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In a right-angled triangle, the hypotenuse is the longest side. So, if all (hypotenuse) vectors from a

given set of vectors have the same orthogonal projection onto a certain subspace, we have a lower

bound for their lengths. Interpreting the square of such a length as the variance of an unbiased

estimator produces an information bound. The Cramér–Rao bound and the van Trees inequality can

be seen as consequences of this bound. Another consequence is an inequality for the minimax

variance, that is, the maximal variance in shrinking neighbourhoods, minimized over all unbiased

estimators. This bound is non-asymptotic and requires almost no regularity conditions.
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1. Summary and introduction

There are viewpoints from which the existence of bounds for the precision of unbiased

estimation is obvious. In Section 2 we present such a viewpoint and the corresponding

bound; in Section 3 we examine the relation between that bound and the number of

independent draws, and see the use of taking the mean. The question for which unbiased

estimators our bound holds is answered in Section 4; the answer is such that a new

information bound appears, which holds for all unbiased estimators. In Section 5 the

empirical distribution function is found to be optimal for the new criterion. Next we

connect our viewpoint with the customary viewpoint via properties of the parametrization

map that are often present but seldom used, if ever. The Cramér–Rao bound then follows,

in Section 6, from the bound in Section 2 and the chain rule; that is why the Fisher

information is inverted. Once the right setting has been established, the same devices give,

in Section 7, the van Trees inequality. A condition that makes our van Trees proof work is

contained in Section 8; the Appendix explains the differentiability concept we use.

The difference between the present approach and the usual set-up is that, roughly

speaking, in the latter one differentiates W 7! PW, while in the former it is PW 7! W
which is differentiated. We are not the first to do this inversion; it is implicit in, for

example, Klaassen et al. (1988). For more references see Janssen (2003), which itself is a

demonstration of recent interest. New are, we think, the extent to which this approach has

been simplified and exploited in an almost self-contained exposition, and – as hinted at

above – the supplement we provide to the inversion of the parametrization map: the inverse

function theorem for Banach spaces.
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2. One draw

Let P be a set of probability measures on the measurable space (X , A) and k : P ! R be

a parameter of interest. If, for a measurable map t : (X , A) ! (R, Borel sets of R), we

have ð
X
t(x) dP(x) ¼ k(P) 8P 2 P,

then t is called an unbiased estimator for k. Let X , given P 2 P, be any random element of

X with probability distribution P and abbreviate

T :¼ t � X : (1)

Then
Ð
X t(x) dP(x) can be written as EPT , the P-expectation of T . In this section we show

the existence of a lower bound BP 2 R for the numbers varP T :¼ EP((T � EPT )2), t 2 T r,

where T r is the set of unbiased estimators for k that have the special property of being

‘regular at P’. In Section 4 this ‘highly undesirable’ (cf. Fabian and Hannan 1977) restriction

will be removed and a bound will emerge for all unbiased estimators.

The notion involved in the regularity is tangential differentiation. It is explained in the

Appendix; the only things that matter in this section are that tangent spaces are closed

linear subspaces of the whole normed linear space at hand, that tangential derivatives are

maps on tangent spaces, and that no map has more than one tangential derivative at any

point. Here is the definition of regularity.

Let � be a measure on (X , A) and let u 2 U � L2
X ,�. A measurable t : X ! R is

[U-]regular at u if there is a neighbourhood U of u in U such that

• for every s 2 U the map ts : x 2 X 7! t(x)s(x) lies in L2
X ,�, and

• the map

s 2 U � U � L2
X ,� 7! hts, si 2 R

(with ha, bi ¼
Ð
X a(x)b(x) d�(x), the inner product in the real Hilbert space L2

X ,�) is

tangentially differentiable at u, while

• the tangential derivative of this map at u is represented by 2tu, that is, it is equal to the

map

h 2 _UU(u) 7! hh, 2tui,

where _UU(u) denotes the tangent space of U at u (just as the derivative at u of the map

s 2 R 7! cs2 is equal to the map h 2 R 7! h � 2cu).

Theorem 1. If (X , A) is a measurable space, � a measure on (X , A), P a set of probability

measures on (X , A) that have a density with respect to �, P is a member of P, we identify

each Q 2 P with the corresponding (density of Q)1=2 2 L2
X ,�, k : P ! R is a parameter of

interest, and T r is the set of the unbiased estimators for k that are P-regular at P, then all

members of f2(t þ c)P 2 L2
X ,� : t 2 T r, c 2 Rg have the same projection onto the tangent
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space _PP(P) of P at P, so that, with dk(P)=dP defined as equal to this unique projection for

T r 6¼ ˘, we have

k2(t þ c)Pk2
L2
X ,�

>

����� dk(P)

dP

�����
2

L2
X ,�

8t 2 T r, c 2 R, (2)

and, in particular,

varP T >
1

4

����� dk(P)

dP

�����
2

L2
X ,�

8t 2 T r: (3)

Proof. If t, t9 2 T r, then 2tP and 2t9P represent the same map on _PP(P), namely, the

tangential derivative at P of Q 2 P 7! htQ, Qi ¼ k(Q) ¼ ht9Q, Qi, and their projections onto
_PP(P) do the same; therefore, these projections coincide. Further, the definition of tangential

differentiability implies that Q 2 P 7! hcQ, Qi ¼ c has derivative h 2 _PP(P) 7! 0 and that, as

we shall show in Section 4, the map x 2 X 7! c is regular at P. So h 2 _PP(P) 7! 0 2 R is

represented by 2cP. It follows that P is perpendicular to _PP(P). Now (2) results from

Pythagoras and (3) from taking c ¼ �EPT in (2). h

We see that if T r 6¼ ˘, the map k is tangentially differentiable at P and the vector

dk(P)=dP is the unique member of _PP(P) representing the derivative at hand.

This section concludes with an observation in the case where the tangent spaces are large

and a picture for the case where they are not.

In the situation of Theorem 1 we call the set P of probability measures nonparametric

(for a different definition, see Groeneboom and Wellner 1992) if, for every measurable

g : X ! R with gQ 2 L2
X ,� for all Q 2 P, it is true that

gQ ? Q ) gQ 2 _PP(Q) 8Q 2 P:

Let TR be the set of unbiased estimators for k that are regular, that is, regular everywhere.

