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1. Introduction

Let X ¼ (�, F , F t, X (t), Łt, Px) denote the canonical realization of a spectrally negative

Lévy process with PxfX (0) ¼ xg ¼ 1. Thus X is a Hunt process with stationary independent

increments specified by

E0eÆX ( t) ¼ e tł(Æ), Æ > 0, (1:1)

where Ex is the expectation with respect to Px, and

ł(Æ) ¼ aÆþ 1

2
� 2Æ2 þ

ð0

�1
feÆx � 1 � Æx1(x . �1)g�(dx), (1:2)

with a 2 R, � 2 > 0, and � is a non-negative measure supported on (�1, 0) satisfyingð�1

�1
�(dx) , 1 and

ð0

�1

x2�(dx) , 1:

The measure � and the function ł are called the Lévy measure and the Lévy exponent of X,

respectively. Such a Lévy process has bounded variation if and only if � ¼ 0 andÐ 0

�1
jxj�(dx) , 1. In this case the Lévy exponent can be re-expressed as

ł(Æ) ¼ bÆþ
ð0

�1
(eÆx � 1)�(dx),
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where b ¼ a �
Ð 0

�1
x�(dx) is known as the drift coefficient. If � 2 . 0, X is said to have a

Gaussian component. As usual, we also assume that X is not a subordinator.

If Y is a spectrally positive Lévy process, then X :¼ �Y is a spectrally negative Lévy

process. Thus the results for Y can be obtained from the corresponding results for X.

The following facts on ł can be found in Bertoin (1996): ł is strictly increasing and

continuous on [z, 1), where z is the largest real zero of ł; ł(0) ¼ 0; ł(Æ) ! 1 as

Æ ! 1; ł9(0þ) ¼ E0 X (1); and ł9(Æ) . 0 for Æ . 0. The right inverse of ł is denoted by

ł�1.

For x 2 R, denote by �x ¼ infft > 0 : X (t) . xg and Tx ¼ infft > 0 : X (t) , xg the

first passage time above and below the level x, respectively; denote by lx ¼
supft > 0 : X (t) , xg and T 9x ¼ infft > Tx : X (t) . xg the last passage time below the

level x and the first passage time above the level x after Tx, respectively, with the usual

convention that inf ˘ ¼ 1 and sup˘ ¼ 0. Since E0 X (1) < 0 leads to

lim inf t!1 X (t) ¼ �1 almost surely (Zolotarev 1964), which implies lx ¼ 1 almost

surely for any fixed x, we assume that E0 X (1) . 0, which is equivalent to

P0flim t!1 X (t) ¼ þ1g ¼ 1 (Bingham 1975). For ease of presentation, let Q(x) ¼
1 � Q(x) ¼ P0finf t>0 X (t) , �xg for x > 0, Q(0) :¼ limx#0 Q(x) and E0 X (1) ¼ m.

Lemma 1.1 (Bertoin, 1996, p. 189, Theorem 1). For the spectrally negative Lévy process X,

�x with x > 0 is a subordinator with the Laplace exponent ł�1, that is,

E0e�Æ�x ¼ e�xł�1(Æ), Æ > 0: (1:3)

Consequently ł�1 is differentiable.

Lemma 1.2 (Zolotarev 1964). For the spectrally negative Lévy process X, Q(x) can be

determined by

Æ

ð1
0

e�ÆxQ(x)dx ¼ 1 � Æm

ł(Æ)
: (1:4)

It follows from (1.4) that Q(0) ¼ 1 if � 2 . 0 or
Ð 0

�1
jxj�(dx) ¼ 1 (see also Rogozin

1965; Prabhu 1970), and that

Q(0) ¼

ð0

�1
x�(dx)ð0

�1

x�(dx) � a

if � ¼ 0 and
Ð 0

�1
jxj�(dx) , 1.

