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We introduce a new missing-data model, based on a mixture of K Markov processes, and consider the

general problem of identifying its parameters. We point out in detail the main difficulties of statistical

inference for such models: complete likelihood calculation, parametrization of the stationary

distribution and identifiability. We propose a general tractable approach for estimating these models

(admitting parametrization of the stationary distribution and identifiability) and check in detail that our

assumptions are fully satisfied for a Markov mixture of two linear AR(1) models with Gaussian noise.

Finally, a Monte Carlo method is proposed to calculate the split data likelihood of this model when no

analytic expression for the invariant probability densities of the Markov processes is known.
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1. Introduction

In the signal processing and statistics literatures, different definitions of mixtures of Markov

models (MMMs) can be found. In signal processing, the study of MMMs is also associated

with the problem of identifying mixed stationary sources, Markovian or not. Let us consider

an observable finite sequence of K-dimensional random variables, X ¼ (X k)1<k<T , from an

instantaneous mixture of K different sources S ¼ (Sk)1<k<T , that is,

8k ¼ 1, . . . , T , X k ¼ ASk (1)

where A is a square and invertible matrix, called a mixing matrix. The goal in such a

framework is to recover the sources S from X by estimating B ¼ A�1. See, for example,

Pham and Garat (1997) and Dégerine and Zaı̈di (2002) for respectively, pseudo- and exact

likelihood approaches in the case of mixtures of Gaussian autoregressive (AR) sources, and

detailed references.

In statistics – see Jalali and Pemberton (1995), Wong and Li (2000; 2001), Benesch

(2001) – the MMMs are defined from a distributional point of view. In the spirit of

definition (2.1) for the mixed autoregressive model (MAR) in Wong and Li (2001), we

should say that a process X ¼ (X n)n>1 is an MMM if, for all n > d þ 1, Fxn
(xjFn�1), the
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conditional cumulative distribution function of X n given the past information, takes the

form

Fxn
(xjF n�1) ¼

XK

k¼1

Æk�k(x; xn�1, . . . , xn�d ; Wk), (2)

with
Pk

k¼1Æk ¼ 1, Æk . 0, for k ¼ 1, . . . , k, and where �k(�; xn�1, . . . , xn�d ; Wk) is a

cumulative distribution function depending on parameters (xn�1, . . . , xn�d ; Wk) (observations

from the past of length d, and a statistical parameter). According to Wong and Li (2000) the

MAR is useful for modelling times series with multimodal marginal or conditional

distributions; see Tong (1990) and Chan and Tong (1998). An application to real biological

data, on the Canadian lynx, is given in the latter two papers. Other models with smooth

changes with respect to time have been proposed in econometrics, and later applied to other

areas: the so-called autoregressive processes with Markov regime, whose dynamic is driven

by a Markov chain. Denoting such a process by X, one basic definition is

8 n > d þ 1, X n ¼
Xd

i¼1

ai(U n)X n�i þ � (Un)�n, (3)

where (�)n>1 is sequence of independent and identically distributed (i.i.d.) random variables,

U ¼ (Un)n>1 is a Markov chain with continuous or discrete state space, and (ai(�))i¼1,...,d and

� (�) are functions defined on the state space of U . This model was used by Hamilton (1989)

to model US gross national product (the Us modelling the economic/business cycles); see

Hamilton and Susmel (1994), Cai (1994) and Garcia and Perron (1996) for recent extensions.

Linear autoregressive processes with Markov regime are also widely used in electrical

engineering (see Bar-Shalom and Li 1993), failure detection (Tugnait 1982) and automatic

control (Ji et al. 1990; Krishnamurthy and Rydén 1998). Another important class of

autoregressive Markov processes with Markov regime are the hidden Markov models

(HMMs), for which the conditional distribution of X n does not depend on lagged X s but only

on U n. HMMs are used in many different areas, including speech recognition (see Juang and

Rabiner 1991), neurophysiology (Fredkin and Rice 1987) and econometrics (see Chib et al.

1998). Most work on maximum likelihood estimation in these models has focused on

numerical methods for approximation of the maximum likelihood estimator (MLE). In sharp

contrast, it took a long time to achieve significant progress on the statistical issue of the

asymptotic properties of the MLE for HMMs and autoregressive processes with Markov

regime. On HMMs, see Baum and Petrie (1966), Leroux (1992), Bakry et al. (1997), Bickel

et al. (1998), LeGland and Mevel (2000), Douc and Matias (2001), and on autoregressive

processes with Markov regime, see also Krishnamurthy and Rydén (1998) and Francq and

Roussignol (1998), when U takes values in a finite set, and Douc et al. (2004), when U takes

values in a continuous state space.

Let us observe, finally, that probabilistic work on characterization of mixtures of Markov

chain distributions was initiated by de Finetti (1959), and has been continued by, among

many others, Freedman (1962), Diaconis and Freedman (1980) and more recently Fortini et

al. (2002).

In this paper we introduce another possible definition of MMMs. Let us consider
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X [i] ¼ (X [i]
n )n>1, 1 < i < K, K independent stationary discrete-time Markov processes

taking values in a measurable state space (E, E) with probability transition densities Qi,

1 < i < K, with respect to a common finite dominating measure º. The MMM we consider

induces an observed process Z ¼ (Z n)n>1 based on the collection of the K mutually

independent processes (X [i])1<i<K and defined by,

8n > 1, Z n ¼
XK

i¼1

1 Un¼if gX [i]
n , (4)

where (Un)n>0 is a stationary positive recurrent Markov chain with values in

U ¼ 1, . . . , Kf g. We suppose, in addition, that the chain (U n)n>0 is not observed, which

corresponds to a situation where only mixtures of sample paths (due to a Markovian process

selection) coming from independent Markov sources are observed. To differentiate this model

from other MMMs, we propose to call it the hidden Markov mixture of Markov models

(HMMMM or H4M). Let us remark that our MMM is not Markovian and is clearly different

from other MMMs. On the other hand, it is worth observing that hidden Markov models

belong to the class of H4Ms. To check this point it is enough to consider independent

sequences for the X [i] in (4). Notice at this point that HMMs are at the junction of H4Ms and

the class of autoregressive models with Markov regime, when the underlying Markov chain

U is supposed to belong to a finite state space. From the previous remark the H4Ms are

naturally well suited to applications in areas where HMMs hold; recall our observations

on HMMs earlier in this section; and see also Section 6.

Having made these preliminary remarks, we wish to draw attention to the ability of our

model to describe discrete time series with: (i) abrupt changes, when U undergoes a change

of state; (ii) local stationarity, during stages where U remains in the same state; (iii)

multimodal marginal distributions from mixture structure; and (iv) phase-type feedback

effects (see Neuts 1994, p. 46), for the definition of phase-type distributions. Let us

elaborate on point (iv). Consider two sample paths of length n > 3: un
1 ¼ (u1, . . . , un) from

U and zn
1 ¼ (z1, . . . , zn) from Z, and fix unþ1 ¼ i. Suppose that there exists an index

�n > 2 such that unþ1��n
¼ i, unþ1�k 6¼ i for all k ¼ 1, . . . , �n � 1, that is, corresponding

to the time separating the current observation of U at state i and the last observed value of

U at state i. From the definition of Z, we can check that the conditional law

L(Z nþ1jU nþ1
1 ¼ unþ1

1 , Z n
1 ¼ zn

1 ), satisfies

L(Z nþ1jU nþ1
1 ¼ unþ1

1 , Z n
1 ¼ zn

1 ) ¼ L(Z nþ1jU nþ1
nþ1��n

¼ unþ1
nþ1��n

, Z nþ1��n
¼ znþ1�� n

), (5)

which depends only on i, �n and zn��n
, from independence of the X [i], and their Markovian

structure. Equation (5) shows that the law of the process Z at time n þ 1 is influenced by a

particular observation at an unknown time in the past (feedback effect). Let us add a final

point: (v) quasi-independence of the homogeneous phases, when U spends long periods in

the same states and if the X [i] are strongly mixing.