For any Q 2 P, t, t9 2 TR we have 2 t � k(Q)ð ÞQ ? Q and

(t � t9)Q ? Q because both t and t9 are unbiased,
_PP(Q) because the projection on _PP(Q) is zero:

	
Indeed, if P is nonparametric, the implications are

tQ ¼
L2
X ,�

t9Q and 2(t � k(Q))Q ¼
L2
X ,� dk(Q)

dQ
8t, t9 2 TR, 8Q 2 P:

These findings we express as follows:

Proposition 2. In nonparametric models, regular unbiased estimators are essentially unique

and attain the bound (3) everywhere.

In Section 5 we give an example. Observe that for a nonparametric P and n . 1, the set
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P(n) :¼ fQn : Q 2 Pg of probability measures on X n need not be nonparametric, if only

because estimating on the basis of a subsample will, in general, increase the variance, while

not necessarily being less regular; see Section 5. From the next sections we shall also learn

that in estimating on the basis of a draw from Pn ‘the mean of optimal is optimal’.

Figure 1 illustrates the non-nonparametric case. The tangent space and all vectors shown

have been translated over P, except P itself. The space L2
X ,� is depicted as R3, that is, for

the case X ¼ f1, 2, 3g. Of the unit sphere only its intersection with the horizontal plane in

R3 is shown; the set P happens to lie in this intersection and has a one-dimensional tangent

space _PP(P) at P. The difference of 2tP and 2t9P is seen to be orthogonal to the horizontal

plane, which here is equal to the space spanned by P and _PP(P).

3. Independent draws

Here we examine what happens to the lower bound in Theorem 1 if the estimating is based

on n independent draws from P, that is, one draw from Pn.

In the formulation of the theorem below we use the facts that a tangential derivative of

an R-valued function is a bounded linear R-valued map and that by the Riesz–Fréchet

representation theorem for such maps on real Hilbert spaces there are always vectors that

represent them. From what we saw in the previous section it is clear that the resulting new

Figure 1. A view of Theorem 1 for a non-nonparametric model P.
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definitions extend the old ones. We require that � be � -finite, so that �n is defined and

dominates Pn if � dominates P.

Theorem 3. If (X , A) is a measurable space, � a � -finite measure on (X , A), P a set of

probability measures on (X , A) that have a density with respect to �, P is a member of P, n
of Nnf0g, we identify each Q 2 P with the corresponding (density of Q)1=2 2 L2

X ,� and each

Qn 2 P(n) with the corresponding (density of Qn)1=2 2 L2
X n,�n , and k : P ! R and

kn : P(n) ! R are related by kn : Qn 7! k(Q) for all Q 2 P, then the tangential

differentiability of k at P and the tangential differentiability of kn at Pn are equivalent,

and if both hold, we have ����� dk(P)

dPn

�����
2

L2
X n ,�n

¼ 1

n

����� dk(P)

dP

�����
2

L2
X ,�

,

where dk(P)=dPn is defined as equal to the unique member of the tangent space _PP(n)(Pn) of

P(n) at Pn representing the tangential derivative of kn at Pn, and dk(P)=dP :¼ the unique

member of the tangent space _PP(P) of P at P representing the tangential derivative of k at P.

Proof. Denote for members a1, . . . , an 2 L2
X ,� the function (x1, . . . , xn) 2 X n 7!

a1(x1) . . . an(xn) 2 R by a1 � � � � � an (which, with our identification, leads to

Qn 	 Q�n). Then Fubini is seen to give a1 � � � � � an 2 L2
X n,�n and even

ha1 � � � � � an, b1 � � � � � bniL2
X n ,�n

¼
Yn
i¼1

hai, biiL2
X ,�

8ai, bi 2 L2
X ,�, i ¼ 1, . . . , n: (4)

With f : a 2 L2
X ,� 7! a�n 2 L2

X n,�n we have

f (aþ h) � f (a) ¼ h� a�n�1 þ a� h� a�n�2 þ . . . þ a�n�1 � h

þ terms with more than one factor h;

(4) implies the latter terms are o(khk), and Ta: h 2 L2
X ,� 7! h� a�n�1 þ a� h� an�2 þ

. . . þ a�n�1 � h is bounded, while Ta is also linear. According to the Appendix, f is

everywhere differentiable with derivative f 9(a) at a equal to Ta, and by Theorem A.1 the

restriction f jP is tangentially differentiable at P with tangential derivative at P equal to

TPj _PP(P). As f (P) ¼ Pn, it follows from the chain rule (Theorem A.3) that if kn is tangentially

differentiable at Pn, then so is k ¼ kn � f jP at P.

For the second half of the first statement of the theorem we construct a map

g : V � L2
X n,�n ! L2

X ,�. (We owe this construction to Arnoud van Rooij.) Let b 2 L2
X n,�n ,

b > 0. Then for all x1 2 � the function (x2, . . . , xn) 7! b(x1, x2, . . . , xn) 2 R is measurable

and

z(b)ð Þ(x1) :¼
ð
X n�1

b(x1, . . . , xn)P(x2) . . . P(xn) d�(x2) . . . d�(xn)

defines a number in [0, 1], while x1 2 X 7! z(b)ð Þ(x1) is measurable. By Cauchy–Schwarz

and (4) we have
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ð
X
jz(b)hj d� <

ð
X n

jbj:jhj � P�n�1 d�n

< kbkL2
X n ,� n

khkL2
X ,�
kPkn�1

L2
X ,�

¼ kbkL2
X n ,� n

khkL2
X ,�

, 8h 2 L2
X ,�, (5)

and in particular we see that, if X ¼ [1
i¼1Ai for Ai 2 A with �(Ai) , 1, every

Ð
z(b)1Ai

d�
is finite. It follows that z(b)1Ai

is �-almost everywhere finite, and so is z(b). If, therefore, in

the integrand of the integral that defined z(b)ð Þ(x1) we take an arbitrary b 2 L2
X n,�n, the

integral exists and is finite for �-almost every x1 2 L2
X ,�. Call the resulting �-almost

everywhere defined function z(b) again. We prove z(b) 2 L2
X ,�.

Take the Ai from above and let hi :¼ 1jz(b)j<i1[i
j¼1

A j
jz(b)j. Then hi 2 L2

X ,�; because (5)

still holds for the new b, we have kbk khik >
Ð
X jz(b)jhi d� ¼

Ð
X h2

i d�. We obtainÐ
h2
i d� < kbk2 for all i; the �-almost everywhere convergence hi " jz(b)j entailsÐ

X z(b)ð Þ2
d� < kbk2.

