partitioning individuals of the same type into a single class. A particularly

tractable way to construct random partitions is via random sequences of 0s and 1s. The only random

partition derived from an independent 0–1 sequence is Ewens’ one-parameter family of partitions

which plays a predominant role in population genetics. A two-parameter generalization of Ewens’

partition is obtained by considering random partitions constructed from discrete renewal processes and

introducing a convolution-type product on 0–1 sequences.
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1. Introduction and motivation

Random partitions arise naturally in the study of random combinatorial structures which

decompose into component parts. A general combinatorial theory of such composite

structures, expressed in terms of generating functions, was developed in the early 1970s by

Foata (1974) and others. There has been much recent interest in the asymptotics and

probabilistic aspects of such random combinatorial structures (see Arratia and Tavaré 1992;

Arratia et al. 2003). The recent St. Flour Lecture Notes by Pitman (2002) include a complete

up-to-date overview of random partitions and other combinatorial stochastic processes.

Random partitions have applications in such diverse fields as population genetics (Ethier

and Kurtz 1981; Ewens 1972, Hoppe 1987; Kingman 1978a; Watterson 1974), number theory

(Vershik 1987; Donnelly and Grimmett 1993), combinatorics (Aldous and Pitman 1993;

Donnelly et al. 1991a), fragmentation phenomena in physics (Mekjian and Lee 1991;

Mekjian 1990; 1991) and computer science. Applications of random partitions have even

found their way into the philosophical theory of inductive inference (Zabell 1992)! For

example, random permutations decompose into cycles, random mappings decompose into tree

components, which are important tools in computer science, and in population genetics

theory the components correspond to subpopulations of individuals which have the same

allelic type at a particular gene locus. Motivated by applications to fragmentation phenomena

in physics, Mekjian and Lee (1991) consider Gibbs-type prescriptions for random partitions

that include a class of partitions characterized in this paper via discrete renewal processes.
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Motivated by the needs of population genetics theory, Kingman (1978a) introduced the

idea of a partition structure. In this context, if a random sample of individuals are

partitioned into groups having the same allele at a particular gene locus, then the

distribution of this partition must be consistent with respect to the taking of further

subsamples. This consistency property characterizes partition structures.

2. Random partitions

A partition of n is simply a collection of positive integers whose sum is n. Let øn denote

the collection of partitions of n and encode a partition � 2 øn via the component counts

(a1, . . . , an), where ai is the number of components of size i, for i ¼ 1, . . . , n. A partition

structure is a sequence of probability measures P1, P2, . . . defined on ø1, ø2, . . . ,
respectively, which satisfies the consistency relation

Pn(a1, . . . , an) ¼ Pnþ1(a1 þ 1, . . . , anþ1)
a1 þ 1

nþ 1

þ
Xnþ1

r¼2

Pnþ1(a1, . . . , ar�1 � 1, ar þ 1, . . . , anþ1)
r(ar þ 1)

nþ 1
(1)

for all n > 1. Partition structures are naturally constructed by sampling individuals of various

types from hypothetical infinite populations. If we allow these populations to be random and

have ‘novel’ types of individuals, then all partition structures may be constructed in this

fashion. This is the content of Kingman’s representation theorem.

Another interpretation of partition structures is in terms of exchangeable random

partitions of the set of positive integers. A partition — of the positive integers N induces a

partition —n on [n] :¼ f1, . . . , ng in the obvious way by restricting — to [n]. A random

partition — of N is exchangeable if each —n is exchangeable and their distributions are

consistent. More precisely, a random partition —n on [n] is exchangeable if its distribution

is invariant under the obvious action of the symmetric group on partitions of [n] induced by

the symmetry group acting as permutations of the set [n]. Both Kingman (1982) and

Aldous (1985) consider this interpretation, and Aldous (1985) gives an elegant proof of

Kingman’s representation theorem as an application of de Finetti’s theorem.

We use the term random partition (or simply partition if the context is clear) to always

mean a partition structure on the level of set partitions, or equivalently, an exchangeable

random partition of N. This is the most natural definition of a random partition when

considering partitions of sets of increasing size.