It is known that ¸ t(c) ¼ expfcX (t) � ł(c)tg is a martingale under P0 for any c such that

ł(c) is finite (see Avram et al. 2004). Let P
(c)
0 denote the probability measure on F defined

by

dP
(c)
0

dP0

����
F t

¼ ¸ t(c),
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for all 0 < t , 1. We have for the stopping time Tx (x < 0),

P
(c)
0 (Tx , 1) ¼ E0f¸Tx

(c)1(Tx , 1)g ¼ E0f¸Tx
(c)g: (1:5)

Under the measure P
(c)
0 , X remains within the class of spectrally negative processes and the

Laplace exponent of X is given by (see Avram et al. 2004)

łc(Ł) ¼ ł(Łþ c) � ł(c), Ł > minf�c, 0g: (1:6)

Definition 1.1 (Avram et al. 2004; Bertoin 1997). Consider (X , P
(c)
0 ). For p > 0, the p-scale

function W ( p)
c : (�1, 1) ! [0, 1) is the unique function whose restriction to (0, 1) is

continuous and has Laplace transformð1
0

e�ŁxW ( p)
c (x)dx ¼ fłc(Ł) � pg�1, Ł . ł�1

c ( p),

and is defined to be identically zero for x < 0. Further, for every x > 0, the mapping

p ! W ( p)
c (x) can be extended to p 2 C by W ( p)

c (x) ¼
P1

k¼0 pk W�(kþ1)
c (x), where W�k

c

denotes the kth convolution power of the function W (0)
c . Moreover, let

Z( p)
c (x) ¼ 1 þ p

ðx

�1
W ( p)

c (y)dy:

Lemma 1.3 (Emery 1973). For Æ > 0 and � > 0, the joint Laplace transform of T y and

X (T y) is given by

Ex(e�ÆT yþ�X (T y)) ¼ e�xfZ
( p)

� (x � y) � W
( p)

� (x � y) p=ł�1
� ( p)g, x > y, (1:7)

where p ¼ Æ� ł(�).

Lemma 1.4 (Doney 1991). (i) For any bounded variation spectrally negative Lévy process we

have E0(e�ŁT 90 ) ¼ 1 � fb(ł�1)9(Ł)g�1 for Ł . 0.

(ii) For any spectrally negative Lévy process with paths of unbounded variation, T 90 ¼ 0

almost surely.

The first passage time for Lévy processes has been well studied; see Doney (1991),

Emery (1973), Prabhu (1970), Rogers (1990; 2000) and Zolotarev (1964). This paper is

more concerned with the last passage time and its joint distribution with the duration

between the first and the last visit at x and the duration of the first period spent below the

level x. More precisely, the main purpose of this paper is to develop results related to the

random variables lx � �x, lx � Tx, lx and T 9x � Tx for spectrally negative Lévy processes.

Explicit solutions of the Laplace transforms of the distributions are obtained.

The outline of the paper is as follows. Section 2 gives some primary results for a Lévy

process with bounded variation. Section 3 considers the general case, which of course

includes Lévy processes with bounded variation as a special case. We present the bounded

variation case separately to demonstrate a different methodology. Applications in risk theory

are discussed in Section 4.
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2. Special case

This section considers the spectrally negative Lévy process with bounded variation, that is,

the case of X with � ¼ 0 and
Ð 0

�1
jxj�(dx) , 1. Under these conditions, X is essentially a

positive drift minus a subordinator (see Bingham 1975, Proposition 6). To avoid ambiguity,

we use a different notation for the Lévy component in this case:

�(Æ) ¼ bÆþ
ð0

�1
(eÆx � 1)�(dx),

where b ¼ a �
Ð 0

�1
x�(dx).

We first give the Laplace transform of lx � �x, the duration between the first and the last

visit at x, then deduce the Laplace transform of lx, and finally find the joint Laplace

transform of Tx, lx � Tx and T 9x � Tx.

Theorem 2.1. For any y < x and Æ . 0, we have

E ye�Æ( lx��x) ¼ m(��1)9(Æ): (2:1)

Proof. We first consider y ¼ 0. For x > 0, let Sn(x) denote the time elapsed between

the nth and the (n þ 1)th visit at x. Since x is both non-polar and non-regular, it

is clear that lx � �x ¼ S1(x) þ . . . þ SN (x) on fø 2 � : Si(x)(ø) , 1g, where N ¼
maxfk > 1 : Sk(x) , 1g. The Markov property of the process implies that the random

variables Si(x) are independent and identically distributed. Moreover, they are independent of

N, which has a geometric distribution

P0(N ¼ k) ¼ Q(0)Qk(0), k ¼ 0, 1, 2, . . . :

Note that P0(lx � �x , 1) ¼ 1 and P0fS1(x) > Txg ¼ 1. Thus, for Æ . 0, we have

E0e�Æ( lx��x) ¼ E0(e�Æ( lx��x)jlx � �x , 1)

¼
X1
k¼0

fE0(e�ÆS1(x)jS1(x) , 1)gk P0(N ¼ k)

¼ Q(0)