From (5) with h :¼ z(b) it now follows that the linear map b 7! z(b) is bounded and

therefore everywhere differentiable; since, away from f0g, taking the norm is differentiable

as well, we have that

g : b 2 V � L2
X n,�n 7!

z(b)

kz(b)k 2 L2
X ,�

is differentiable on the open set V :¼ fb : z(b) 6¼ 0g � L2
X n,�n . Observe z(Qn) ¼

(
Ð
QP d�)n�1Q for all Q 2 P, so z(Pn) ¼ P and Pn 2 V. Again by Theorem A.1, the

restriction gjP(n)\V is differentiable at Pn along the tangent space of P(n) \ V at Pn, which is
_PP(n)(Pn) because V is open.

If Q 2 P is such that z(Qn) 6¼ 0, then (
Ð
QP d�)n�1 . 0 because QP > 0, so that

kz(Qn)k ¼ (
Ð
QP d�)n�1 and g(Qn) ¼ Q. We conclude that f jP � gjP( n)\V ¼ idP(n)\V and

knjP( n)\V ¼ k � gjP(n)\V . As g(Pn) ¼ P, it follows from the latter conclusion and Theorem

A.3 that if k is tangentially differentiable at P, then so is knjP( n)\V at Pn, and from the

openness of V again that if knjP( n)\V is tangentially differentiable at Pn, then so is kn at Pn.

This proves the first statement of the theorem.

From f jP � gjP( n)\V ¼ idP(n)\V and the chain rule we infer that

TP
_PP(P)

� �
¼ _PP(n)(Pn): (6)

We can now determine the relation between the norms of dk(P)=dP and dk(P)=dPn. Suppose

the corresponding derivatives exist. For them, application of the chain rule to k ¼ kn � f jP
yields

TP(h),
dk(P)

dPn

� �
L2
X n ,� n

¼ h,
dk(P)

dP

� �
L2
X ,�

8h 2 _PP(P): (7)

We have hP, PiL2
X ,�

¼ 1 and, from Theorem 1, hh, PiL2
X ,�

¼ 0 ¼ hP, hiL2
X ,�

for all h 2 _PP(P),

so that from (4) we obtain
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hTP(h), TP(k)iL2
X n ,� n

¼ nhh, kiL2
X ,�

8h, k 2 _PP(P), (8)

from which, with k ¼ dk(P)=dP, we see that

TP(h), TP

1

n

dk(P)

dP

� �� �
L2
X n ,� n

¼ h,
dk(P)

dP

� �
L2
X ,�

8h 2 _PP(P):

This gives, with (7) and (6),

TP

1

n

dk(P)

dP

� �
¼ dk(P)

dPn
,

so that

1

n2

�����TP

dk(P)

dP

� ������
2

¼
����� dk(P)

dPn

�����
2

and the last statement of the theorem follows from (8). h

Continuation 4. If, under the circumstances of Theorem 3, t : X ! R is P-regular at P, thenPn
i¼1Æi ti : X n ! R, where ti : (x1, . . . , xn) 7! t(xi), is P(n)-regular at Pn for all Æ1,

. . . , Æn 2 R.

Proof. Suppose
Pn

i¼1Æi ¼ 1. Let k(Q) :¼ htQ, Qi, Q 2 P. What needs proof is the

requirement that 2(
Pn

i¼1Æi ti)P
n should represent the tangential derivative of kn at Pn. For

all i, we have tiP
n ¼ Pi�1 � tP� Pn�i and therefore

hTP(h), 2tiP
niL2

X n ,�n
¼ hh� Pn�1 þ . . . þ Pn�1 � h, 2Pi�1 � tP� Pn�iiL2

X n ,� n

¼proof Th: 3 hh, 2tPiL2
X ,�

¼t regular
h,

dk(P)

dP

� �
L2
X ,�

¼(7)
TP(h),

dk(P)

dPn

� �
L2
X n ,� n

8h 2 _PP(P),

so that h�, 2tiP
niL2

X n ,� n
and h�, dk(P)=dPniL2

X n ,�n
are seen to agree on the image TP

_PP(P)
� �

¼(6) _PP(n)(Pn). But then h�, dk(P)=dPniL2
X n ,�n

agrees with h�, 2(
Pn

i¼1Æi ti)P
niL2

X n ,� n
on

_PP(n)(Pn). h

Corollary 5. If P is nonparametric, � � -finite, and t regular and unbiased, then the mean

n�1
Pn

i¼1 ti is a regular unbiased estimator X n ! R that achieves the bound (3) everywhere;

thus, it has the smallest variance everywhere among the regular unbiased estimators with the

same domain.
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In the next section it will turn out that such a mean is also optimal, for a quantity related

to the variance, among all unbiased estimators.

4. Sufficient conditions for regularity; a new bound

We identify each Q 2 P with the corresponding (density of Q)1=2 2 L2
X ,�. Let tQ 2 L2

X ,� for

all Q in a neighbourhood of P. According to the Appendix, the map Q 7! htQ, Qi is

tangentially differentiable at P with derivative h 2 _PP(P) 7! hh, 2tPi at P if and only if, for

every (En)1n¼1 in Rnf0g and (hn)1n¼1 in L2
X ,�, with En ! 0, hn ! h, and Pþ En hn 2 P, one

would have, as n ! 0,

ht(Pþ En hn), Pþ Enhni � htP, Pi
En

! hh, 2tPi:

This is the same as

hhn, 2tPi þ hhn, En thni ! hh, 2tPi

and, because of hhn, 2tPi ! hh, 2tPi, equivalent to

hhn, En thni ! 0:

This convergence certainly holds if t(x) ¼ c for all x 2 X , as (khnk2)1n¼1 is bounded. Thus,

constant real functions on X are indeed regular.