3. Sampling construction of random partitions

A natural question to ask is how random partitions can be constructed. A complete answer

is given by Kingman’s representation theorem via sampling populations. Regard a partition

of n as a partition obtained by sampling from a population of various types. In particular,
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since a random partition is defined for all n > 1, we must sample from an infinite

population. We define an infinite population as an element of the infinite-dimensional

simplex

˜1 ¼ x ¼ (x1, x2, . . .) : xi > 0 and
X1
i¼1

xi ¼ 1

( )
:

We interpret xi as the proportion of individuals of type i in the population. Let Pn(:jx) be the

distribution of the partition of n of a random sample of size n taken from the population

x ¼ (x1, x2, . . .). Explicitly,

Pn(a1, . . . , anjx) ¼
n!Y1

i¼1

(i!)ai

X
A

xv11 xv22 . . . , A ¼ f(v1, v2, . . .)j#fv j ¼ ig ¼ aig: (2)

It is straightforward to check that Pn defined by (2) yields a random partition. More

generally, a random partition may be obtained by allowing the population to be random. Give

˜1 the relative topology inherited from the compact metrizable product space [0, 1]1 and let

� be a probability measure on (the Borel � -algebra of) ˜1. Then for a fixed � 2 øn, the map

Pn(�j:) : ˜1 ! [0, 1] defined by (2) is continuous and

Pn(�) :¼
ð
˜1

Pn(�jx)�(dx) (3)

defines a probability measure on øn, which again yields a random partition (as we vary n). It

would be nice if every random partition arose in this way. However, the sequence of

probability measures (Pn) concentrated on the partitions of n given by the component counts

(n, 0, . . . , 0) for each n forms a random partition that cannot be expressed in the form (3).

This example shows that we must allow for the possibility of sampling novel types of

individuals from a population.

To incorporate novel types into infinite populations, we extend the definition of

population as follows. A population is an element of

˜1 ¼ x ¼ (x1, x2, . . .) : xi > 0 and
X1
i¼1

xi < 1

( )
:

For x 2 ˜1 we define x0 ¼ 1�
P1

i¼1xi and interpret x0 as the proportion of novel types in

the population. More precisely, when sampling from such a population, the probability of

selecting an individual whose type is different from all other types in the population and

different from all previously sampled types is x0.

As above, a random partition is obtained by sampling from a random population with

novel types. Notice that this random partition is invariant with respect to permutations of

the sequence x ¼ (x1, x2, . . .). With this in mind, we normalize the population and define

=1 ¼ x ¼ (x(1), x(2), . . .) : x(1) > x(2) > . . . > 0 and
X1
i¼1

x(i) < 1

( )
:
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Every random partition can be realized by this construction for a unique measure � on =1.

Theorem 1 (Kingman’s representation theorem). For each random partition (Pn) there

exists a unique representing measure � on =1 such that Pn(�) :¼
Ð
=1 Pn(�jx)�(dx).

Furthermore, the unique representing measure is the limiting descending-order empirical

distribution. Let X r(n) denote the relative frequency in a sample of size n (from a population

corresponding to Pn) of the rth most frequent type. Then X (n) :¼ (X 1(n),

. . . , X n(n), 0, 0, . . .) is a random element of =1 with distribution �n and �n �!Law � as

n ! 1.

See Kingman (1978b; 1980) for a proof.

Remark. Kingman (1982) and Aldous (1985) interpret a random partition in terms of an

exchangeable random partition of the set of positive integers N, that is, a random partition of

N whose restriction —n to [n] :¼ f1, . . . , ng has the following property: the partition of n

induced by —n has distribution Pn and, given �n, —n is uniformly distributed over all

partitions of [n] with component sizes given by �n. In this context, see Aldous (1985) for an

elegant proof of Kingman’s theorem à la de Finetti, and Pitman (1992) for further

developments.

Although Kingman’s result characterizes random partitions via sampling from their

corresponding random populations, these random populations are explicitly known and

easily constructed in only a few cases. In the remainder of this paper we consider more

tractable ways to construct random partitions.