The goal of this paper is to propose a
ffiffiffi
n

p
-consistent method, based on the maximum

split data likelihood estimate (MSDLE) introduced by Rydén (1994), for estimating the

parameters driving the transition density kernels of the X [i], and the transition matrix of U .

The rest of this paper is organized as follows. In Section 2 we give a precise description of
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the MSDLE for H4Ms, and the main assumptions. In Section 3 we prove consistency and

asymptotic normality of the MSDLE under mild conditions. In Section 4 we propose a

Monte Carlo approach to estimate the log of the split data likelihood (SDL), when an

analytical expression for the invariant density of the X [i] cannot be given under fixed

parametrization of the transitions. Section 5 is devoted to a detailed study of a hidden

Markov mixture of two linear autoregressive processes of order 1. In Section 6, we indicate

some possible applications for the H4Ms in neurophysiology and kinetics. Also in Section 6

we report sample path simulations of different HMMs and H4Ms with the same marginal

distribution and the same underlying Markov chain U . A short empirical comparison of the

obtained patterns is made, and similarities with alpha and theta waves found in kinetics are

noted.

2. Assumptions and parametrization

For ease of notation, and without loss of generality, we propose to consider the case K ¼ 2

and write X ¼ X [1] and Y ¼ X [2]. The transition density kernels of X and Y will be

parametrized by Ł 2 �1 for Q1 and � 2 �2 for Q2, with �i, i ¼ 1, 2, compact sets in Rq,

and are assumed to belong respectively to the parametric families K1 ¼ Q1
Ł(�, �), Ł 2 �1

� �
and K2 ¼ fQ2

�(�, �), � 2 �2g. We suppose that for each Ł 2 �1 (� 2 �2) the probability

transition kernel Q1
Ł (Q2

�) induces a recurrent positive Markov process, and admits a unique

invariant probability measure with density q1
Ł (q2

�). Notice that, in general, analytic

expressions of these densities are not explicitly known except in the case of linear

autoregressive models with Gaussian noise; see Sections 5 and 6. Nevertheless, let us recall

that for each Ł 2 �1 and � 2 �2, q1
Ł and q2

� are the unique solutions of the functional fixed

point problemsð
E

q1
Ł(x1)Q

1
Ł(x1, �)º(dx1) ¼ q1

Ł(�), and

ð
E

q2
�(y1)Q

2
�(y1, �)º(dy1) ¼ q2

�(�): (6)

The transition matrix — of U will be parametrized by ª ¼ (Æ, �) 2 [�, 1� �]2, with

0 , � , 1, as follows:

—ª ¼ �ª(1, 1) �ª(1, 2)

�ª(2, 1) �ª(2, 2)

� �
¼ 1� Æ Æ

� 1� �

� �
: (7)

The invariant probability vector associated with —ª is denoted by

(�ª(1), �ª(2)) ¼
�

Æþ �
,

Æ

Æþ �

� �
:

Finally the global parameter which is to be estimated can be written as W ¼
(ª; Ł, �) 2 ¨ ¼ [�, 1� �]2 3�1 3�2. From now on we use the notation Zn

1 ¼
Z k ; 1 < k < nf g for all processes. Suppose that U is to be observed and consider

un
1 ¼ (u1, . . . , un) a sample path of length n from U , and zn

1 ¼ (z1, . . . , zn) a sample path of

length n from Z. Then the likelihood function for (U , Z) based on (un
1 , zn

1 ) can be written as
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pW(u
n
1 , zn

1 ) ¼ pW(z
n
1 jun

1 )pW(u
n
1 ), where pW(u

n
1 ) ¼ PW(U

n
1 ¼ un

1 ), and pW(z
n
1 jun

1 ) denotes the

density of the Zs conditionally on Un
1 ¼ un

1

� �
, which expressions are respectively given by

pW(u
n
1 ) ¼ �ª(u1)

Yn�1

j¼1

�ª(u j, u jþ1)

and

pW(z
n
1 jun

1 ) ¼
ð

E n

q1
Ł(x1)

Yn�1

j¼1

Q1
Ł(xj, xjþ1)� j2 1,...,nf g=u j¼2 º(dxj)� j2 1,...,nf g=u j¼1 �z j

(dxj)

3

ð
E n

q2
�(y1)

Yn�1

j¼1

Q2
�(yj, yjþ1)� j2 1,...,nf g=u j¼1 º(dyj)� j2 1,...,nf g=u j¼2 �z j

(dyj),

where we recognize the joint density of the independent random vectors Xn
1 and Yn

1,

integrated componentwise when U is not in state 1 or not in state 2, as appropriate. To

compute the likelihood function for the Zs alone, it remains to sum pW(u
n
1 , zn

1 ) over all the

possible values of un
1 , to give

pW(z
n
1 ) ¼

X
(u1,u2,...,un)2 1,2f gn

�ª(u1)
Yn�1

j¼1

�ª(u j, u jþ1) (8)

3

ð
E n

q1
Ł(x1)

Yn�1

j¼1

Q1
Ł(xj, xjþ1)� j2 1,...,nf g=u j¼2 º(dxj)� j2 1,...,nf g=u j¼1 �z j

(dxj)

3

ð
E n

q2
�(y1)

Yn�1

j¼1

Q2
�(yj, yjþ1)� j2 1,...,nf g=u j¼1 º(dyj)� j2 1,...,nf g=u j¼2 �z j

(dyj):

Let us remark that, unlike discrete HMMs, the likelihood of H4Ms does not benefit from a

recurrence formula based on the filter, since successive Zi are not independent conditionally

on a finite-length past of U . Surprisingly, this technique allows the otherwise intractable

likelihood of HMMs to be computed in linear time (with respect to n); see Rabiner (1989).

For this reason, and because of the great complexity of the likelihood function of H4Ms, we

propose instead, as a first step, to consider a maximum split data likelihood estimate

(MSDLE) in the spirit of Rydén (1994), instead of the highly intractable maximum likelihood

estimate (MLE).

For an integer m conveniently chosen, we define the m-dimensional MSDLE based on

Zkm
1 , k > r, as follows

ŴWk ¼ argmax
W2¨

Yk

j¼1

pW(Z
jm
( j�1)mþ1): (9)

The true parameter value will be denoted by W0, the law of Z over EN will be denoted for

simplicity by P0, the index 0 recalling that W0 entirely defines the law of Z, and expectation

Parameter estimates for hidden Markov mixtures of Markov models 107



under P0 will be denoted by E0(�). The following conditions will be used throughout the

paper.

Condition C1. The true parameter W0 is an interior point of ¨, a compact set in R2qþ2.

Condition C2. The parametric family F m ¼ pW(z1, . . . , zm) ; W 2 ¨f g is identifiable in the

sense that

8(W, W9) 2 ¨2 j pW(z1, . . . , zm) ¼ pW9(z1, . . . , zm) º
�m-almost everywhere ) W ¼ W9:

Condition C3. There exist two functions g1 and g2 from Em into R such that

g1(z1, . . . , zm) < pW(z1, . . . , zm) < g2(z1, . . . , zm), 8(z1, . . . , zm; W) 2 Em 3¨,

and ð
E m

jlog(gi(z1, . . . , zm))j pW0 (z1, . . . , zm)º(dzm
1 ) , 1, i ¼ 1, 2:

Condition C4. The function W 7! pW(z1, . . . , zm) is º�m-a:e. twice differentiable on ¨.