1 � Q(0)E0(e�ÆS1(x)jS1(x) , 1)
: (2:2)

The distribution of S1(x) does not depend on x, since the process X has stationary

independent increments. It follows from Lemma 1.4 that

E0fe�ÆS1(0)1(T0 , 1)g ¼ E0e�ÆS1(0) ¼ 1 � fb(��1)9(Æ)g�1,

which implies that

E0(e�ÆS1(0)jS1(0) , 1) ¼ E0(e�ÆS1(0)jT0 , 1) ¼ [1 � fb(��1)9(Æ)g�1]=Q(0):

Substituting this into (2.2) and noting that Q(0)b ¼ m, we obtain
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E0e�Æ( lx��x) ¼ m(��1)9(Æ): (2:3)

Since X has stationary independent increments, for x, y 2 R and y < x,

E ye�Æ( lx��x) ¼ E0e�Æ( lx� y��x� y),

and the result follows.

Theorem 2.2. For Æ . 0 and x, y 2 R,

E yfe�Æ lx1(lx . 0)g ¼

m(��1)9(Æ)e�(x� y)��1(Æ), y , x, (2:4)

m(��1)9(Æ) � m

b
, y ¼ x, (2:5)

m(��1)9(Æ)P
(��1(Æ))
0 (Tx� y , 1)

e(x� y)��1(Æ)
, y . x: (2:6)

8>>>>><
>>>>>:

Proof. Since P0fX (�x) ¼ xg ¼ 1, the strong Markov property of X at time �x implies that,

for x, s, t . 0,

P0(lx � �x , t, �x , s) ¼ E0fPX (�x)(lx , t)1(�x , s)g

¼ Px(lx , t)P0(�x , s): (2:7)

The process X has only negative jumps and P0flim t!1 X (t) ¼ þ1g ¼ 1, thus

P0(�x , 1) ¼ 1 for x . 0. Consequently, letting s ! 1 in (2.7) yields

P0(lx � �x , t) ¼ Px(lx , t), and hence (2.7) shows that lx � �x and �x are independent

with respect to P0. As a result, by (2.3) and Lemma 1.1, we have, for x . 0,

E0e�Æ lx ¼ E0e�Æ( lx��x)E0e�Æ�x ¼ m(��1)9(Æ)e�x��1(Æ):

Letting x # 0 yields

E0e�Æ l0 ¼ m(��1)9(Æ),

and due to the stationarity and independence of increments, for any x 2 R, we have

Exe�Æ lx ¼ E0e�Æ l0 ¼ m(��1)9(Æ), (2:8)

which is equivalent to (2.5).

For any y , x, Py(lx . 0) ¼ Py(�x , 1) ¼ 1 and Py(X (�x) ¼ x) ¼ 1. By the strong

Markov property of X at time �x,

E yfe�Æ lx1(lx . 0)g ¼ E y[e�Æ�x EX (�x)fe�Æ lx1(lx > 0)g1(�x , 1)]

¼ E0e�Æ�x� y Exe�Æ lx : (2:9)

Equation (2.4) follows from (2.8), (2.9) and Lemma 1.1.

Since X has stationary independent increments and is strong Markov, for any y . x, we

have
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E yfe�Æ lx1(lx . 0)g ¼ E0fe�Æ lx� y1(lx� y . 0)g

¼ E0[e�ÆTx� y EX (Tx� y)fe�Æ lx� y1(lx� y > 0)g1(Tx� y , 1)]

¼
ð1

0

ðx� y

�1
e�Æ tEz(e

�Æ lx� y )P0fTx� y 2 dt, X (Tx� y) 2 dz, Tx� y , 1g,

so that equation (2.6) follows from (2.4) and (1.5). h

Theorem 2.3. Suppose that Æ, �, � . 0 and x, y 2 R. If y . x, then

E yfe�ÆTx��( lx�Tx)��(T 9x�Tx)1(Tx , 1)g

¼ m(��1)9(�)e�x��1(�þ�)˜1(Æ, �, �, x, y), (2:10)

where

˜1(Æ, �, �, x, y) ¼ e�
�1(�þ�) y Z

( p1)

��1(�þ�)
(y � x) �

W
( p1)

��1(�þ�)
(y � x) p1

��1
��1(�þ�)( p1)

( )
,

in which p1 ¼ Æ� �� �.