The convergence hhn, En thni ! 0 is also implied by boundedness of (tPn)
1
n¼1, where

Pn :¼ Pþ En hn. In order to see this, let B . 0 be a bound for (kt(Pn � P)k1n¼1) and

observe that, for every c . 0 and n ¼ 1, 2, . . . , we have

hhn, En thni ¼ hhn, t(Pn � P)i

¼ hhn, t1j tj<c(Pn � P)i þ hhn1j tj.c, t(Pn � P)i,

so that, by Cauchy–Schwarz,

jhhn, En thnij < khnk � ckPn � Pk þ khn1j tj.ck � kt(Pn � P)k

and therefore, for all c . 0,

lim sup
n!1

jhhn, En thnij < khk � c � 0 þ kh1j tj.ck � B,

while limc!1kh1j tj.ck ¼ 0 by Lebesgue. That tPn is bounded if Pn approaches P in

P � L2
X ,� for all (Pn)

1
n¼1 in P for which there are En 6¼ 0, En ! 0, and an h 2 L2

X ,� such that

(Pn � P)=En ! h, is the same as local boundedness at P (i.e., boundedness on an L2
X ,�

neighbourhood of P in P) of Q 2 P 7! EQT
2 (for T, cf. (1)), because if Pn ! P, then

(Pn � P)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kPn � Pk

p
! 0. We have proved:

Lemma 6. A measurable X !t R is regular at Q for every Q in a neighbourhood of P if the

second moments EQT
2, Q 2 P, are locally bounded at P.

270 A.J. Lenstra



Lemma 6 enables us to provide an information bound for all unbiased estimators, and to

see what happens when an unbiased estimator beats the bound (3).

Theorem 7. If (X , A) is a measurable space, � a measure on (X , A), P a set of probability

measures on (X , A) that have a density with respect to �, P is a member of P, we identify

each Q 2 P with the corresponding (density of Q)1=2 2 L2
X ,�, and k : P ! R is a parameter

of interest which is locally bounded at P (e.g., by being tangentially differentiable at P),

then, with

maxVarPT :¼ lim
n!1

sup
Q2P

distance(Q,P),1=n

varQT

and

BP :¼ lim
n!1

sup
Q2P

distance(Q, P),1=n

1

4

����� dk(Q)

dQ

�����
2

L2
X ,�

or BP :¼ 1,

where the former definition of BP applies if and only if Q 2 P 7! k(Q) is tangentially

differentiable on a neighbourhood of P, in which case dk(Q)=dQ denotes the unique vector

in the tangent space of P at Q that represents the derivative at Q, we have, with T :¼ the set

of all unbiased estimators X ! R for k,

maxVarPT > BP 8t 2 T ; (9)

if, moreover, k is indeed tangentially differentiable at P, then

varPT ,
1

4

����� dk(P)

dP

�����
2

L2
X ,�

) maxVarPT ¼ 1 8t 2 T :

Proof. If Q 7! EQT
2 is locally bounded at P, then by Lemma 6 there is a neighbourhood U

of P such that t is regular at Q for all Q 2 U , so that by Theorem 1 we have

varQT > 1
4
kdk(Q)=dQk2

L2
X ,�

for all Q 2 U ; if Q 7! EQT
2 is not locally bounded at P, then

neither is Q 7! varQT because EQT ¼ k(Q) and k is locally bounded at P, so that

maxVarPT ¼ 1. h

In defining maxVarPT , the L2
X ,� distance could be replaced by the total variation

distance, as these two metrics are equivalent. So we do not need � for maxVarPT.

If k is not locally bounded, then it is not total variation continuous and there are no

uniformly consistent estimators for k based on independent draws from P; cf. Bickel et al.

(1993, p. 20).

Proposition 8. If under these circumstances k is tangentially differentiable everywhere, then

every unbiased estimator X ! R that achieves the bound (3) everywhere (cf. Corollary 5)
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achieves the bound (9) everywhere; thus, everywhere it has the smallest maxVariance among

all unbiased estimators for k with the same domain.

Corollary 9. If (X , A) is a measurable space, P is a set of probability measures on (X , A),

k : P ! R is a parameter of interest, and t : X ! R is an unbiased estimator for k such that

for all total variation convergent Pk ! P0 in P there are a measure � on (X , A) and a

subset P� � fP 2 P : P has a density w.r.t. �g containing (Pk)1k¼0 for which dkjP�(P)=dP

exists everywhere and t, as an unbiased estimator for kjP�, achieves the bound (3)

everywhere, then t has the smallest maxVariance everywhere among all unbiased estimators

for k with the same domain.

Proof. Let P0 2 P; let s : X ! R be an unbiased estimator for k. Choose P1, P2, . . . with

Pk ! P0 and varPk
T ! maxVarP0

T and choose �, P� as above. Then Proposition 8 gives

maxVar
P�

P0
S > maxVar

P�

P0
T , where ‘P�’ has been added in order to indicate that for the

suprema at hand only members of P� � P are considered, and maxVarP0
S > maxVarP0

T

follows from maxVarP0
S 	 maxVarPP0

S > maxVar
P�

P0
S and maxVar

P�
P0
T ¼ maxVarPP0

T 	
maxVarP0

T . h

In the next section there will be an application of Corollary 9.

For regularity there is a separate condition saying that one of the vectors representing the

derivative should be 2tP. One might wonder if this condition followed from the mere

tangential differentiability of P 7! htP, Pi, for, if it did, then the regularity conditions could

be restricted to the first condition: having a finite second moment. This is because the

differentiability condition is just a condition on the statistical problem at hand: the

parameter of interest k. However, there is no such implication, as we now show.

Let X :¼ R and � be equal to Borel–Lebesgue measure on the Borel sets of [0, 1],

� : f2g 7! 1, and � : Rn([0, 1] [ f2g) : 7! 0. Let P correspond to the density 1f2g and Pn

to the density (1=n2)1[0,1�1=n] þ 1 � (1=n2)(1 � 1=n)ð Þ1f2g and identify P, Pn with 1f2g
2 L2

R,� and (1=n)1[0,1�1=n] þ 1 � (1=n2)(1 � 1=n)ð Þ1=2
1f2g 2 L2

R,� respectively; let P :¼
fP, P2, P3, . . .g. Then kPn � Pk2

L2
R,�

¼ 2 � 2 1 � (1=n2)(1 � 1=n)ð Þ1=2
, for all x 2 R we

have Pn(x) � P(x)ð Þ=kPn � Pk ! 1[0,1)(x), and by Lebesque we also have

(Pn � P)=kPn � Pk ! 1[0,1) in L2
R,�. So R1[0,1) � _PP(P); we prove equality.