Condition C5. Write W ¼ (Æ, �; Ł1, . . . , Łq; �1, . . . , �q) ¼ (W1, W2; W3, . . . , Wqþ2; Wqþ3,

. . . , W2qþ2), and let k � k be the Euclidean norm on R2qþ2. There exists �0 . 0 such that:

(i) for 1 < i < 2q þ 2, and all (z1, . . . , zm) 2 Em, there is a function g(1) from Em into

R such that

sup
kW�W0k<�0

���� @

@Wi

log pW(z1, . . . , zm)

���� < g(1)(z1, . . . , zm),

with ð
E m

g(1)(z1, . . . , zm)pW0 (z1, . . . , zm)º(dzm
1 ) , 1,

and, for k . 0,ð
E m

g(1)(z1, . . . , zm)
� �2þk

pW0 (z1, . . . , zm)º(dzm
1 ) , 1;

(ii) for all 1 < i, j < 2q þ 2, and all (z1, . . . , zm) 2 Em, there exists a function g(2) from

Em into R such that

sup
kW�W0k<�0

���� @2

@2WiW j

log pW(z1, . . . , zm)

���� < g(2)(z1, . . . , zm),

and ð
E m

g(2)(z1, . . . , zm) pW0 (z1, . . . , zm)º(dzm
1 ) , 1:
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Condition C6. The partial derivatives of order 0, 1, 2 of the function W 7! pW(z1, . . . , zm) are

E�m-measurable for each W 2 ¨.

Condition C7. The Markov processes X and Y are supposed stationary and geometrically Æ-
mixing (or �-mixing).

The definition of Æ-mixing coefficients for a stationary process is given in (13); see also

Doukhan (1994, p. 88) for a simple definition in the case of stationary Markov processes.

3. Consistency and asymptotic normality

In this section we prove under mild conditions that the MSDLE defined in (9) is consistent

and asymptotically normal. For this purpose, we begin with a technical lemma useful in

treating the asymptotic behaviour of the SDL (and its derivatives).

Lemma 1. (i) Under Condition C7, for all measurable functions j(�) from Em into Rd, d > 1,

the sequence (j(Zmk
(k�1)mþ1))k>1 is stationary and geometrically Æ-mixing.

(ii) Under the assumptions of (i), for all j 2 L1(P0) we have the strong law of large

numbers, that is,

M k ¼ 1

k

Xk

j¼1

j(Z jm
( j�1)mþ1) �!

k!1
E0(j(Zm

1 )), P0-almost surely: (10)

(iii) Suppose that E(j(Zm
1 )) ¼ 0, Ejj(Zm

1 )j2þk , 1 for some k . 0, and that Condition

C7 is satisfied. Then

� ¼def :
E(j(Zm

1 )
2)þ 2

X1
k¼1

kE(j(Zm
1 )j

T(Zmk
(k�1)mþ1)) , 1, (11)

and, if � 6¼ 0d3d, ffiffiffi
k

p
M k �!L

k!1
N (0, �): (12)

Proof. (i) Without loss of generality, we consider the case m ¼ 2. The function j(�) being

E�2-measurable, it is enough to consider the Æ-mixing coefficient associated with the Markov

process W ¼ (W k)k>1 ¼ (X2k
(k�1)2þ1, Y

2k
(k�1)2þ1, U

2k
(k�1)2þ1)k>1. At this stage, let us define for

all stationary processes ~XX , and all (t, k) 2 N� 3N, the sequence of Æ-mixing coefficients

associated with ~XX by

Æ
~XX (k) ¼ sup

A2F t
~XX ,1

,B2F1
~XX , tþ kþ1

jP(A \ B)� P(A)P(B)j, (13)

where F t2
~XX , t1

denotes, for all t2 . t1 > 1, the � -algebra generated by ( ~XX t1 , . . . , ~XX t2 ).

Following (13), the sequence of Æ-mixing coefficients associated with W is defined by
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ÆW (k) ¼ sup jP((A1, A2, AU ) \ (B1, B2, BU ))� P(A1, A2, AU )P(B1, B2, BU )j, (14)

where the supremum is taken over all (A1, A2, AU ) 2 F 2n
X ,1 � F 2n

Y ,1 � F 2n
U ,1 and (B1,

B2, BU ) 2 F1
X ,2nþ2kþ1 � F1

Y ,2nþ2kþ1 �F1
U ,2nþ2kþ1.

From the mutual independence of X , Y and U, the modulus of the difference of

probabilities in the right-hand side of (14) satisfies

jP(A1 \ B1)P(A2 \ B2)P(AU \ BU )� P(A1)P(B1)P(A2)P(B2)P(AU )P(BU )j

¼ P(AU )P(A1)P(A2)jP(B1jA1)P(B2jA2)[P(BU jAU )� P(BU )]

þ P(B1jA1)P(BU )[P(B2jA2)� P(B2)]

þ P(B2)P(BU )[P(B1jA1)� P(B1)]j

< jP(AU \ BU )� P(AU )P(BU )j þ jP(A1 \ B1)� P(A1)P(B1)j

þ jP(A2 \ B2)� P(A2)P(B2)j:

From the Markovian structure of U , X and Y, Condition C7, and the last inequality, we

obtain

ÆW (k) < ÆU (2k)þ ÆX (2k)þ ÆY (2k) < rk , (15)

for a certain 0 , r , 1, and k large enough. Notice now that the mapping s from

E2 3 E2 3 1, 2f g2 into E2, such that Z2
1 ¼ s(X2

1; Y
2
1; U

2
1) – see (4) – and defined by

s(x1, x2; y1, y2; u1, u2) ¼ ((2� u1)x1 þ (u1 � 1)y1; (2� u2)x2 þ (u2 � 1)y2),

is measurable, hence j s s is a measurable function from E2 3 E2 3 1, 2f g2 into Rd , which

means that the Æ-mixing coefficients of the sequence (j(Zmk
(k�1)mþ1))k>1 are inferior or equal

to the coefficients induced by W, which, using (15), concludes the proof of (i).

(ii) This result is a direct consequence of the maximal ergodic theorem for stationary

processes; see Stout (1974, p. 145).

(iii) This central limit theorem is a classical result, see (29.10) in Billingsley (1995, p.

387), which is proved by considering the central limit theorem for real Æ-mixing sequences

of random variables, see Theorem 3.2.1 in Zhengyan and Chuanrong (1996), and the

Cramér–Wold device, see Theorem 29.4 in Billingsley (1995, p. 383). h

Theorem 1. Under Conditions C1–C7, the MSDLE defined in (9) is strongly consistent, that

is,

ŴWk �!
k!1

W0 P0-a:s:, (16)

where W0 is the true value of the parameter.

Proof. The proof is based on the proof given by Dacunha-Castelle and Duflo (1993, pp. 94–

96). First of all, the MSDLE can be defined as a minimum contrast estimator,
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ŴWk ¼ argmin
W2¨

Uk(W),

where

Uk(W) ¼ �k�1‘W(Z
mk
1 ), ‘W(Z

mk
1 ) ¼ log

Yk

j¼1

pW(Z
mj
( j�1)mþ1) ¼

Xk

j¼1

log pW(Z
mj
( j�1)mþ1), (17)

where ‘W(z
km
1 ) denotes the log of the SDL. From Lemma 1, Conditions C3 and C7, we obtain

U k(W) ¼ �k�1‘W(Z
mk
1 ) �!

k!1
E0(W) ¼ �E0(log pW(Z

m
1 )), P0-a:s: (18)

with j�0(W)j , 1, for all W 2 ¨.

