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1. Introduction

Normalization of gene expression intensity data in microarray studies aims to remove the

influence of extraneous factors in order to provide precise and unbiased estimates of

differential expression for genes across experimental samples. Normalization adjusts for

sources of variability such as dye colour, pin tip effects and spatial anomalies on slides. A

variety of methodologies have been proposed for this purpose. This note looks at one such

methodology, intensity-dependent normalization described in Yang et al. (2002). We raise

the concern that intensity-dependent normalization can give biased estimates of differential

expression and, therefore, can misclassify some moderately important genes as unexpressed.

2. MA plots and intensity-dependent normalization

Dudoit et al. (2002), among others, have noted a dependence of differential expression on

average intensity for the red and green intensities of a spot in cDNA arrays. Denoting the

red and green log-intensity readings for any spot by y(R) and y(G), Dudoit et al. demonstrate

this dependence in a plot of the log-intensity difference M against the mean log-intensity A,

where

M ¼ y(R) � y(G), A ¼ 1
2
(y(R) þ y(G)): (1)

This plot, referred to as an MA plot, provides a clear picture of the relationship.

Yang et al. (2002) suggest a normalization for gene expression data that uses lowess

smoothing of the MA plot. This approach is referred to as intensity-dependent

normalization. In it, a lowess-fitted function ‘(A) of the average intensity A is used to

normalize the differential expression M by computing the difference M (d) ¼ M � ‘(A),
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where the superscript (d) denotes an intensity-dependent adjustment. The authors show that

this plot may vary by the pin tip of the arrayer and, therefore, suggest that the intensity-

dependent normalization be carried out separately for each pin tip, in essence, giving

normalized log-intensity differences of the form M
(d)
i ¼ Mi � ‘i(A), where i is an index for

the pin tip and ‘i(A) is the lowess function fitted to the data from the ith pin tip.

3. Re-examining the intensity-dependent normalization method
in a case study

We now introduce a case study that we use to illustrate an MA plot and the nature of

intensity-dependent normalization. This microarray data set was first presented in Lee et al.

(2002) and was collected to investigate differential gene expression in kidney tissue from

mutant (type 1) and wild-type (type 2) mice with juvenile cystic kidneys. The experimental

design involves eight readings for each gene in four microarray pairs, according to the

pattern set out in Table 1. ‘Array’ in Table 1 refers to the four microarray pairs (arrays a1
to a4). ‘Channel’ refers to whether the expression reading comes from the Cy3 green

fluorescent channel (channel 1) or the Cy5 red fluorescent channel (channel 2). The data set

in this experiment contains ScanAlyze cDNA gene expression data for 1728 genes (Eisen

and Brown, 1999). Additional details of the experiment and data may be found in Lee et al.

(2002).

We wish to consider the inherent logic of intensity-dependent normalization. We begin by

looking at separate MA plots for arrays a1 and a2 of the case study. We note that these two

arrays involve a comparison of expression intensity for genes from mutant and wild-type

tissue, with the colour assignment reversed for array a2 in comparison to array a1. The raw

data correspond to the ScanAlyze variables CH1I and CH2I and, hence, are not background-

corrected. We have done a preliminary normalization for array, colour and tissue type that

centres the log-readings for all genes at each level of these factors.

Notice that, although the M and A in (1) are defined in terms of the red and green

intensities, the colours actually stand in for two experimental samples that are labelled by

the two dyes. Hence, in this paper, we discontinue the use of notation y(R) and y(G) in (1).

Instead, we use the notation yadt to clearly identify the design parameters for the intensity

Table 1. Experimental design for the case study

Channel 1

(Green)

Channel 2

(Red)

Array a1 mutant wild type

Array a2 wild type mutant

Array a3 mutant mutant

Array a4 wild type wild type
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reading. Specifically, the first index a denotes the array (for arrays a1 and a2), the second

index d denotes the dye (1 ¼ green and 2 ¼ red) and the third index t denotes the sample

tissue (1 ¼ mutant and 2 ¼ wild type). Table 2 shows the reversed-colour design.

Individual MA plots for the two arrays now involve M and A values defined as follows.

M1 ¼ y122 � y111, A1 ¼ 1
2
(y122 þ y111) for array a1, (2)

M2 ¼ y212 � y221, A2 ¼ 1
2
(y212 þ y221) for array a2: (3)

Figure 1(a) shows the difference M1 in normalized log-intensity for wild-type and mutant

tissue plotted against the average normalized log-intensity A1 for all genes for array a1. The

graph shows the zero lines for M1 and A1 (the log-averages). The graph also shows the

smoothed values of M1 as a lowess-fitted function of A1. The fitted function is curved and

shows a strong dependence of M1 on A1. Figure 1(b) shows the corresponding plot of M2

against A2 for array a2. Observe that the differences M1 and M2 are both defined as

differences between wild-type and mutant tissue.