Suppose there are Qn 2 P, En 6¼ 0, En ! 0 with (Qn � P)=En ! h 2 _PP(P), h 6¼ 0. Then

Qn ! P and Qn 6¼ P eventually. So there are subsequences of (Qn)
1
n¼1 and (Pn)1n¼1, again

denoted by (Qn)1n¼1 and (Pn)
1
n¼1, with Qn ¼ Pn for all n, and we have (Pn � P)=En ! h,

(Pn � P)=kPn � Pk ! 1[0,1). We see that (kPn � Pk)=jEnj ! khk and, for a subsequence,

(kPn � Pk)=En ! khk, say, so that h ¼ khk1[0,1) 2 closed R1[0,1).

Take an arbitrary º . 0; there are many t : R ! (0, 1) for which

h1[0,1), tPni ¼
Ð 1

0
tPn d� ! º, tPn 2 L2

R,�, and t(x) ¼ 0 for all x 62 [0, 1]; take such a t.

Then Q 2 P 7! htQ, Qi is tangentially differentiable at P, but the derivative at P is not

equal to h 2 _PP(P) 7! hh, 2tPi ¼ 0, because it is equal to �1[0,1) 2 _PP(P) 7! �º 2 R. This

follows from what happens to hhn, En thni as n ! 1. Namely, if we choose hn :¼
(Pn � P)=kPn � Pk and h :¼ 1[0,1), then
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hhn, En thni ¼
Pn � P

kPn � Pk , t(Pn � P)

� �

¼ Pn � P

kPn � Pk

� �
1

4

� �
h1[0,1), tPni

! 1 � º as n ! 1;

arbitrary hn ! h 2 _PP(P) reduce to this special case, as we saw above: every subsequence of

(hn) has a subsequence that behaves as a subsequence of khk(Pn � P)=(kPn � Pk) or its

negative.

5. An example

Let � be a measure on (R, Borel sets of R) and P be the set of all (square roots of

densities of) probability measures on R that have a density with respect to �. Let r 2 R and

k : P 2 P 7! P (�1, r]ð Þ. Then t :¼ 1(�1,r] is an unbiased estimator for k, which is regular

by ktPk < 1 for all P 2 P and Lemma 6. By Proposition 2 it is essentially unique and its

variance k(P) 1 � k(P)ð Þ is equal to the bound (3), because P is nonparametric (if gP ? P

and �(x) ¼ 2=(1 þ e�2x), then


 7! x 7! � 
g(x)ð Þ P(x)ð Þ2ð
R

� 
g(y)ð Þ P(y)ð Þ2
d�(y)

0
BB@

1
CCA

1=22
664

3
775

is a map into P, continuous on a neighbourhood of 0 and differentiable at 0 with value at 1

of the derivative at 0 equal to 1
2
gP, so gP is even a tangent vector in the strict sense of

representing the derivative of a curve).

For � � -finite and n > 2, however, P(n) need not be nonparametric. In order to see this,

suppose there are P 2 P and r 2 R such that k(P) 2 (0, 1). Then varP T 6¼ 0 and

varPn T1 6¼ varPn n�1
Pn

i¼1Ti, while both t1 : (x1, . . . , xn) 7! t(x1) and n�1
Pn

i¼1 ti are

unbiased estimators that are regular according to Continuation 4; apply Proposition 2.

If we change P into the set of all probability measures on (R, Borel sets of R), then it

follows that among all unbiased estimators Rn ! R for k: P 2 P 7! P (�1, r]ð Þ the mean

n�1
Pn

i¼1 ti has the smallest maxVariance everywhere, that is, the empirical distribution

function at r is optimal for that quantity. Namely, for any Pn
k ! Pn

0, we can take

� :¼ (
P

2�k Pk)
n and P� :¼ (fP 2 P : P has a density w.r.t.

P
2�k Pkg)(n) in Corollary 9;

apply Corollary 5.

6. Fisher information and Cramér–Rao

If the parameter of interest k : P ! R is the inverse of a given parametrization
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W 2 ¨ � R 7! PW 2 P of (¼bijection on) P, i.e., if k : PW 7! W, we might try, in Theorem 1,

to differentiate with respect to W instead of P.

In general, if H is a Hilbert space, ¨ � R is open, W0 2 ¨, and W 7! vW 2 H is

everywhere differentiable and continuously differentiable at W0 (for the topology on the

derivatives, take the topology of the vectors dvW=dW 2 H , W 2 ¨, that are the images of

1 2 R under these derivatives) with dvW0
=dW0 6¼ 0, then

(i) there is an open set U � ¨ with W0 2 U such that W 2 U 7! vW is a homeo-

morphism between U and V :¼ fvW 2 H : W 2 Ug
(ii) whose inverse, (vW 7! W)jV , has a tangential derivative everywhere, in particular at

vW0
, while

(iii) for the unique vector dW0=dvW0
in the tangent space of V at vW0

representing this

derivative we have

dW0

dvW0

¼
����� dvW0

dW0

�����
�2

� dvW0

dW0

,

according to the inverse mapping theorem for Banach spaces and the chain rule (see Lang

1995; Lenstra 1998); in this section we take H :¼ L2
X ,� and vW :¼ PW, that is, (density of

PW)1=2. (For conditions on the mappings W 7! (density of PW)(x), x 2 X , that ensure the

required differentiability of W 7! (density of PW)1=2, see Bickel et al. 1993.)

The result is a version of the Cramér–Rao inequality that resembles what Theorem 7.3 in

Ibragimov and Has’minskii (1981) says for the unbiased one-dimensional case, and is

mentioned because of its proof:

Theorem 10 (Cramér–Rao). If (X , A) is a measurable space, � is a measure on (X , A),

¨ � R is open, (PW)W2¨ is an indexed family of probability measures on (X , A) that have a

density with respect to �, W0 is a member of ¨, we identify each PW with the corresponding

(density of PW)1=2 2 L2
X ,�, W 7! PW is injective, everywhere differentiable, and continuously

(see above) differentiable at W0 with non-zero derivative d, T lb is the set of the unbiased

estimators for PW 7! W for which W 2 ¨ 7! EPWT
2 is R-locally bounded at W0, dPW0

=dW0

denotes the image in L2
X ,� of 1 2 R under d, and IW 7!PW (W0) denotes the Fisher information at