Under Condition C2 it is clear from Jensen inequality and Condition C2, that

E0(W0) < E0(W) and E0(W) ¼ E0(W0) ) W ¼ W0:

We now consider the Kullback distance K(W0, W) ¼ E0(W0)� E0(W) > 0, with K(W0, W)
¼ 0 , W0 ¼ W. Let us consider D a countable dense set in ¨, so that

infW2¨U k(W) ¼ infW2¨\D Uk(W) is an F k
Z,1-measurable random variable. We define, in

addition, the random variable

W (k, 	) ¼ sup jUk(W)� U k(W9)j; (W, W9) 2 D2, jW� W9j < 	
� �

,

and recall that K(W0, W0) ¼ 0. Let us consider a non-empty open ball B0 centred in W0 such

that K(W0, W) is bounded from below by a positive real number 2� on ¨nB0. Let us consider

a sequence (	r)r>0 decreasing towards zero, and cover ¨nB0 by a finite number ‘ of balls

(Bi)1<i<‘, respectively centred in (Wi)1<i<‘, and of radius less than 	r for one r fixed

arbitrarly. For all W 2 Bi, then,

Uk(W) > U k(Wi)� jU k(W)� Uk(Wi)j

> U k(Wi)� sup
W2Bi

jUk(W)� U k(Wi)j,

which leads to

inf
W2¨nB0

Uk(W) > inf
1<i<‘

Uk(Wi)� W (k, 	r):

As a consequence, we have the following event inclusions:
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ŴWk =2 B0

n o
� inf

W2¨nB0

U k(W) , inf
W2B0

Uk(W)
	 


� inf
W2¨nB0

U k(W) , Uk(W0)
	 


� inf
1<i<‘

Uk(Wi)� W (k, 	r) , Uk(W0)
	 


� W (k, 	r) . �f g [ inf
1<i<‘

(U k(Wi)� Uk(W0)) < �

	 

:

Thus we have

lim sup
k

ŴWk =2 B0

n o
� lim sup

k

W (k, 	r) . �f g [ lim sup
k

inf
1<i<‘

(U k(Wi)� Uk(W0)) < �

	 

: (19)

By the strong law of large number established in (18) we have

P0 lim sup
k

inf
1<i<‘

(U k(Wi)� Uk(W0)) < �

	 
� �
¼ 0: (20)

In addition, according to Condition C3, there exists a random variable h(Zm
1 ) such that

sup
W2¨

jlog pW Zm
1

� �
j < h(Zm

1 ),

with E0[h(Z
m
1 )] , 1, where h ¼ jlogg1j þ jlogg2j does not depend on W. Let us consider the

random variable

H	 Zm
1

� �
¼ sup

(W,W9)2¨2

jlog pW Zm
1

� �
� log pW9 Zm

1

� �
j; jW� W9j < 	

� �
:

Using the previous uniform upper bound and continuity Condition C4, we obtain that

H	 Zm
1

� �
< 2h Zm

1

� �
and lim

	!0
E0 H	 Zm

1

� �� �
¼ 0:

Hence, for r9 large enough, we have E0(H	 r9
(Zm

1 )) < �, and W (k, 	r9) <

k�1
Pk

j¼1 H	 r9
(Z

mj
( j�1)mþ1) P0-almost surely; therefore,

lim sup
k

W (k, 	r9) . �f g � lim sup
k

k�1
Xk

j¼1

H	 r9
(Z

mj
( j�1)mþ1) . �

( )
,

and

P0 lim sup
k

k�1
Xk

j¼1

H	 r9
(Z

mj
( j�1)mþ1) . �

( ) !
¼ 0

which leads to
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P0 lim sup
k

fW (k, 	r9) . �g
� �

¼ 0: (21)

By (19)–(21), we prove the strong consistency of the MSDLE ŴWk . h

Write V j(W) ¼ log pW(Z
mj
( j�1)mþ1) for j ¼ 1, . . . , k, and let us denote for any function v

depending on W, its gradient vector and Hessian matrix respectively by

_vv(W) ¼ @v

@W
(W) and €vv(W) ¼ @2v

@W@WT
(W): (22)

Let us write ‘k(W) ¼ ‘W(Z
2k
1 ), in line with the notation in (22). From (17) we obtain

k�1=2 _‘‘k(W) ¼ k�1=2
Xk

j¼1

_VV j(W): (23)

Lemma 2. Under Conditions C4–C7, we have

k�1=2 _‘‘k(W0) �!L
k!1

N (0, �0),

where

�0 ¼ E0( _VV1(W0) _VVT
1 (W0))þ 2

X1
k¼2

kE0( _VV1(W0) _VVT
k(W0)) , 1:

Proof. This result is a direct consequence of Conditions C4–C7 and Lemma 1, taking

j(�) ¼ @ log pW0 (�)=@W. h

Lemma 3. Let (W�k )k>0 be any arbitrary sequence converging P0-a.s. towards W0. Under

Conditions C4–C7, we have

k�1 €‘‘k(W
�
k ) �!

k!1
A0 ¼ E0( €VV1(W0))

in P0-probability.

Proof. By Lemma 1 and Condition C4 we know that (k�1 €‘‘k(W0))k>1 converges P0-a.s. to

E0
€VV1(W0)
� �

. Now let us prove that (k�1 €‘‘k(W
�
k ))k>1 and (k�1 €‘‘k(W0))k>1 are asymptotically

equivalent in P0-probability, that is,

8	 . 0, lim
k!1

P0

���� 1k €‘‘k(W
�
k )�

1

k
€‘‘k(W0)

���� . 	

� �
¼ 0,

where we denote (in this proof) by j � j the norm on the real matrices defined, for all d 3 d

real matrices A ¼ (Ai, j)i, j¼1,...,d , by jAj ¼ maxi, j¼1,...,d jAi, jj, with the convention that the norm

of a scalar coincides with its modulus. For this purpose we notice that for all 0 , � , �0 (for

definition of �0, see Condition C5), we can write
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P0

���� 1k €‘‘k(W
�
k )�

1

k
€‘‘k(W0)

���� . 	

� �
< P0

1

k

Xk

j¼1

sup
W2B(W0,�)

���� €VV j(W)� €VV j(W0)
���� . 	

 !

þ P0(W
�
k =2 B(W0, �)),

where B(W0, �) denotes the ball centred on W0, with radius equal to �. The second term on the

right-hand side goes to zero as k goes to infinity by strong consistency of W�k . For the first

term on the right-hand side we notice that

æ(�; Zm
1 ) ¼ sup

W2B(W0,�)

���� €VV j(W)� €VV j(W0)
���� �!

�!0
0 a:e:

In addition there exists, from Condition C5, a P0-integrable function g(2), such that, for all

j ¼ 1, . . . , k, the components of the matrix €VV j(W) are all dominated in modulus by g(2)(Zm
1 )

on B(W0, �0), which implies that æ(�; Zm
1 ) < 2g(2)(Zm

1 ). Now, using the Lebesgue continuity

theorem, we obtain that

E0 æ(�; Zm
1 )

� �
�!
�!0

0: (24)

For all � . 0, and all � . 0 small enough such that 0 , E0 æ(�; Zm
1 )

� �
, �, we have, using

Chebyshev’s inequality for positive random variables,

P0

1

k

Xk

j¼1

æ(�; Zmj
( j�1)mþ1) > �

 !
< P0

1

k

Xk

j¼1

æ(�; Zmj
( j�1)mþ1) > �� E0 æ(�; Zm

1 )
� � !