Also note that in each array the tissue type is confounded with the dye colour. The strong

curvilinear dependence of M on A is clear in each of the MA plots, with the curvatures

reversed (convex and concave, respectively) because of the colour reversal. As described

previously, intensity-dependent normalization would be applied to these two arrays by

calculating corrected differential expressions of the form M
(d)
1 ¼ M1 � ‘(A1) and

M
(d)
2 ¼ M2 � ‘(A2) for each gene. Judgements about differentially expressed genes would

then be based on the M
(d)
1 and M

(d)
2 statistics.

Arrays a1 and a2 in Table 2 have a reversed-colour design. The colour reversal

compensates for potential interaction of dye and gene expression. Based on equations (2)

and (3), a single MA plot for this design can easily be constructed using the following

definitions of MM and AA:

MM ¼ y2 � y1, AA ¼ 1
2
(y2 þ y1), (4)

where, taking the colour (dye) reversal into account, the average normalized log-intensities

for experimnetal samples t1 and t2 are denoted by

y2 ¼ 1
2
(y122 þ y212), y1 ¼ 1

2
(y111 þ y221),

respectively. Observe that MM in (4) captures the differential expression for the two

Table 2. Reversed-colour design embedded in the

case-study design

Green dye d1 Red dye d2

Array a1 sample t1 sample t2
intensity y111 intensity y122

Array a2 sample t2 sample t1
intensity y212 intensity y221
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experimental samples and AA measures the mean intensity (both on a logarithmic scale). As

y1 and y2 are averages over both arrays and colours, the effects of these two factors are

neutralized.

Thus, the MA plot in this case will show a relationship between differential expression

and average intensity that is free of any additive colour or array influences. Figure 2 shows

the plot of MM against AA for the case study-data (arrays a1 and a2). Again, the data are

normalized by dye, array and type across all genes so the MA plot has axes centred on zero.

Differential expression here represents the difference between wild-type and mutant tissue

and, hence, is consistent with the plots in Figure 1 in this respect. A lowess function has

been fitted to the plot. Observe its approximate linearity and the relatively uniform scatter

of points about the smooth function. Observe also the steady decline in MM with average

Figure 1. The difference M in normalized log-intensities for wild-type and mutant tissue plotted

against the average normalized log-intensity A, shown for all genes. The intensity data for (a) and (b)

are respectively from arrays a1 and a2 of the case study and are not background-corrected
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intensity AA. The correlation coefficient for MM and AA across all genes is �0.51 in this

plot.

4. The concern about intensity-dependent normalization

Figure 2 shows a strong, nearly linear, relationship between differential expression and

average intensity, even after cancelling out possible gene–array and gene–colour

interactions. Intensity-dependent normalization, applied to this figure, would use the

quantities

MM (d) ¼ MM � ‘(AA)

as a basis for judging differential expression, where MM and AA are the quantities calculated

in (4). Our concern is that the adjustment ‘(AA) being applied here yields biased estimates of

differential expression for genes. We contend that, using a reversed-colour design, the study

of a gene under two experimental samples produces two correlated estimates, a differential

expression estimate MM and an average intensity estimate AA. These reflect two separate

characteristics of expression for a gene, when comparing two experimental samples. There is

no need to adjust the difference MM for its relationship with AA to create a centred value

MM (d). The estimate MM is an unbiased estimate of differential expression under an ANOVA

model for gene expression. The correlation of MM and AA is an empirical biological feature.

To now adjust MM , using the intensity-dependent quantity ‘(AA), introduces a bias in the

estimate of differential expression.

Figure 2. The difference MM in normalized log-intensity for wild-type and mutant tissues plotted

against the average normalized log-intensity AA, shown for all genes. The design is a reversed-colour

design. The intensity data are from arrays a1 and a2 of the case study and are not background-

corrected
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To give a scenario that explains why intensity-dependent normalization should not be

carried out here, imagine (in the context of our case study) that wild-type tissue has an

assortment of genes that are absent in mutant tissue and, hence, the former show intensities

ranging from low to high, whereas the latter show only background intensities (i.e., noise

levels). Thus, the MM for these genes tend to be positive, while the averages AA are

negative (on our centred log-scale). Furthermore, imagine that another set of genes are

expressed in both tissues but are, nonetheless, weakly to strongly upregulated in mutant

tissue relative to wild-type tissue. The differences MM for these genes tend to be negative,

while the averages AA are positive. This is the pattern of the plot in Figure 2.