4. Sequential construction of random partitions

Random sequences of 0s and 1s naturally induce random partitions of n by considering the

components formed by the blocks of the sequence between successive 1s. We show that the

only random partition induced from Bernoulli sequences is the family of Ewens’ partition

structures originally discovered in population genetics by Ewens (1972). Similarly, there is

only one family of random partitions associated with discrete homogeneous renewal

processes. This family of random partitions is a particular example of a two-parameter

generalization of Ewens’ partition due to Pitman (1995), which we call Pitman’s random

partition.

We consider a ‘convolution’-type operator on random partitions and show that if the

partitions have sequential representations, then the convolution of these partitions has a

sequential representation as well. This representing sequence for the convolution of random

partitions is also given by a corresponding convolution defined for random sequences. This

implies that there is a large collection of random partitions that admit sequential

representations by starting with the above-mentioned representable partitions and closing up

under the operations of convolution and the taking of limits. Finally, it is shown that the

convolution of Ewens’ partition with the partition induced by the above-mentioned discrete

homogeneous renewal process is precisely Pitman’s random partition.
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Let � ¼ (�1, �2, . . .) be a sequence with � 2 f0, 1g and �1 ¼ 1. Define for each n > 1 a

partition of [n] by —n(�) ¼ —(�1:n) ¼ (a1, . . . , an) 2 øn, where ai is the number of

i-spacings between successive 1s in the finite sequence �1:n ¼ (�1, . . . , �n). More precisely,

ai ¼ #f j : � j ¼ 1, � jþ1 ¼ 0, � jþ2 ¼ 0, . . . , � jþi�1 ¼ 0, � jþi ¼ 1; 1 < j < ng

þ 1f�n�iþ1 ¼ 1, �n�iþ2 ¼ 0, . . . , �n ¼ 0g:

For example,

—(1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0) ¼ (1, 2, 1, 1, 1) 2 ø17:

Definition 1 Representable random partition. A random partition Pn is (sequentially)

representable if there exists a random sequence � ¼ (�1, �2, . . .) with �i 2 f0, 1g and �1 ¼ 1

such that Pn(�) ¼ P[—n(�) ¼ �] for all � 2 øn and n > 1. The sequence � ¼ (�1, �2, . . .) is
called the representing sequence for the random partition Pn.

If Pn is representable, then the components of the partition of n can be ‘built’ one by

one by reading the 0s and 1s of the corresponding representing sequence. It is not at all

clear whether a given random partition admits a sequential representation. We take the

opposite approach and ask if there are random partitions which are representable by certain

natural random sequences of 0s and 1s. The random sequences considered are Bernoulli

sequences and (discrete) homogeneous renewal processes.

5. Bernoulli sequences and Ewens’ random partition

Let �1, �2, . . . be a sequence of independent Bernoulli random variables with success

probability pn ¼ P(�n ¼ 1) and p1 ¼ 1. Given n, the sequence (�i) induces a random

partition of n. Consider the finite sequence (recall �1 ¼ 1 almost surely)

�1 ¼ 1, �2, �2, . . . , �n

and define ai as the number of i-spacings between successive 1s, including the last 10 . . . 0.
For example, the sequence

1 0 1 0 0 1 0 1 0 0 0 0 1 0 0 1 1 0 1 0 0

induces the partition of n ¼ 21 with a1 ¼ 1, a2 ¼ 3, a3 ¼ 3, a4 ¼ 0, a5 ¼ 1.

Let —n :¼ —n �1, �2, . . .ð Þ denote the random partition of n defined by the sequence

�1, �2, . . . , �n, and let Pn be the distribution of —n.

Theorem 2. Let �1, �2, . . . be a sequence of independent Bernoulli random variables with

success probability pn ¼ P(�n ¼ 1) for n > 1. Then the sequence (Pn) of distributions of the

induced partitions (—n) forms a random partition if and only if

pn ¼
Ł

Łþ n� 1
, n > 1, (4)
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where Ł ¼ p2=(1� p2). In this case (Pn) is Ewens’ random partition with parameter Ł:

ERPŁ(a1, . . . , an) ¼
n!Yn

i¼1

iai ai!