<
1

k[�� E0[æ(�; Z
m
1 )]

Xk

j¼1

E0 æ(�; Zmj
( j�1)mþ1)

h i

¼ 1

�� E0 æ(�; Zm
1 )

� �E0 æ(�; Zm
1 )

� �
,

which goes to zero, by (24), as � goes to 0. h

Theorem 2. Under Conditions C1–C7, and assuming that A0 is non-singular, we obtain that

k1=2(ŴWk � W0) �!L
k!1

N (0, A�1
0 �0A�1

0 ):

Proof. For k large enough ŴWk is an interior point of ¨, and kŴWk � W0k , �0, and then by a

Taylor expansion of _‘‘W(Z
km
1 ) about W0 we obtain,

k1=2(ŴWk � W0) ¼ [�k�1 €‘‘k(W
�
k )]

�1k�1=2 _‘‘k(W0),

where W�k is a point on the line segment between W0 and ŴWk . Therefore, using Theorem 1 and

Lemmas 2 and 3, we obtain the asymptotic normality of the MSDLE. h
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4. Monte Carlo estimate of the log of the SDL

We noticed in Section 2 that, except in the case of linear Gaussian autoregressive models,

the invariant probability densities qŁ and q� involved in (8) are analytically unknown, but

are solutions of the fixed point problems in (6). The goal of this section is to propose a

general tractable approach to approximating the log of the SDL (see (17)), for a given fixed

sample path zmk
1 , k > 1. The methodology presented here is inspired by Chauveau and

Vandekerkhove (2001). Let consider for simplicity the case k ¼ 1. In this framework the

crucial point is to estimate numerically, for each Ł 2 �1 and each � 2 �2, the quantities

q1
Ł(z1) and q2

�(z1). We illustrate our method only on q1
Ł(z1), the same procedure holding for

q2
�(z1) (the associated estimate will be denoted by q̂q2

�(z1). Let suppose that, for each

Ł 2 �1, we are able to simulate an ergodic Markov process X Ł ¼ (X Ł
N )N>1, from Q1

Ł
(knowledge of the stationary initial distribution is not needed in practice, a long burn-in of

the chain suffices). From the strong law of large numbers for ergodic Markov chains, and

from (6), we obtain

q̂q1
Ł(z1) ¼

1

N

XN

i¼1

Q1
Ł(X

Ł
i , z1) �!

N!1

ð
E

q1
Ł(x)Q

1
Ł(x, z1)º(dx) ¼ q1

Ł(z1), PŁ-a:s:

Hence q̂q1
Ł(z1) is a strongly convergent estimate of q1

Ł(z1). From this, it is easy to construct a

consistent plug-in estimator ‘̂‘W(z
m
1 ) of ‘W(z

m
1 ), replacing q1

Ł(z1) and q2
�(z1) respectively by

q̂q1
Ł(z1) and q̂q2

�(z1) in (8). In addition, the central limit theorem for ‘̂‘W(z
m
1 ) can be established.

Write, for simplicity,

‘̂‘W(z
m
1 ) ¼ log(q̂q1

Ł(z1)c1 þ q̂q2
�(z1)c2) and ‘W(z

m
1 ) ¼ log(q1

Ł(z1)c1 þ q2
�(z1)c2),

where c1 and c2 are constants depending on zm
2 and W. Let us suppose a Condition C79

equivalent to Condition C7, but true for all W 2 ¨ (and not only for W0). Then, supposing
moments conditions akin to Lemma 1 on Q1

Ł(z1, �) and Q2
�(z1, �),ffiffiffiffiffi

N
p

(q̂q1
Ł(z1)� q1

Ł(z1)) �!L
N!1

N (0, �1), and
ffiffiffiffiffi
N

p
(q̂q2

�(z1)� q2
�(z1)) �!L

N!1
N (0, �2): (25)

where �1 and �2 are variance terms similar to � defined in (11). Finally by a Taylor

expansion of the log function about q1
Ł(z1)c1 � q2

�(z1)c2, we have, for all N > 1:ffiffiffiffiffi
N

p
(‘̂‘W(z

m
1 )� ‘W(z

m
1 )) ¼

1

‘�N
(
ffiffiffiffiffi
N

p
(q̂q1

Ł(z1)� q1
Ł(z1))c1 þ

ffiffiffiffiffi
N

p
(q̂q2

�(z1)� q2
�(z1))c2),

where ‘�N is a point on the line between q̂q1
Ł(z1)c1 � q̂q2

�(z1)c2 and q1
Ł(z1)c1 � q2

�(z1)c2. From

(25) and convergence in PW-probability of ‘�n towards q1
Ł(z1)c1 � q2

�(z1)c2, we obtainffiffiffiffiffi
N

p
(‘̂‘W(z

m
1 )� ‘W(z

m
1 )) �!L

N!1
N (0, �),

where � ¼ [q1
Ł(z1)c1 � q2

�(z1)c2]
�2[c21�

1 þ c22�
2]. In conclusion, we have proposed a

ffiffiffiffiffi
N

p
-

consistent method to calculate the terms of the form log pW(z
mj
( j�1)mþ1), 1 < j < k, and hence

for k fixed, and for each W 2 ¨ a
ffiffiffiffiffi
N

p
-consistent method exists to calculate the log of the

SDL (see (17)) at zmk
1 (the asymptotic variance growing linearly with k). From a practical
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point of view, this approach at least enables the log of the SDL to be computed pointwise,

and a discretized version of the MSDLE to be implemented on a grid over .̈

5. Hidden Markov mixture of two AR(1)s

In this section we check in detail that our mixing, identifiability, regularity and integrability

Conditions (C2–C7) in Section 2 are satified for a hidden Markov mixture of two

autoregressive processes of order 1. More precisely, the processes X and Y considered in

this section are defined, for all n > 1, by

X nþ1 ¼ a1X n þ �nþ1 and Ynþ1 ¼ a2Yn þ �9nþ1, (26)

where (a1, a2) 2 (0, 1), (�n)n>1 and (�9n)n>1 are two mutually independent sequences of

independent Gaussian random variables with respective means 
1 and 
2 and variances � 2
1

and � 2
2. The mixture process U is a Markov chain on f1, 2g with transition matrix defined in

(7). The parameter in such a set up is

W ¼ (Æ, �, 
1, 
2, a1, a2, �
2
1, �

2
2):

We do not describe precisely at this stage the form of the parametrical space ¨ since it will

be deduced from the coming discussion about identifiability.

Mixing. Condition C7 is clearly satisfied for U, and the same holds for X and Y since

these processes are geometrically �-mixing (and hence Æ-mixing); see, for example, Baraud

et al. (2001) for general conditions.

Identifiability. Processes X and Y, defined in (26), with initial conditions x1 and y1,

satisfy

X nþ1 ¼ an
1 x1 þ

Xn�1

k¼0

ak
1�nþ1�k , Ynþ1 ¼ an

2 y1 þ
Xn�1

k¼0

ak
2�9nþ1�k : (27)

From these expressions and properties of Gaussian random vectors, it is easy to identify the

density of the stationary distribution of X and Y processes. In fact for X we obtain the

density of a N (m1, s1) distribution, while for Y we have the density of a N (m2, s2)

distribution, with

m1 ¼

1

1� a1

, s1 ¼
� 2
1

1� a2
1

, m2 ¼

2

1� a2

, s2 ¼
� 2
2

1� a2
2

: (28)

In order to prove identifiability, we propose to consider m ¼ 2, and to check that for all W and

W9 in ¨ (which needs to be defined), we have:

pW(z1, z2) ¼ pW9(z1, z2), º
�2-a:e: ) W ¼ W9: (29)

Nethertheless partial information on identifiability will be given considering the marginal

equality

pW(z2) ¼
ð
R

pW(z1, z2)dz1 ¼
ð
R

pW9(z1, z2)dz1 ¼ pW9(z2), º-a:e: (30)
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Denoting by f 
,� 2 the density function of a N (
, � 2) distribution, we have, for all W 2 ¨:

pW(z2) ¼ �W(1) f (m1,s1)(z2)þ �W(2) f (m2,s2)(z2): (31)