W0 for the parametrization W 7! PW, that is, the number 4kdPW0
=dW0k2, then we have, with

varW0
T :¼ varPW0

T,

varW0
T > IW 7!PW(W0)ð Þ�1 8t 2 T lb:

Proof. Choose an open U � ¨ containing W0 such that U and its image V :¼
fPW 2 L2

X ,� : W 2 Ug are as U and V in (i)–(iii) above. For t 2 T lb the homeomorphism

between U and V guarantees that Q 2 V 7! EQT
2 is L2

X ,�-locally bounded at PW0
, and

Lemma 6 that t, which is also an unbiased estimator for kjV , is V -regular at PW0
. Now (3)

gives varPW0
T > 1

4
kdkjV (PW0

)=dPW0
k2 and we obtain the desired result from (iii). h
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7. The van Trees inequality

The van Trees inequality is ‘a Bayesian version of the Cramér–Rao bound’, which is not to

say that its importance is confined to Bayesians; see Gill and Levit (1995). Our van Trees

inequality reads:

Theorem 11 (van Trees). If

• X is a Polish space, A is the � -algebra of its Borel sets, � is a � -finite measure on

(X , A), (PW)W2R is an indexed family of probability measures on (X , A) that have a

density with respect to �, we identify each PW with the corresponding

(density of PW)1=2 2 L2
X ,�, W 2 R 7! PW is injective and everywhere continuously

differentiable with non-zero derivative, dPW=dW denotes the image in L2
X ,� of 1 2 R

under the derivative at W, and IW9 7!PW9 (W) :¼ 4kdPW=dWk2
L2
X ,�
,

• W is a probability measure on ¨ 	 R that has a density w with respect to � :¼ Borel-

Lebesgue measure on R (so that, for every º 2 R, the function wº :¼ w(:� º) is such a

density too, of law Wº, say, and º 2 R 7! Wº is a parametrization), we identify each

Wº with the corresponding
ffiffiffiffiffiffi
wº

p 2 L2
R,�, º 2 R 7! Wº is differentiable at 0 with non-

zero derivative (so that the derivative exists everywhere and is constant), dWº=dº
denotes the image in L2

R,� of 1 2 R under the derivative at º, and Iº9 7!Wº9
(º) denotes

4kdWº=dºk2
L2
R,�
,

• t : X ! R is measurable and such that

(t1) all expectations EWT
2, W 2 R, are finite, and

(t2) the function º 2 R 7! Ewº
T 2 is locally bounded at º ¼ 0

(where

EW( f � X ) :¼
ð
X
f (x) dPW(x),

Ewº
g � (X , ¨)ð Þ :¼

ð
R

EW g(X , W) dWº(W),

for all W, º 2 R and measurable f : X ! R, g : X 3 R ! R),

then we have

E(T �¨)2 >

ð
R

IW9 7!PW9 (W)w(W) dW þ Iº 7!Wº
(0)

� ��1

for any random element (X , ¨) of X 3 R such that ¨ is distributed according to W and

(PW)W2¨ is a conditional distribution of X given ¨ (so E 	 Ew0
) under any extra condition

that justifies (d1) and (d2) below for at least one choice of
Q

w L2
X ,�, for example, the

condition provided by the next section.

(As to the existence of the integrals and of random elements as indicated: the mapping

W 7! IW97!PW9 (W) is measurable because it is continuous; the same is true for every
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W 2 R 7! PW(A), A 2 A, because W 7! (density of PW)1=2 and (density of P)1=2 2 L2
X ,� 7!

density of P 2 L1 are continuous; see Bickel et al. 1993, p. 464.)

Proof. We shall present a geometric, or rather Pythagorean, setting in which the above

integral of squares of lengths is the square of a length itself, and the same holds for the

resulting sum of squares of lengths. This setting will be completed by the construction of a

suitable t that plays the role t played in the preceding sections; the resulting truth translates

into the van Trees inequality.

If (xW)W2R, (yW)W2R 2 (L2
X ,�)R are Borel–Borel measurable, the function W 2

R 7! hxW, yWiL2
X ,�

2 R is measurable by the separability of L2
X ,�, so that we may define

h(xW)W2R, (yW)W2Riw :¼
ð
R

hxW, yWiL2
X ,�
w(W) dW;

this is a semi-inner product on the subspace of all measurable members (xW)W2R for which

k(xW)W2Rkw :¼ h(xW)W2R, (xW)W2Ri1=2
w is finite. Mod out by fx : kxkw ¼ 0g and obtain an inner

product space. Let
Q

w L2
X ,� denote a Hilbert space that contains this quotient space as an

inner product subspace. Clearly, for all º 2 R there is a member of
Q

w L2
X ,� which contains

(PWþº)W2R. We denote it by (PWþº)W2R again and observe that

º 2 R 7! vº :¼ (PWþº)W2R, Wºð Þ 2
Y
w

L2
X ,� 3 L2

R,� :¼ H

is a mapping into the product H of the two Hilbert spaces
Q

w L2
X ,� and L2

R,�; this H is again

a Hilbert space with the usual inner product h(a, b), (c, d)i ¼ ha, ciw þ hb, diL2
R,�

. Because

every º 7! PWþº, W 2 R, as well as º 7! Wº is continuously differentiable at º ¼ 0, one could

imagine that

(d1) the same holds for º 7! vº, and

(d2) for the image dvº=dº of 1 2 R under the derivative at º one has

dvº

dº
	 d (PWþº)W2R, Wºð Þ

dº
¼ dPWþº

dº

� �
W2R

,
dWº

dº

� �
2 H ,

at least at º ¼ 0.