� Ł

Xn
i¼1

ai

Ł(Łþ 1) � � � (Łþ n� 1)
,

where ai is the number of component blocks of size i. This representing sequence is called the

Chinese restaurant sequence with parameter Ł.

Proof. The sequence (Pn) forms a random partition if and only if the following consistency

relation holds:

Pn(a1, . . . , an) ¼ Pnþ1(a1 þ 1, . . . , anþ1)
a1 þ 1

nþ 1

þ
Xnþ1

r¼2

Pnþ1(a1, . . . , ar�1 � 1, ar þ 1, . . . , anþ1)
r(ar þ 1)

nþ 1
:

In particular,

Pn(0, 0, . . . , 0, 1) ¼ Pnþ1(0, . . . , 0, 1)þ Pnþ1(1, 0, . . . , 1, 0) �
1

nþ 1
(5)

In terms of the pi this becomes

(1� p2) � � � (1� pn) ¼ (1� p2) � � � (1� pn)(1� pnþ1)

þ 1

nþ 1
p2(1� p3) � � � (1� pnþ1)þ (1� p2) � � � (1� pn) pnþ1½ �:

Solving this equation for pnþ1 yields

pnþ1 ¼
p2

p2 þ n(1� p2)
, for n > 0:

Setting Ł ¼ p2=(1� p2) yields

pnþ1 ¼
Ł

Łþ n
, for n > 0:

This is only a necessary condition, since (1) must hold for all (a1, . . . , an) 2 øn and n > 1.

To see that (4) is sufficient, proceed as in the Chinese restaurant process (Aldous 1985; Joyce

and Tavaré 1987). Read the sequence �1, �2, . . . , �n backwards to construct a random

permutation of f1, 2, . . . , ng by building cycles one by one. Start the first cycle with a 1. If

�n ¼ 1, close the cycle and start a new cycle with the next available (smallest) integer. If

�n ¼ 0, choose an integer uniformly at random from the remaining n� 1 integers and place

it to the right of 1. Continue in this way, by next looking at �n�1 and closing the cycle when

�n�1 ¼ 1 and continuing to build the cycle when �n�1 ¼ 0, etc. A random permutation so

constructed has the following distributional properties:
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P(permutation has k cycles) ¼ Łk

Ł(Łþ 1) � � � (Łþ n� 1)

and

P —n ¼ (a1, . . . , an)½ � ¼ P[permutation has cycle structure (a1, . . . , an)]

¼ #fpermutations with cycle structure (a1, . . . , an)g

3
Ł�ai

Ł(Łþ 1) � � � (Łþ n� 1)

� �

¼ n!Yn
i¼1

iai ai!

� Łk

Ł(Łþ 1) � � � (Łþ n� 1)

where k ¼
Pn

i¼1ai is the number of cycles of the random permutation. (A permutation has

cycle structure (a1, . . . , an) if there are ai cycles of length i for i > 1.) h

Remark. For Ł ¼ 1, Feller (1945) used this Bernoulli sequence representation to obtain

central limit type asymptotics for the number of cycles in random permutations. Arratia and

Tavaré (1992) extend the use of the Bernoulli representation to general Ł and obtain Poisson

asymptotics for the component counts (a1, . . . , an) which are sharp enough to imply central

limit asymptotics as well. See also Donnelly et al. (1991b) and Arratia et al. (1992).

6. Discrete renewal processes

Instead of considering spacings in independent sequences of 0s and 1s, consider the waiting

time between successive 1s in a discrete renewal process. This gives a (homogeneous)

discrete renewal process characterization of a two-parameter extension of Ewens’ partition

with 0 , Æ , 1 and Ł ¼ 0, originally discovered by Pitman (1995) in a different context.

We can recover the full two-parameter case by combining the independent 0–1 sequence

with the discrete renewal process as discussed below.