Intensity-dependent normalization based solely on MM (d) may misidentify differentially

expressed genes in this setting because of the adjustment ‘(AA). To illustrate this point,

refer to the results in Table 3. In Lee et al. (2002), where the data from all four arrays are

analysed, 12 genes are declared as differentially expressed. Columns 1 and 3 show the top

12 genes shown as differentially expressed based on the MM (d) and MM, respectively.

Columns 2 and 4 show the MM and MM (d) values. The list for MM is identical to that in

Lee et al. (2002) based on the full data set (i.e., all four arrays). In contrast, only 7 of these

12 genes are found in the MM (d) list. These are segregated in the table by a horizontal line.

Not surprisingly, these seven genes are those for which both MM and MM (d) are largest.

The adjustment ‘(AA) is not large enough to affect their top ranked position, although their

rank order is affected.

In conclusion, we raise the concern that intensity-dependent normalization can give

Table 3. Lists of differentially expressed genes with and without intensity-

dependent adjustment. Statisitcs MM and MM (d) denote the respective

differential expression estimates between wild-type and mutant tissue.

Negative signs denote genes upregulated in mutant tissue

No intensity-dependent adjustment Intensity-dependent adjustment

(1) (2) (3) (4)

Gene MM Gene MM (d)

1238 �0.758 1216 0.693

1691 �0.773 1006 0.697

1584 0.809 619 0.699

1224 0.816 1181 0.700

408 �0.830 1666 0.712

1198 �0.902 1198 �0.756

293 �0.918 293 �0.804

401 �0.948 1347 �0.812

1229 0.956 401 �0.816

1347 �1.014 1038 �0.887

1038 �1.028 1229 0.950

1560 �1.249 1560 �1.349
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biased estimates of differential expression and, therefore, can misclassify some moderately

important genes as unexpressed. We suggest that, for microarray studies with dye reversal,

the pairs of values (MM , AA) be examined jointly as providing important but separate

information about relative gene expression under two experimental samples. As a logical

extension, we caution against the use of intensity-dependent normalization in the analysis of

data from other microarray experiments. As a final remark, we note that the identification of

this problem was made possible by the reversed-colour design embedded in this case-study

design. We adhere to the advice of Kerr and Churchill (2001) and Kerr et al. (2001) that

colour reversal should be incorporated in experimental designs for cDNA microarray

studies.

Acknowledgements

This research was supported in parts by National Institutes of Health grants CA89756 and

HG02510 (Lee), and the Natural Sciences and Engineering Research Council of Canada

(Whitmore).

References

Dudoit, S., Yang Y.H., Callow, M.J. and Speed, T.P. (2002) Statistical methods for identifying

differentially expressed genes in replicated cDNA microarray experiments. Statist. Sinica, 12,

111–139.

Eisen, M.B. and Brown, P.O. (1999) DNA arrays for analysis of gene expression. In S.M. Weissman

(ed.), cDNA Preparation and Characterization, Methods in Enzymology 303, pp. 179–205. San

Diego, CA: Academic Press.

Kerr, M.K. and Churchill, G.A. (2001) Experimental design issues for gene expression microarrays.

Biostatistics, 2, 183–201.

Kerr, M.K., Martin, M. and Churchill, G.A. (2001) Analysis of variance for gene expression

microarray data. J. Comput. Biol., 7, 819–837.

Lee, M.-L.T., Lu, W., Whitmore, G.A. and Beier, D. (2002) Models for microarray gene expression

data. J. Biopharmaceutical Statist., 12(1), 1–19.

Yang, Y.H., Dudoit, S., Luu, P., Lin, D.M., Peng, V., Ngai, J. and Speed, T.P. (2002) Normalization for

cDNA microarray data: a robust composite method addressing single and multiple slide

systematic variation. Nucleic Acids Res., 30(4), e15.

Received April 2003

Intensity dependent normalization in microarray analysis 949


	1.&X;Introduction
	2.&X;&BI;MA&N; plots and intensity-dependent normalization
	Equation 1
	3.&X;Re-examining the intensity-dependent normalization method in a case study
	Table 1
	Equation 2
	Equation 3
	Equation 4
	Table 2
	Figure 1
	4.&X;The concern about intensity-dependent normalization
	Figure 2
	Table 3
	Acknowledgements
	References
	mkr1
	mkr2
	mkr3
	mkr4
	mkr5
	mkr6