Let, in that case, the square of the length of the above vector at º ¼ 0 be denoted by
1
4
Iº 7!vº (0). Then one also has

Iº7!vº(0) ¼
ð
IW9 7!PW9 (W)w(W) dW þ Iº 7!Wº

(0) 6¼ 0:

Now, if U � R and V � H are as in (i)–(iii) in Section 6 with W0 :¼ 0 etc.,

vº 2 V 7! tvº 2 H is some function on V , and vº 7! htvº, vºi would have a tangential

derivative at v0 that is represented by 2tv0 and is equal to that of vº 7! º at v0, then from the

proof of Theorem 1 and (iii) in Section 6 it will be seen that

ktv0k2 > Iº 7!vº (0)
� ��1

,

which has the same right-hand side as the van Trees inequality. If, moreover,

276 A.J. Lenstra



ktv0k2 ¼ E(T �¨)2,

for a measurable t : X ! R, then the van Trees inequality would have been established for

this t. We shall demonstrate that in order for a measurable t : X ! R to provide a

vº 2 V 7! tvº 2 H with the above properties, conditions (t1) and (t2) suffice. Indeed, let

t :¼ (t � EWT )W2R, W 2 R 7! W� EWTð Þ,

and let the juxtaposition tvº denote the coordinatewise pointwise product

(((t � EWT )PWþº)W2R, W 7! (W� EWT )Wº(W)). We show that tvº 2 H . First, ((t � EWT )

PWþº)W2R is a member of (L2
X ,�)R, because

Ð
X (tPWþº)

2 d� ¼ EWþºT
2 , 1, and a measurable

member because PW 2 L2
X ,� 7! tPW 2 L2

X ,� is measurable (taking t :¼ 1A, A 2 A, makes

PW 7! tPW continuous, and if t n ! t, jtnj " jtj pointwise, then tnPW ! tPW in L2
X ,�) and

W 7! (EWT , PWþº) 2 R3 L2
X ,� 7! (EWT )PWþº 2 L2

X ,� is measurable as the composition of a

measurable and a continuous map. Further, we have, with pW :¼ density of PW,

k (t � EWT )PWþºð ÞW2Rk
2
w ¼

ð
R

ð
X

(t � EWT )2 pWþº d�

� �
w(W) dW

¼
ð
R

EWþºT
2 � 2(EWT )(EWþºT ) þ (EWT )2

� �
w(W) dW,

for which we observe
Ð
R

EWþºT
2w(W) dW ¼

Ð
R

EWT
2w(W� º) dW ¼ Ewº

T 2,

ð
R

(EWT )(EWþºT )w(W) dW
� �2

<

ð
R

(EWT )2w(W) dW
ð
R

(EWþºT )2w(W) dW,

and (EWT )2 < EWT
2, so that

k((t � EWT )PWþº)W2Rk2
w < Ewº

T 2 þ 2(Ew0
T 2Ewº

T 2)1=2 þ Ew0
T 2,

bounded on a neighbourhood of º ¼ 0 by (t2); in particular, ((t � EWT )PWþºÞW2R 2
Q

w L2
X ,�

on this neighbourhood.

As to W 7! (W� EWT )Wº(W), the last coordinate of tvº, we see thatð
R

(W� EWT )2wº(W) dW ¼
ð
R

W2 � 2WEWT þ (EWT )2
� �

wº(W) dW,

for which we observe that
Ð
R
W2wº(W) dW ¼

Ð
R

(Wþ º)2w0(W) dW ¼ E(¨þ º)2 < 4E(¨2 þ
1) , 1 for all jºj < 1 (if E¨2 ¼ 1, then there is nothing to prove in van Trees), so that

with the same arguments as above we may conclude that the L2
R,� norm of the last coordinate

is bounded on a neighbourhood of º ¼ 0. In particular, the last coordinate is in L2
R,� on this

neighbourhood. For tvº it follows not only that it is in H , but also that it is locally bounded

at º ¼ 0, and therefore (Section 4; see the next paragraph) that vº 7! htvº, vºi has a

tangential derivative at v0 represented by 2tv0. As to this derivative, inspection shows that
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htvº, vºi ¼
ð
R

ð
X

(t � EWT )pWþº d�

� �
w(W) dWþ

ð
R

(W� EWT )wº(W) dW

¼
ð
R

(EWþºT � EWT )w(W) dWþ E(¨þ º) �
ð
R

(EWT )wº(W) dW

¼ º� E(T �¨),

so it is equal to that of vº 7! º. The equality ktv0k2 ¼ E(T �¨)2 follows from the norm

calculations by taking º ¼ 0.

We still have to show that the reasoning of Section 4 which proved Lemma 6 extends to

the new juxtaposition. For this, we may restrict ourselves to what happens in the Hilbert

space
Q

w L2
X ,� and prove that, now with

t :¼ (t � EWT )W2R, vº :¼ (PWþº)W2R, tvº :¼ (t � EWT )PWþºð ÞW2R,

the map vº 7! htvº, vºi has a tangential derivative at v0 represented by 2tv0, if tvº n
is

bounded when vº n
approaches v0 in

Q
w L2

X ,�. Mutatis mutandis, so with v0 instead of P, vºn

instead of Pn, t instead of t, and
Q

w L2
X ,� instead of L2

X ,�, we repeat what we did for Lemma

6 and see that the first obstacle is where the old t is split into t ¼ t1j tj<c þ t1j tj.c. This time

the splitting requires more care because of the desired measurability. Let c . 0,

Ai :¼ t�1([i� c, iþ c]) for all i 2 Z, and EWT ¼ iW þ rW with iW 2 Z and rW 2 [0, 1) for

all W 2 R. Then W 7! iW and W 7! rW are measurable and if (xW)W2R 2 (L2
X ,�)R is measurable,

then W 7! xW1AiW
and W 7! xW1Ac

iW
are also measurable, because fW 2 R : xW1AiW

2 Bg ¼
[ifW 2 R : xW1Ai

2 B, iW ¼ ig and x 7! x1Ai
is continuous for each i. Define 1j tj<

:¼ (1AiW
)W2R and 1j tj. :¼ (1Ac

iW
)W2R. Any measurable (xW)W2R 2 (L2

X ,�)R, then, can be split

into a sum

(xW)W2R ¼ (xW)W2R1j tj< þ (xW)W2R1j tj.

such that the terms (coordinatewise pointwise products) are measurable; in our case

hhn, En thniw ¼ hhn, t1j tj<(vº n
� v0)iw þ hhn1j tj., t(vº n

� v0)iw,

so that

jhhn, En thniwj < khnkw � (cþ 1)kvº n
� v0kw þ khn1j tj.kw � kt(vºn

� v0)kw

and

lim sup
n!1

jhhn, En thniwj < khkQ
w
L2
X ,�

� (cþ 1) � 0 þ k lim
n!1

(hn1j tj.)kQ
w
L2
X ,�

� B

(the limit in the last term exists because (hn1j tj.)1n¼1 is a Cauchy sequence in the inner

product space); the juxtaposition h1j tj. is not necessarily already defined. Let E . 0 and let

n1 be such that khm � hnkw , E for all m, n > n1; then

khn1j tj.kw < khn1
1j tj.kw þ k(hn1

� hn)1j tj.kw

and

278 A.J. Lenstra



k lim
n!1

(hn1j tj.)kQ
w
L2
X ,�

< khn1
1j tj.kw þ E:

Two applications of Lebesgue’s dominated convergence have the first term of the right-hand

side converge to 0 as c ! 1; we conclude that hhn, En thniw ! 0 as n ! 1. h

8. Sufficient conditions for van Trees

Here is a condition guaranteeing the desired behaviour (d1)–(d2).