Let T1, T2, . . . be independent and identically distributed (i.i.d.) integer-valued waiting-

time random variables with distribution P(T ¼ n) ¼ pn for n > 1. We think of the Ts as

the waiting time between successive 1s in a random sequence which begins with 1, almost

surely, followed by (T1 � 1) 0s, then another 1 followed by (T2 � 1) 0s, . . .. For example,

the �-sequence corresponding to

T1 ¼ 3, T2 ¼ 2, T3 ¼ 5, T4 ¼ 1, T5 ¼ 3, T6 ¼ 4

is

1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0:

The partition of n may be defined directly in terms of the T -sequence as follows.
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Let

k ¼ k(n) ¼ min j :
Xj

i¼1

Ti > n

( )

and define

a j ¼ #fi : Ti ¼ j, 1 < i < k � 1g þ 1fT�k ¼ jg,

where

T�k ¼ n�
Xk�1

i¼1

Ti:

Let —n ¼ —n T1, T2, . . .ð Þ denote this random partition of n and let Pn be the distribution of

—n.

Theorem 3. Let T1, T2, . . . be a sequence of i.i.d. positive integer-valued random variables

with distribution P(T ¼ n) ¼ pn for n > 1. Then the sequence (Pn) of distributions of the

induced partitions (—n) forms a random partition if and only if

pn ¼ (�1)n�1 p1
n

� �
, for n > 1: (6)

Letting Æ ¼ p1, the corresponding random partition is given by

P —n ¼ (a1, . . . , an)½ � ¼ n!Yn
i¼1

(i!)ai ai!

� (k � 1)!Æk�1

(n� 1)!

Yn
i¼1

[(1� Æ)(2� Æ) � � � (i� 1� Æ)]ai :

Proof of necessity. Equation (5) is a necessary condition for the sequence (Pn) to be a

random partition. In terms of the Ti this becomes

P(T1 . n� 1) ¼ P(T1 . n)þ P(T1 ¼ 1, T2 . n� 1)þ P(T1 ¼ n)½ � 1

nþ 1
,

pn ¼
1

nþ 1
p1(1� p1 � p2 � . . . � pn�1)þ pn½ � (7)

¼ p1(1� p1 � p2 � . . . � pn�1)

n

pn ¼
p1(1� p1 � . . . � pn�2)

n
� p1 pn�1

n
: (8)

Iterating (8), we have
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pn ¼
(n� 1) pn�1 � p1 pn�1

n

¼ (n� 1� p1)

n
� pn�1 ¼

(n� 1� p1)

n
� (n� 2� p1)

n� 1
� pn�2 ¼ . . .

¼ (n� 1� p1)(n� 2� p1) � � � (1� p1)(p1)

n!

pn ¼ (�1)n�1
p1

n

 !
: (9)

For convenience of notation, we set Æ ¼ p1, so that (9) becomes

pn ¼ (�1)n�1 Æ
n

� �
, for n > 1 and 0 , Æ , 1: (10)

Remark. Now, a priori, it is not clear that the solution to (7) defines a proper distribution for

T , that is,
P1

n¼1 pn ¼ 1. But this is confirmed by recalling that (10) is a familiar discrete

distribution in the theory of random walks: (10) is the distribution of the ladder indices

(minfn : Sn . 0g) for a real random walk Sn with P(Sn . 0) ¼ Æ for all n > 1, for

example, a walk with stable increments of any index where P(increment . 0) ¼ Æ. For

Æ ¼ 1=2, (10) is the distribution of half the return time to zero for a simple symmetric

random walk (Feller 1971).

To see that (10) is also sufficient for (Pn) to be a random partition, we turn now to

partitions derived from excursions of recurrent Bessel processes.