Proof. By the strong Markov property of X and (2.4),

E yfe�ÆTx��( lx�Tx)��(T 9x�Tx)1(Tx , 1)g

¼ E yfe�ÆTx EX (Tx)e
�� lx��T 9x1(Tx , 1)g

¼ E yfe�ÆTx EX (Tx)fe�(�þ�)T 9x � Exe�� lxg1(Tx , 1)g

¼ m(��1)9(�)E yfe�ÆTx���1(�þ�)fx�X (Tx)g1(Tx , 1)g

¼ m(��1)9(�)e�x��1(�þ�)E yfe�ÆTxþ��1(�þ�)X (Tx)g,

and the result follows from Lemma 1.3. h

The following corollary generalizes the result in Doney (1991, equation (2.19)).

Corollary 2.1. For any Æ, � . 0, we have

E0fe�ÆT0��( l0�T0)��(T 90�T0)1(T0 , 1)g

¼ m(��1)9(�) 1 � Æ� �� �

bf��1(Æ) � ��1(�þ �)g

� �
:

Proof. From the proof of Theorem 2.3 one finds
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E0fe�ÆT0��( l0�T0)��(T 90�T0)1(T0 , 1)g

¼ m(��1)9(�)E0fe�ÆT0þ��1(�þ�)X (T0)g:

Since

E0e�ÆT0þ��1(�)X (T0) ¼ 1 � Æ� �

bf��1(Æ) � ��1(�)g

(Prabhu 1970), the result follows. h

3. General case

In the previous section, we computed the Laplace transforms of lx, lx � �x and the joint

Laplace transform of Tx, lx � Tx and T 9x � Tx for a spectrally negative Lévy process X with

bounded variation. In this section, we consider the general Lévy process defined by (1.1)

and (1.2), which includes the bounded variation case in Section 2. The argument used in

Section 2, however, cannot be applied to the case where � 6¼ 0 or
Ð 0

�1
jxj�(dx) ¼ 1, because

then X has unbounded variation and hence Si(x) ¼ 0 almost surely (see Lemma 1.4(ii)).

Theorem 3.1. For Æ . 0 and x, y 2 R, we have

E yfe�Æ lx1(lx . 0)g ¼

m(ł�1)9(Æ)e�(x� y)ł�1(Æ), y , x,

m(ł�1)9(Æ) � Q(0), y ¼ x,

m(ł�1)9(Æ)P
(ł�1(Æ))
0 (Tx� y , 1)

e(x� y)ł�1(Æ)
, y . x,

8>>>>>><
>>>>>>:

(3:1)

(3:2)

(3:3)

where Q(0) ¼ 0 if � 2 . 0 or
Ð 0

�1
jxj�(dx) ¼ 1, and Q(0) ¼ m=b if � 2 ¼ 0 andÐ 0

�1
jxj�(dx) , 1.

Proof. Since fl0 , tg ¼ fX (t) . 0, inf s> t X (s) . 0g, using the Markov property and right

continuity, we have

E0e�Æ l0 ¼ Æ

ð1
0

e�Æ t P0(l0 , t)dt

¼ Æ

ð1
0

ð1
0

e�Æ tQ(x)P0fX (t) 2 dxgdt:

Applying the identity tP0f�x 2 dtgdx ¼ xP0fX (t) 2 dxgdt (Bertoin 1996, p. 190, Corollary

3) to this leads to
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E0e�Æ l0 ¼ Æ

ð1
0

x�1Q(x)

ð1
0

te�Æ t P0(�x 2 dt)

� �
dx

¼ �Æ

ð1
0

x�1Q(x)
d

dÆ

ð1
0

e�Æ t P0(�x 2 dt)

� �� �
dx

¼ �Æ

ð1
0

x�1Q(x)
d

dÆ
fe�xł�1(Æ)g

� �
dx

¼ Æ(ł�1)9(Æ)

ð1
0

Q(x)e�xł�1(Æ)dx

¼ m(ł�1)9(Æ),

where (1.3) and (1.4) have been used in the third and last step, respectively. The process X

has stationary independent increments, and thus, for any x 2 R, we have

Exe�Æ lx ¼ E0e�Æ l0 ¼ m(ł�1)9(Æ), (3:4)

and (3.2) follows.

Since (2.9) remains true for processes of unbounded variation, it, together with (1.3) and

(3.4), yields (3.1).