Teicher (1963) establishes identifiability property for mixtures of various density families. A

mixture of at most r elements of G ¼ g(z; Ł); Ł 2 �f g is identifiable if, for Łi and Ł9i, for
i ¼ 1, . . . , r, in �, (c1, . . . , cr) and (c91, . . . , c9r) probability vectors we have

Xr

i¼1

ci g(z; Łi) ¼
Xr

i¼1

c9i g(z; Ł9i), º-a:e: )
Xr

i¼1

ci�Łi
¼
Xr

i¼1

c9i�Ł9i :

(�Ł denotes the point mass at Ł). This argument is equivalent to the following statement:

there exists a unique permutation � on 1, . . . , rf g such that for all i ¼ 1, . . . , r,

(ci, Łi) ¼ (c9� (i), Ł9� (i)). Teicher (1963) shows in particular that mixtures of Gaussian densities

(where Łi ¼ (mi, si), for i ¼ 1, . . . , r, with mi denoting the mean parameter, and si denoting

the variance parameter of the ith component of the mixture) are identifiable, and propose to

order the parameter space to avoid the previous permutation ambiguities, that is, by imposing

m1 , . . . , mr if si ¼ s j, for all i, j ¼ 1, . . . , r, or (mi, si) , (m j, s j) if si , s j or mi , m j

if si ¼ s j. In practice, equality of the variance parameters is assumed in order to obtain a

simple parameter space for (m1, . . . , mr). The same approach can be used on (s1, . . . , sr) if

the variance parameters are assumed all different (without any order constraints on

(m1, . . . , mr)). Imposing that s1 , s2 in ¨, the mixture equality (30) and writing (31), we

obtain a first partial identification

�W(1) ¼ �W9(1), �W(2) ¼ �W9(2), m1 ¼ m91, m2 ¼ m92, s1 ¼ s91, s2 ¼ s92: (32)

For simplicity let us denote �(�) ¼ �W(�), �9(�) ¼ �W9(�), �(�, �) ¼ �W(�, �) and �9(�, �)
¼ �W9(�, �). Using this first identification in (29), we obtain the following relation which is

to be discussed:

�(1)�(1, 1) f (m1,s1)(z1) f (a1 z1þ
1,� 2
1
)(z2)þ �(1)�(1, 2) f (m1,s1)(z1) f (m2,s2)(z2)

þ �(2)�(2, 1) f (m2,s2)(z1) f (m1,s1)(z2)þ �(2)�(2, 2) f (m2,s2)(z1) f (a2 z1þ
2,� 2
2
)(z2) (33)

¼ �(1)�9(1, 1) f (m1,s1)(z1) f (a91 z1þ
91,� 9
2
1)
(z2)þ �(1)�9(1, 2) f (m1,s1)(z1) f (m2,s2)(z2)

þ �(2)�9(2, 1) f (m2,s2)(z1) f (m1,s1)(z2)þ �(2)�9(2, 2) f (m2,s2)(z1) f (a92 z1þ
92,� 9
2
2)
(z2):

Taking the Fourrier transform term by term with respect to z2, we obtain

�(1)�(1, 1) f (m1,s1)(z1)e
i t(a1 z1þ
1)�� 2

1
t2 þ �(1)�(1, 2) f (m1,s1)(z1)e

i t m2�s2 t2

þ �(2)�(2, 1) f (m2,s2)(z1)e
i t m1�s1 t2 þ �(2)�(2, 2) f (m2,s2)(z1)e

i t(a2 z1þ
2)�� 2
2

t2 (34)

¼ �(1)�9(1, 1) f (m1,s1)(z1)e
i t(a91 z1þ
91)�� 921 t2 þ �(1)�9(1, 2) f (m1,s1)(z1)e

i t m2�s2 t2

þ �(2)�9(2, 1) f (m2,s2)(z1)e
i t m1�s1 t2 þ �(2)�9(2, 2) f (m2,s2)(z1)e

i t(a92 z1þ
92)�� 922 t2 :

Let us consider the case � 2
1 6¼ � 2

2. We begin with the subcase � 2
2 , � 922 , s2, � 2

1 , � 921 , s1
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and � 2
2 , � 2

1. Multiplying both sides of (34) by e� 2 t2, and taking the limit as t goes to

infinity, we obtain the absurd result �(2, 2) ¼ 0. Let us consider the more complicated

subcase s1 , � 2
2 , � 922 , s2, and �1 ¼ � 91 , s1 (from which we obtain a1 ¼ a91 and 
1 ¼ 
91,

(32)). Considering the previous constraints in (34), and multiplying both sides of (34) by

e�
2
1

t2 and taking limit as t goes to infinity, we obtain the necessary condition

�(1, 1) ¼ �9(1, 1) (hence terms in e�� 2
1

t2 disappear from (34)). Then multiplying the two

sides of (34) by es1 t2 and taking the limit as t goes to infinity, we necessarily obtain

�(2, 1) ¼ �9(2, 1) (hence terms in e�s2
1

t2 disappear from (34)). Finally, multiplying both sides

of (34) (with only two terms at this stage) by e�
2
2

t2 and taking the limit as t goes to infinity,

we necessarily obtain �(2, 2) ¼ 0, which is absurd. In any situation such that

(� 2
1, �

2
2) 6¼ (� 921, � 9

2
2) the same technique is applied, always leading to an absurd conclusion.

In this way it is necessarily established that (� 2
1, �

2
2) ¼ (� 921, � 9

2
2). From this remark and (32),

we obtain that a1 ¼ a91, a2 ¼ a92, 
1 ¼ 
91 and 
2 ¼ 
92. Including the various identifications

thus obtained in (34), we have:

0 ¼ �(1)(�(1, 1)� �9(1, 1)) f (m1,s1)(z1)e
i t(a1 z1þ
1)�� 2

1
t2

þ �(1)(�(1, 2)� �9(1, 2)) f (m1,s1)(z1)e
i t m2�s2 t2

þ �(2)(�(2, 1)� �9(2, 1)) f (m2,s2)(z1)e
i t m1�s1 t2

þ �(2)(�(2, 2)� �9(2, 2)) f (m2,s2)(z1)e
i t(a2 z1þ
2)�� 2

2
t2 : (35)

The right-hand side of (35) being a linear combination of linearly independent functions, we

obtain that �(i, j) ¼ �9(i, j), for all i and j in 1, 2f g, which concludes the proof for this first

case. The other cases � 2
1 ¼ � 2

2 (and a1 , a2) or a1 ¼ a2 (and � 2
1 , � 2

2) are solved in the

same way by using (32)–(35).

Remarks. (i) If we assume s1 , s2 (which is reasonable in practice), the parameter

W ¼ (Æ, �, 
1, 
2, a1, a2, � 2
1, �

2
2) should be supposed to belong to a compact set

[�, 1� �]2 3 [�M , M]2 3 S, where S is any compact subset of [0, 1� �]2 3 [�, V ]2,

0 , � , 1 denotes an arbitrary small positive value, and 0 , M , 1, 0 , V , 1 are

arbitrary positive bounds, such that

8(a1, a2, �
2
1, �

2
2) 2 S, � 2

1

1� a2
1

,
� 2
2

1� a2
2

: (36)

(ii) The previous result can be extended with some extra work to cases corresponding to

K > 2 (the previous technique does not use the fact that �(1, 1) ¼ 1� �(1, 2) or

�(2, 1) ¼ 1� �(2, 2) when K ¼ 2), but the set S then becomes much trickier to build.