7. Partitions of Bessel processes

Let Bt, t > 0ð Þ with B0 ¼ 0 be a Bessel process of dimension � ¼ 2� 2Æ, 0 , Æ , 1; see

Revuz and Yor (1999) and Rogers and Williams (2000) for background. The zero set of the

process (Bt, 0 < t < 1) is a random closed subset of [0, 1]. The interval components of the

complement of this zero set will be called excursion intervals. Note that this allows a final

meander interval of the form (L1, 1], where L1 is the last zero of Bt before time 1. Let

U1, U2, . . . be a sequence of i.i.d. uniform random variables on [0, 1], independent of Bt.

Define a random equivalence relation � on the positive integers N by i � j if and only if

Ui and U j fall in the same excursion interval. The collection of �-equivalence classes is

then an exchangeable random partition of N . In this context, Kingman’s representation

theorem (Kingman 1978b) says that every random partition can be associated with an

exchangeable random partition of N obtained by the above construction for some random

closed subset of [0, 1]. See Aldous (1985) for a proof and Pitman (1995) for further

developments.
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When the random closed subset is the zero set of a recurrent Bessel process, the

corresponding random partition is the (Æ, 0) random partition.

Theorem 4 (Pitman (1997). Fix n > 1, and for 1 < i < n, let ai be the number of excursion

intervals of (Bt, 0 < t < 1) that contain exactly i of the n points U1, U2, . . . , Un, so that

(a1, . . . , an) 2 øn. Then

P(a1, . . . , an) ¼
n!Yn

i¼1

(i!)ai ai!

� (k � 1)!Æk�1

(n� 1)!

Yn
i¼1

[(1� Æ)(2� Æ) � � � (i� 1� Æ)]ai (11)

forms a random partition.

With this theorem in hand, we return to the proof of Theorem 3.

Proof of sufficiency of Theorem 3. Let (Bt, t > 0) with B0 ¼ 0 be a Bessel process of

dimension � ¼ 2� 2Æ, 0 , Æ , 1, and let U1, U2, . . . , Un be i.i.d. random variables

uniformly distributed on [0, 1] and independent of Bt. Define a sequence of indicators

Z n
i ¼ 1fBt ¼ 0 for some U(i) , t , U(iþ1)g, for i ¼ 1, . . . , n� 1,

Z n
0 ¼ 1fBt ¼ 0 for some 0 , t , U(1)g ¼a:s: 1,

Z n
n ¼ 1fBt ¼ 0 for some U(n) , t , 1g,

where U(1) , U(2) , . . . , U(n) are the order statistics of the Ui.

The joint distribution of the random variables Z n
0 , Z

n
1 , . . . , Z

n
n can be obtained using the

standard representation of uniform order statistics in terms of a Poisson process. Let �0 ¼ 0

and �n ¼ �1 þ �2 þ . . . þ �n, where �1, �2, . . . is a sequence of i.i.d. random variables with

exponential mean 1 distribution, defined on the same probability space as the Bessel process

Bt, and independent of Bt. Define analogous indicators

Zi ¼ 1fBt ¼ 0 for some �i , t , �iþ1g, for i ¼ 0, 1, . . . :

It is a standard fact that (U(1), . . . , U(n)) has the same distribution as (�1=�nþ1, . . . , �n=�nþ1),

and since the zero set of Bt is invariant under scaling, (Z
n
0 , . . . , Z

n
n) and (Z0, . . . , Zn) have

the same distribution.

Now consider an excursion interval that contains at least one of the times �i. Call such
an interval a hit excursion interval. Let T j be the number of �i that fall in the jth hit

excursion interval. Then clearly

Zi ¼ 1fT1 þ . . . þ Tm ¼ i, for some mg

are renewal indicators. The fact that the Ti are i.i.d. follows from the strong Markov property

of Bt at the right endpoint of such a hit excursion interval together with the memoryless

property of the exponential distribution. From results of standard renewal theory (Feller

1971), it follows that the distribution of the Ti is given precisely by P(T ¼ n) ¼ (�1)n�1(Æn).
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Therefore, the partition distribution of —n ¼ —n(T1, T2, . . .) is given by (11) and hence

defines a random partition. h

The random partition given by (11) is a special case of a two-parameter generalization of

Ewens’ random partition due to Pitman (1995).