For any y . x, using (3.4) and an argument similar to the proof of (2.6), we obtain

E yfe�Æ lx1(lx . 0)g

¼
ð1

0

ðx� y

�1

m(ł�1)9(Æ)

eÆ t
e�(x� y�z)ł�1(Æ) P0fTx� y 2 dt, X (Tx� y) 2 dz, Tx� y , 1g,

and (3.3) follows. h

Remark 3.1. By using Lemma 1.2 or Kyprianou and Palmowski (2005, Theorem 4), we have

P
(ł�1(Æ))
0 (Tx� y , 1) ¼ 1 � ł9ł�1(Æ)(0þ)W

(0)

ł�1(Æ)
(y � x),

and replacing ł�1 by ��1 yields an expression for the probability P
(��1(Æ))
0 (Tx� y , 1) in the

special case presented in Section 2.

Theorem 3.2. Suppose that Æ, �, � . 0 and x, y 2 R. If y , x, then

E yfe�Æ�x��( lx��x)1(�x , 1)g ¼ m(ł�1)9(�)e�(x� y)ł�1(Æ), (3:5)

and if y . x, then

E yfe�ÆTx��( lx�Tx)þ�X (Tx)1(Tx , 1)g ¼ m(ł�1)9(�)e�xł�1(�)˜2(Æ, �, �, x, y), (3:6)

where
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˜2(Æ, �, �, x, y) ¼ ek y Z( p2)
k (y � x) � W ( p2)

k (y � x) p2

ł�1
k ( p2)

� �
,

with p2 ¼ Æ� ł(�þ ł�1(�)) and k ¼ �þ ł�1(�).

Proof. For any y, x 2 R such that y , x, Py(�x , 1) ¼ 1 and Py(X (�x) ¼ x) ¼ 1. The strong

Markov property of X at time �x, the stationarity and independence of increments and

equation (3.2) imply that, for Æ, � . 0,

E yfe�Æ�x��( lx��x)1(�x , 1)g ¼ E y[e�Æ�x EX (�x)fe�� lx1(lx > 0)g1(�x , 1)]

¼ E y(e�Æ�x)Exfe�� lx1(lx > 0)g

¼ E0(e�Æ�x� y )Ex(e�� lx ): (3:7)

Equation (3.5) follows from (1.3), (3.4) and (3.7).

For any y, x 2 R such that y . x and Æ, �, � . 0, from the strong Markov property of X

and (3.1),

E yfe�ÆTx��( lx�Tx)þ�X(Tx)1(Tx , 1)g

¼ E y[e�ÆTxþ�X (Tx)EX (Tx)fe�� lx1(lx > 0)g1(Tx , 1)]

¼
ð1

0

ðx

�1
e�Æ tþ�zEzfe�� lx1(lx > 0)gPyfTx 2 dt, X (Tx) 2 dz, Tx , 1g

¼ m(ł�1)9(�)

ð1
0

ðx

�1
e�Æ tþ�ze�(x�z)ł�1(�) PyfTx 2 dt, X (Tx) 2 dz, Tx , 1g,

and the result follows. h

4. Applications to risk theory

Consider the surplus R(t) that is the classical risk process perturbed by diffusion:

R(t) ¼ u þ ct þ � Bt �
XNt

i¼1

Zi, t > 0, (4:1)

where u > 0 is the initial surplus, � a non-negative constant, c the positive constant premium

income rate, fBt, t > 0g the standard Brownian motion, fNt, t > 0g a Poisson process with

intensity º . 0, and fZ k , k > 1g a sequence of non-negative independent and identically

distributed claim amounts, such that fBt, t > 0g, fN t, t > 0g and fZ k , k > 1g are

independent. Denote by P and � the distribution function and the mean, respectively, of

the claim sizes Z k , with the condition that P(0) ¼ 0. Assume that the safety loading c � º�
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is positive, so that lim t!1 R(t) ¼ 1 almost surely if the process continues even when the

surplus is negative. For simplicity, P is assumed to possess a density p. The diffusion term in

(4.1) contributes an additional uncertainty of the premium income or the aggregate claims to

the surplus. This model was first introduced and studied by Gerber (1970). When � ¼ 0, (4.1)

is called the classical risk process. We refer to Embrechts et al. (1997), Rolski et al. (1999)

and Asmussen (2000) for a complete presentation of risk theory.

Denote the Laplace transform of p by p̂p(Æ) ¼
Ð1

0
e�Æx p(x)dx. Then E0eÆfR( t)�ug ¼ e t�(Æ),

where �(Æ) ¼ cÆþ 1
2
� 2Æ2 þ ºf p̂p(Æ) � 1g. Obviously fR(t) � u, t > 0g is a spectrally

negative Lévy process with E0fR(1) � ug ¼ c � º� . 0 and initial value zero.