(iii) Finally, it is worth observing that the case ai ¼ 0 for some values of i in

1, . . . , Kf g, is compatible with this identifiability approach. Thus Markov mixtures of

AR(1) processes and sequences of i.i.d. Gaussian random variables, according to expression

(4), lead to an identifiable model.
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(iv) If � 2
1 ¼ � 2

2 ¼ � 2, and a1 ¼ a2 ¼ a, which leads to s1 ¼ s2, the model is still

identifiable. In fact the same kind of proof can be employed using the ordering 
1 , 
2.
Regularity and integrability. We now check essentially that Conditions C3–C6 are

satisfied. In order to simplify the expressions, and without loss of generality, we consider

� 2
1 ¼ � 2

2 ¼ 1 and a1 ¼ a2 ¼ a (which corresponds to Remark (iv) above). Let us denote by

W ¼ (Æ, �, 
1, 
2, a) ¼ (W1, . . . , W5). Let us write the two-dimensional likelihood for this

parametrization:

pW(z1, z2) ¼
(1� Æ)�

Æþ �
T1(z1, z2; W)þ

Æ�

Æþ �
T2(z1, z2; W)

þ Æ�

Æþ �
T3(z1, z2; W)þ

Æ(1� �)

Æþ �
T4(z1, z2; W)

(see (8), with n ¼ 2) where

T1(z1, z2; W) ¼ f 
1,1=(1�a2)ð Þ(z1) f az1þ
1,1=(1�a2)ð Þ(z2),

T2(z1, z2; W) ¼ f 
1,1=(1�a2)ð Þ(z1) f 
2=(1�a),1=(1�a2)ð Þ(z2),

T3(z1, z2; W) ¼ f 
2=(1�a),1=(1�a2)ð Þ(z1) f 
1=(1�a),1=(1�a2)ð Þ(z2),

T4(z1, z2; W) ¼ f 
2=(1�a),1=(1�a2)ð Þ(z1) f az1þ
2,a2ð Þ(z2):

Concerning Condition C3, the uniform P0-integrability of the family log pW(z1, z2) ; W 2 ¨f g
it is enough to notice that for all (z1, z2) 2 R2, and all W 2 ¨, we have

Æ�

Æþ �
T2(z1, z2; W) < pW(z1, z2) < 4max

z2R
f 2(0,1=(1�a2))(z),

hence

log
�2(1� �=2))

2�

� �
� 1

2
(z21 þ z22)þ

M

�
(jz1j þ jz2j)þ

M

�

� �2
" #

< log pW(z1, z2) < log
2

�
:

The two sides of the previous inequality being independent of W and P0-integrable, we thus

obtain the desired result. Condition C4 is easy to prove.

Let us now recall that for all i, j ¼ 1, . . . , 5, the expressions for the first- and second-

order partial derivatives are given by:

@

@Wi

log pW(z1, z2) ¼

@

@Wi

pW(z1, z2)

pW(z1, z2)
,

@2

@Wi@W j

log pW(z1, z2) ¼

@2

@Wi@W j

pW(z1, z2) pW(z1, z2)�
@

@Wi

pW(z1, z2)
@

@W j

pW(z1, z2)

( pW(z1, z2))2
,
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where, for W1 ¼ Æ, W3 ¼ 
1 (the same calculation holding for W2 ¼ �, W4 ¼ 
2), and W5 ¼ a,

we obtain

@

@Æ
pW(z1, z2) ¼

1

(Æþ �)2
[��(2Æþ �)T1(z1, z2; W)þ �2(T2(z1, z2; W)þ T3(z1, z2; W))

þ (1� �)�2T4(z1, z2; W)],

@

@
1
pW(z1, z2) ¼

(1� Æ)�

Æþ �
z1 �


1
(1� a)

� �
1� a2

1� a
þ z2 � az1 � 
1

 �
T1(z1, z2; W)

þ Æ�

Æþ �
z1 �


1
(1� a)

� �
1� a2

1� a

 �
(T2(z1, z2; W)þ T3(z1, z2; W)),

and

@

@a
pW(z1, z2) ¼

(1� Æ)�

Æþ �

�2a

1� a2
þ a z1 �


1
1� a

� �2

þ z1 �

1

1� a

� � 
1
(1� a)2

(1� a2)þ z1(z2 � az1 � 
1)

�
T1(z1, z2; W)

þ Æ�

Æþ �

�2a

1� a2
� 1� a2

(1� a)2

1 z1 �


1
1� a

� �
þ 
2 z2 �


2
1� a

� �� �

þ a
z1 � 
1
1� a

� �2
þ z2 � 
2

1� a

� �2� ��
T2(z1, z2; W)

þ Æ�

Æþ �

�2a

1� a2
� 1� a2

(1� a)2

1 z1 �


2
1� a

� �
þ 
2 z2 �


1
1� a

� �� �

þ a
z1 � 
2
1� a

� �2
þ z2 � 
1

1� a

� �2� ��
T3(z1, z2; W)

þ Æ(1� �)

Æþ �

�2a

1� a2
þ a z1 �


2
1� a

� �2

þ z1 �

2

1� a

� � 
2
(1� a)2

(1� a2)þ z1(z2 � az1 � 
2)

�
T4(z1, z2; W):

For the sake of simplicity we do not calculate here the second-order partial derivatives, but

from these calculations it can be shown that the absolute values of the two-dimensional

likelihood partial derivatives of order 1 and 2 are always dominated by a bivariate function

taking the form
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Pol4W(jz1j, jz2j)
X4
i¼1

Ti(z1, z2; W)

 !
,

where Pol4W(�, �) is a bivariate polynomial of order 4 whose coefficients depend on W and are

uniformly bounded over .̈ On the other hand, for all (z1, z2) 2 E2, pW(z1, z2) >

�2
P4

i¼1Ti(z1, z2; W). In conclusion the partial derivatives of order 1 and 2 of the two-

dimensional log-likelihood function (with respect to the various components of W) are

dominated by a bivariate polynomial of order 4 which is pW0 (�, �)-integrable. Finally, we

observe that the MSDLE for a mixture of two Gaussian linear AR(1) models is easy to

implement since the gradient function of the log-likelihood is analytically known, and

classical optimization procedures can be employed to solve _‘‘W(z
2k
1 ) ¼ 0 over ¨, using various

initialization conditions.

6. Applications

The goal of this section is to present applications of H4Ms in the fields of neurophysiology

(epileptic electroencephalogram signals, and alpha and theta waves), and kinetics (single ion

channel analysis). We motivate each application by comparing the expectations of the

specialists with H4M properties (i)–(v) described in Section 1, and give further references.

6.1. Epileptic EEG signals

Among the many types of electrical activity in the brain, epileptic electroencephalogram

(EEG) signals remain one of the most misunderstood. Various authors have proposed

different kinds of model, stochastic and dynamic, to capture the huge complexity of

epileptic EEG data series. For a first reading on this subject see, for example, Sackellares

et al. (2000), Franaszczuk and Bergey (1999), Bergey and Franaszczuk (2001), and

references therein. These papers analyse the behaviour of epileptic EEGs and present two

different modelling approaches: one based on nonlinear chaotic models, and the other on

simple linear models. They conclude that epileptic EEG modelling is an extraordinarily

difficult problem which remains open (each method having its advantages and drawbacks).

We give a brief account of some of the fundamentals of epileptic EEG signals.

All cerebral activity detectable by EEG is a reflection of synchronous neuronal activity, a

state considered normal. Epileptic seizures, however, are abnormal, temporary manifesta-

tions of dramatically increased neuronal synchrony, occurring either regionally (partial

seizures) or bilaterally (generalized seizure) in the brain. During periods between seizures

(called interictal ) the EEG pattern is of low to medium voltage, irregular and arrhythmic, in

contrasts to the organized, rythmic, and self-sustained characteristics of EEG patterns during

periods of paroxysmal electrical discharges (ictal). Iasemidis and Sackellarres (1991) study

a refinement of the states, by considering the repetitive process of dynamical transitions

from the interictal via the pre-ictal (prior to seizure) and ictal and to the post-ictal state

(after seizure). Bergey and Franaszczuk (2001) show that the changes occuring at the
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beginning of a seizure (onset) have not been studied because of the rapidly changing nature

of the signal. One of the problems inherent in applying standard signal analysis methods is

that most linear and nonlinear methods require long periods of relatively stationary activity.