Definition 2 Pitman’s random partition. Pitman’s random partition with parameters (Æ, Ł),
where 0 < Æ , 1 and Ł . �Æ, is given by

P(Æ,Ł)(a1, . . . , an) ¼
n!Yn

i¼1

(i!)ai ai!

� [Łþ Æ]k�1;Æ

[Łþ 1]n�1

Yn
i¼1

[1� Æ]i�1ð Þai , (12)

where

[x]m;a :¼
x(xþ a) � � � (xþ (m� 1)a), for m ¼ 1, 2, . . . ,
1, for m ¼ 0,

�

and

[x]m :¼ [x]m;1:

Remark. Ewens’ partition with parameter Ł corresponds to Æ ¼ 0, Ł . 0, and the random

partition derived from discrete homogeneous renewal processes corresponds to 0 ,

Æ , 1, Ł ¼ 0. See Pitman (1995) for various descriptions and asymptotics of the (Æ, Ł)
partition. For a full treatment of the law of the corresponding ranked relative frequencies of

Pitman’s random partition, see Pitman and Yor. Also see Perman et al. (1992) and Pitman

(1996) for the residual allocation model for the relative frequency of classes in order of

appearance.

8. Convolution of random partitions

In this section, a convolution-type product is defined on the family of all random partitions.

This convolution operator preserves (sequentially) representable partitions. The representing

sequence corresponding to the convolution of representable random partitions is itself a

convolution-type product of random 0–1 sequences. As a concrete example, we show that

the random partition obtained by convolving Ewens’ partition with parameter Ł with the

partition with parameter (Æ, 0) is the random partition with parameter (Æ, Ł), provided both

Æ and Ł are strictly positive.

Let P ¼ (Pn) and Q ¼ (Qn) be the distributions of two random partitions and define a

new partition distribution P � Q ¼ R as follows. First partition [n] according to Pn, and

then partition each of the component blocks of this partition using Qk for k < n,

independently given the blocks of the first partition of [n] via Pn.

We now show that convolution preserves the representing sequences X and Y

corresponding to P and Q, respectively. To construct the corresponding representing
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sequence (X � Y )n for (P � Q)n, first lay down the sequence (X1, X 2, . . .), and then in

between 1s of the X -sequence lay down independent copies of (Y2, Y3, . . .). (Recall that the
first term in representing sequences equals 1 almost surely.) For example, suppose X is

given by

10001010010000010011000100 . . . :

Then the sequence (X � Y )n will look like

1Y 1
2Y

1
3Y

1
41Y

2
21Y

3
2Y

3
31Y

4
2Y

4
3Y

4
4Y

4
5Y

4
61Y

5
2Y

5
311Y

6
2Y

6
3Y

6
41Y

7
2Y

7
3 . . . ,

where the blocks (Y k
n) are independent copies of the sequence Yn. More precisely, define

stopping times Ø1 ¼ 1 and Øk ¼ minfn . Øk�1 : X n ¼ 1g and define a new sequence

Zn ¼ (X � Y )n block by block as follows:

(Z1, . . . , ZØ2�1) ¼ (Y 1
1, . . . , Y

1
Ø2�1),

(ZØ2 , . . . , ZØ3�1) ¼ (Y 2
1, . . . , Y

2
Ø3�1), . . .

(ZØ k , . . . , ZØ kþ1�1) ¼ (Y k
1 , . . . , Y

k
Ø kþ1�1), . . . ,

where the blocks (Y k
n) are independent copies of the sequence Yn. It is clear from the above

construction that Zn ¼ (X � Y )n is the representing sequence for the random partition

(P � Q)n. We summarize this in the following theorem:

Theorem 5. Let Pn and Qn be partition distributions with respective representing sequences

X n and Yn. Then (P � Q)n has representing sequence (X � Y )n.

By a straightforward calculation of partitions of small n, say n < 5, the convolution

product is easily seen to be non-commutative. In one non-trivial case, we can explicitly

compute the convolution product.