Let T denote the time of ruin and �(u) ¼ Pu(T , 1) the ultimate ruin probability. It is

well known that �(0) is 1 if � 6¼ 0, and is º�=c otherwise. If we use the notation in

Section 1, we have T ¼ T0 and �(u) ¼ Q(u).

One central topic of risk theory is to find the probability of ruin. Recently there has been

growing interest in the distributions of some other random variables related to the surplus

process. These random variables include the time when the surplus reaches some level for

the first time (Gerber 1990; Picard and Lefèvre 1994; Zhang and Wu 2002), the time when

the surplus crosses some level for the last time (Gerber 1990), the duration of negative

surplus (Egı́dio dos Reis 1993; Zhang and Wu 2002) and the recovery time from negative

surplus (Dickson and Egı́dio dos Reis 1997; Egı́dio dos Reis 2000; Yang and Zhang 2001).

A scenario where these random variables make sense is as follows. Suppose that the

portfolio under consideration is one of many belonging to a company so that it has other

funds available to support negative surpluses for a while, in the hope that the portfolio will

recover in the future. In such a situation perhaps a more interesting question is to find the

distributions of the first and last passage times and of their difference for the surplus

process at a given level. Gerber (1990) considered this question for the classical risk model

and obtained explicit results for their Laplace transforms and their moments. However,

when we consider the time of last passage at level x and the duration between successive

visits at x for the classical risk process perturbed by diffusion, the method of Gerber (1990)

is not applicable because the infinite oscillation of R(t) due to the Brownian motion Bt

yields an arbitrarily small duration. Nevertheless, the general results of spectrally negative

Lévy processes in Sections 2 and 3 can be used directly.

Using the same notation �x, lx, Tx and T 9x as before and applying the results in previous

sections to the special Lévy process defined by equation (4.1), we obtain the following

results.

Theorem 4.1. For any y < x and Æ . 0, we have

E ye�Æ( lx��x) ¼ c � º�

c þ º p̂p9(��1(Æ))
:

Theorem 4.2. For Æ . 0 and x, y 2 R,
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E yfe�Æ lx1(lx . 0)g ¼

c � º�

c þ ��1(Æ)� 2 þ º p̂p9(��1(Æ))
e�(x� y)��1(Æ), y , x,

� º(c � º�) p̂p9(��1(Æ))

cfc þ º p̂p9(��1(Æ))g , y ¼ x, � ¼ 0,

c � º�

c þ ��1(Æ)� 2 þ º p̂p9(��1(Æ))
, y ¼ x, � 6¼ 0,

(c � º�)P
(��1(Æ))
0 (Tx� y , 1)

c þ ��1(Æ)� 2 þ º p̂p9(��1(Æ))
e�(x� y)��1(Æ), y . x:

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

Theorem 4.3. For any Æ, �, � . 0 and x, y 2 R, if y , x, then

E yfe�Æ�x��( lx��x)1(�x , 1)g ¼ (c � º�)e�(x� y)��1(Æ)

c þ ��1(�)� 2 þ º p̂p9(��1(�))
,

and if y . x, then

E yfe�ÆTx��( lx�Tx)þ�R(Tx)1(Tx , 1)g ¼ (c � º�)E0e�ÆTx� yþf�þ��1(�)gR(Tx� y)

fc þ ��1(�)� 2 þ º p̂p9(��1(�))gex��1(�)
,

where E0e�ÆTx� yþf�þ��1(�)gR(Tx� y) can be computed by using Lemma 1.3.

Theorem 4.4. Suppose that Æ, �, � . 0 and � ¼ 0. For any x, y 2 R, if y . x, then

E yf�ÆTx��( lx�Tx)��(T 9x�Tx)1(Tx , 1)g

¼ c � º�

c þ º p̂p9(��1
1 (�))

e�x��1
1 (�þ�)E0fe�ÆTx� yþ��1

1 (�þ�)R(Tx� y)g,

where �1(Æ) ¼ cÆþ ºf p̂p(Æ) � 1g and E0e�ÆTx� yþ��1
1 (�þ�)R(Tx� y) can be computed by using

Lemma 1.3.

Remark 4.1. Taking c ¼ 1, y ¼ 0 and Æ ¼ �s in the case of � ¼ 0 in Theorem 4.2, we get

Gerber (1990, p. 118, equation (43)).
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