From this description of epilectic EEG patterns, one can propose an H4M model taking into

account these main characteristics. Formally, the Markov chain U should have a state space

U with five states, representing the interictal, pre-ictal, onset, interictal, and post-ictal

regimes, and a highly structured matrix transition (with a small probability of remaining in

the onset state), to reflect the possibility of switching possibilities between these states, and

the mixed Markov processes should be autoregressive processes (see Franaszczuk and

Bergey 1999, for interictal state modelling with autoregressive processes), with calibrated

coefficients (scale and location parameter of the noise, and coefficients of the regression

from the past).

6.2. Alpha and theta waves

Waves analysis and classification are crucial in neurophysiology, since they reflect the

normality or not of brain activity. Waves of frequency 7.5 Hz and higher are a normal

occurrence in the EEG of an awake adult. Lower-frequency waves are classified as

abnormal for an awake adult, although they can normally be seen in children or in adults

who are asleep. In certain situations, waveforms of otherwise appropriate frequency are

considered abnormal because they occur at an inappropriate location or demonstrate

irregularities in rhythmicity or amplitude. Some waves are recognized by their shape, head

distribution, and symmetry. As a result EEG signals are divided into two groups according

to their frequency context and morphomogy characteristics. Novák et al. (2001) present an

exhaustive classification (with illustrations) of the existing wave forms. We focus our

attention on alpha and theta waves, which switch respectively between three and two

frequency levels with short and long stationary stages. According to Novák et al. (2001),

HMM modelling for the alpha wave with a three-state Markov chain seems reasonable (see

their Figure 8), while H4M modelling seems much more appropriate for the theta wave

because of the abrupt changes and the various piecewise stationary patterns, with trend and

notable phase-type feedback effects (see their Figure 10). A very similar sample path is

simulated in Section 6.4 below, using a two-state H4M.

6.3. Single ion channel analysis

Ion channels catalyse the diffusion of ions through a membrane into electrical currents of

the order of picoamperes (10�12 A). The recording of single channel currents shows current

levels corresponding to the closed and open state, respectively. Transitions between these

two states are very fast and of order of fractions of a millisecond, and appear in the

recording as rectangular jumps from one level to the other. Normally, the channels stay

open for only a fraction of a second, allowing the flux of tens of thousands of ions through

the pore. HMMs provide an efficient approach to the analysis of single channel currents. In

fact different states of current levels are supposed during the ‘open’ state, and are
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considered as hidden by the noise due to the recording instruments. It is particularly useful

for records where the signal-to-noise ratio is low or the channel kinetics is rapid; see Chung

et al. (1990), Fredkin and Rice (1992), Chung and Gage (1998), see also an excellent

overview of the HMM approach to single channel analysis in Quin et al. (2000a; 2000b).

Quin et al. (2000b) proposed to model the background noise by an autoregressive

process, under the strong assumption that the noise depends only on the current state.

Venkataramanan and Sigworth (2002) also model the noise as an autoregressive process but

make use of a more general description of state-dependent noise. The use of H4Ms in this

context should be motivated by regarding the global signal (current flux plus noise) as a

Markov process (current state discretization is no longer needed), and by considering the

open/close mechanism of the pore as a Markovian censoring process of the global signal,

following exactly the principle described in formula (4).

6.4. Sample path simulation

In this subsection we show, by considering two-state HMMs and H4Ms, chosen with the

same marginal distribution and same switching source, the morphological pattern
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Figure 1. Sample path simulation of the underlying Markov chain U .
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differences one can obtain. The models considered have the same underlying chain U , with

transition matrix

— ¼ 0:92 0:08
0:08 0:92

� �
: (37)

For the HMM the conditional law with respect to state 1 is N (0, 1), and the conditional

law with respect to state 2 is N (
2, 1), with 
2 ¼ 1:5. For the H4Ms, the AR(1) process X

has a1 ¼ a and noise distribution equal to N (0, 1� a2), while Y has a2 ¼ a and noise

distribution equal to N (
2(1� a), 1� a2). By construction the HMM and H4Ms previously

defined have the same marginal distribution. The following figures, show an HMM sample

path (Figure 2), and H4M sample paths, of length n ¼ 200, with different choice of a

(Figures 3 and 4), using the same chain U (shown in Figure 1).

We observe that in Figure 2 the HMM pattern is very noisy but the global switching

scheme is almost clear. In Figure 3 the abrupt changes and the small variance of the jumps

from each AR source make the switch design clearer. In Figure 4 the observed sample path

is much more difficult to interpret, since the concatened locally stationary sequences are not

different enough (because of the importance of the jumps, and the history of each AR
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Figure 2. Sample path simulation of an HMM, 
1 ¼ 0, 
2 ¼ 1:5, � 2
i ¼ 1, for i ¼ 1, 2.
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source) to detect clearly the instants corresponding to changes of regime. This situation is

more ambiguous, in some sense, than in Figure 2, because the resulting process looks like a

self-sustained process, where important jumps sometimes occur, and does not have the well-

known morphology of a noisy state-space model. Finally, let us remark that pattern shown

in Figure 3 imitates quite well the theta wave pattern given in Novák et al. (2001).

7. Conclusion

In this paper we have introduced a new missing-data model, the hidden Markov mixture of

Markov model (H4M), whose observations come from different independent Markov

sources, selection among which at time n is done randomly according to a discrete Markov

chain Un. We observed that such a process is not Markovian, differs clearly from other

mixture of Markov Models, and does not belong to the class of hidden Markov models

(successive observations are not independent conditionally on a finite-length past of Us).

We have proved under mild conditions that the MSDLE, proposed by Rydén and adapted to
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Figure 3. Sample path simulation of an H4M with two AR(1) sources, ai ¼ 0:9 (weakly mixing case),

i ¼ 1, 2.
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our case, is consistent and asymptotically distributed. But we have also pointed out that

identifiability and the analytic form of the invariant probability densities are in general

impossible to derive. To partially address the second difficulty, we proposed a Monte Carlo

approach to estimate the split data likelihood when the parametrization of the invariant

probability densities is not explicit. However, we exhibit one class of models, the hidden

Markov mixture of K linear autoregressive processes of order 1, K > 2, with Gaussian

noise, for which all the conditions needed for
ffiffiffi
n

p
-consistency of the MSDLE are satisfied,

except for the classical singularity of the covariance matrix involved in the asymptotic

normality result. Finally, it seems that H4Ms may be useful models in areas such as

neurophysiology and kinetics, which deal with data series with abrupt changes, and locally

stationary sequences.

There is scope for future extension of this preliminary work in two directions: (i)

research into simple conditions on systems of dynamic equations and families of noise

distributions ensuring identifiability of certain classes of H4Ms; and (ii) the study of the

very challenging exact maximum likelihood estimator, where we claim that parametrization

of invariant probability densities is less crucial (in the case of uniform exponential

memorylessness of the initial conditions on the X [i], for example).
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Figure 4. Sample path simulation of an H4M with two AR(1) sources, ai ¼ 0:7 (medium mixing

case), i ¼ 1, 2.

126 P. Vandekerkhove



Acknowledgements

The author would like to thank Laurence Denat for encouragement and insightful

comments. He is also grateful to the referees for constructive comments that led to a clearer

presentation, and more complete analysis of the problem.

References

Bakry, D., Milhaud, X. and Vandekerkhove, P. (1997) Statistique de chaı̂nes de Markov cachées à
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