Proposition 12. In the situation of Theorem 11 let the following hold: there are an

M : R ! R and a º0 . 0 with
Ð
R

M(W)ð Þ2
w(W) dW , 1 and

sup
�2[W�º0,Wþº0]

����� dP�

d�

����� < M(W) 8W 2 R:

Then º 2 R 7! vº 2 H is differentiable on a neighbourhood N of 0 with

dvº

dº
¼ dPWþº

dº

� �
W2R

,
dWº

dº

� �
, 8º 2 N ,

and continuously differentiable at 0, for any choice of
Q

w L2
X ,�.

Proof. With � : W 7! PW 2 L2
X ,� we have, by definition, dP�=d� ¼ (�9(�))(1) and, by the chain

rule, dPWþº=dº ¼ (�9(Wþ º))(1) for all W, º, � 2 R, so that����� dPWþº

dº

����� < M(W) 8º 2 [�º0, º0], W 2 R,

and therefore (dPWþº=dº)W2R 2
Q

w L2
X ,� for all º 2 [�º0, º0]. Further, the mean value

theorem (see Lenstra 1998) gives the inequality in����� PWþºþh � PWþº

h

�����L2
X ,�

< sup
�2[Wþº,Wþºþh]

k�9(�)kL(R,L2
X ,�)

¼ sup
�2[Wþº,Wþºþh]

����� dP�

d�

�����
L2
X ,�

,

where L(R, L2
X ,�) is the Banach space of all bounded linear maps R ! L2

X ,�, and we

conclude that����� PWþºþh � PWþº

h
� dPWþº

dº

�����
L2
X ,�

< 2M(W) 8W 2 R, 8º, h 2 [�º0=2, º0=2],

so that by Lebesgue’s dominated convergence the mapping �1 : º 2
(�º0=2, º0=2) 7! (PWþº)W2R 2

Q
w L2

X ,� is everywhere differentiable with (�91(º))(1) ¼
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(dPWþº=dº)W2R for these º. Again by Lebesgue we have (dPWþº=dº)W2R �!º!0
(dPW=dW)W2R inQ

w L2
X ,�. This says that the differentiability of �1 is continuous at 0. The theorem now

follows from vº ¼ (�1(º), Wº) and the properties of �1 and º 7! Wº. h

Appendix: Tangential differentiation

Let X and Y be normed linear spaces and U an open set in X . The map f : U ! Y is

differentiable at a point x 2 U if there exists a bounded linear map f 9(x) : X ! Y , the

derivative of f at x, such that

f (xþ h) � f (x) ¼ f 9(x)ð Þ(h) þ o(khk), khk ! 0,

or, equivalently, ����� f (xn) � f (x)

En
� f 9(x)ð Þ xn � x

En

� ������
Y

! 0, n ! 1,

for all (En)1n¼1 in Rnf0g and (xn)
1
n¼1 in U such that En ! 0 and ((xn � x)=En)1n¼1 is bounded,

so that, if it exists, f 9(x) is unique. Now let V be an arbitrary set in X , not necessarily open,

and x 2 V . If (En)1n¼1 in Rnf0g and (xn)1n¼1 in V are such that En ! 0 and limn!1
(xn � x)=En exists, then this limit is a tangent vector of V at x. The closed linear span of the

tangent vectors is the tangent space of V at x.

Let f : V ! Y be a map of V into Y and _VV be the tangent space of V at x. Suppose

there exists a bounded linear map f 9(x) : _VV ! Y for which����� f (xn) � f (x)

En
� f 9(x)ð Þ lim

n!1

xn � x

En

� ������
Y

! 0, n ! 1,

for all (En)1n¼1 in Rnf0g and (xn)
1
n¼1 in V such that En ! 0 and ((xn � x)=En)1n¼1 converges.

Then f 9(x) is the only bounded linear map of _VV into Y with this property, as there is

uniqueness on the vectors that generate _VV . The map f is said to be differentiable at x along
_VV or tangentially differentiable at x, and f 9(x) is the derivative of f at x along _VV or the

tangential derivative of f at x.

Two observations connect the two kinds of differentiability that we have exposed here.

The first is obvious from the equivalence of ‘bounded’ to ‘continuous’ for linear maps, and

the boundedness of convergent sequences.

Theorem A.1. Let X and Y be normed linear spaces and U open in X , V � U . Let x 2 V . If

f : U ! Y is differentiable at x, then f jV : V ! Y is differentiable at x along the tangent

space _VV of V at x with derivative ( f jV )9(x) ¼ f 9(x)j _VV .

In particular, differentiability at x implies differentiability at x along the tangent space _UU
of U at x, that is, along X . On the other hand, as to the convergence of bounded sequences:

in Rn every bounded sequence has a convergent subsequence. These facts lead to the

second observation:
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Theorem A.2. If the domain of f is an open set in X ¼ Rn and x lies in that domain, then

differentiability of f at x and differentiability of f at x along X are equivalent.

The first differentiability is often referred to as Fréchet differentiability, the second

differentiability is known as Hadamard differentiability along _VV . The latter is strong enough

to support the chain rule:

Theorem A.3 (Chain rule). Let X , Y and Z be normed linear spaces and V � X, W � Y . If

f : V ! W is tangentially differentiable at x 2 V and g : W ! Z is tangentially

differentiable at f (x), then g � f is tangentially differentiable at x and (g � f )9(x)

¼ g9 f (x)ð Þ � f 9(x).

Proof. Immediate from the definition, which shows that

lim
n!1

f (xn) � f (x)

En
¼ f 9(x)ð Þ lim

n!1

xn � x

En

� �
,

so that under f 9(x) the image of a tangent vector of V at x is a tangent vector of f (V ), and

therefore of W , at f (x). h
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