Theorem 6. Let Pn be Ewens’ partition with parameter Ł . 0 and Qn be the partition with

parameter (Æ, 0), Æ . 0. Then (P � Q)n is the random partition with parameter (Æ, Ł).

Proof. By an urn scheme construction due to Pitman (1997), we may interpret the (Æ, Ł)
partition as an exchangeable random partition —(Æ,Ł) of N as follows. The probability that

—(Æ,Ł)
n equals any particular partition of f1, . . . , ng into k blocks Ai of sizes ni, i ¼ 1, . . . , k,

is

P(—(Æ,Ł)
n ¼ fAigk

1 ) ¼
(Łþ Æ) � � � (Łþ (k � 1)Æ)

(Łþ 1) � � � (Łþ n� 1)

Yk
i¼1

(1� Æ) � � � (ni � 1� Æ):

When Æ ¼ 0, this gives the partition of f1, . . . , ng induced by the Blackwell–McQueen–

Hoppe urn scheme (Blackwell and MacQueen 1973). Let Pn be the (0, Ł) partition and Qn be

the (Æ, 0) partition. The partition (P � Q)n of n corresponds to the following partition of

f1, . . . , ng. First, partition f1, . . . , ng according to a (0, Ł) random partition. Next,
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independently partition each component of the (0, Ł) random partition according to an (Æ, 0)
random partition. Let —n denote the resulting random partition of f1, . . . , ng. Then the

probability that —n equals any particular partition of f1, . . . , ng into k classes Ai of sizes ni,

i ¼ 1, . . . , k, is

P(—n ¼ fAigk
1 ) ¼

Xk
j¼1

X
fCi,1<i< jg

Ł j

[Ł]n�1

Yj
i¼1

(mi � 1)!
Yj
i¼1

[#(Ci)� 1]!Æ#(Ci)�1

(mi � 1)!

Yk
i¼1

[1� Æ]ni�1

¼ 1

[Ł]n�1

Xk
j¼1

Ł j
X

fCi ,1<i< jg

Yj
i¼1

[#(Ci)� 1]!Æ#(Ci)�1
Yk
i¼1

[1� Æ]ni�1,

where
P

fCi ,1<i< jg denotes the sum over all partitions fCi, 1 < i < jg of the set f1, . . . , kg
into j parts. But by a standard identity (see, for example, Goulden and Jackson 1983) for the

generating function of the number of cycles in a random permutation,

Xk
j¼1

Ł j
X

fCi ,1<i< jg

Yj
i¼1

[#(Ci)� 1]!Æ#(Ci)�1 ¼ Ł(Łþ Æ) � � � (Łþ (k � 1)Æ),

we obtain

P(—n ¼ fAigk
1 ) ¼

(Łþ Æ) � � � (Łþ (k � 1)Æ)

(Łþ 1) � � � (Łþ n� 1)

Yk
i¼1

(1� Æ) � � � (ni � 1� Æ),

which is the (Æ, Ł) random partition of f1, . . . , ng corresponding to the (Æ, Ł) partition of n.

If we consider the corresponding representing sequences for these random partitions we

get the following result.

Corollary. Let X n denote the Chinese restaurant sequence (4) with parameter Ł and let Yn

denote the discrete homogeneous renewal sequence (10) corresponding to the (Æ, 0) partition.
Then (X � Y )n is the representing sequence for the (Æ, Ł) partition, provided Æ, Ł . 0.

We have seen that the full two-parameter (Æ, Ł) random partition admits a sequential

representation. However, aside from trivial partitions, this is the only explicit family known

which can be constructed via 0–1 sequences. It would be nice to find other random

partitions which allow such sequential constructions or, conversely, to construct novel

random 0–1 sequences representing random partitions.

An ultimate objective remains to determine natural necessary and sufficient conditions for

random partitions to admit sequential constructions like the random 0–1 sequences

discussed above.
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Goulden, I.P. and Jackson, D.M. (1983) Combinatorial Enumeration. New York: Wiley.

Hoppe, F.M. (1987) The sampling theory of neutral alleles and an urn model in population genetics.

J. Math. Biol., 25, 123–159.
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