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We consider the parabolic stochastic partial differential equation

u(t, x) ¼ �(x) þ
ð t

0

Lu(s, x) þ f (s, x, u(s, x), Du(s, x))ds

þ
ð t

0

gi(s, x, u(s, x), Du(s, x)) dBi
s,

where f and g are supposed to be Lipschitzian and L is a self-adjoint operator associated with a

Dirichlet form defined on a finite- or infinite-dimensional space. We prove that it admits a unique

solution which is a Dirichlet process and, thanks to Itô formula for Dirichlet processes, we prove a

comparison theorem.
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1. Introduction

To illustrate the results which are proved in this paper, consider first the standard case. Let

O � Rk be a bounded domain with boundary @O. We consider the nonlinear stochastic

partial differential equation (SPDE)

@

@ t
u(t, x) ¼ @

@xi
aij(x)

@

@xj
u(t, x)

� �
þ f (t, x, u(t, x), ˜u(t, x)	 (x))

þ gi(t, x, u(t, x), =u(t, x)	 (x))
dBi

t

dt
, (1:1)

with Dirichlet boundary conditions u(t, x) ¼ 0 for all t . 0, x 2 @O – as will be explained

later, one can consider any other boundary conditions (von Neumann, mixed, etc.). The initial

condition is

u(0, x) ¼ �(x) 2 L2(O):

B is a d-dimensional Brownian motion, a ¼ 		� is a symmetric measurable matrix such that

the bilinear form

Bernoulli 10(5), 2004, 783–827

1350–7265 # 2004 ISI/BS



8u, v 2 C1
0 (O), e u, vð Þ ¼

ð
O

aij(x)
@

@xj
u(x)

@

@xi
v(x) dx

is closable, where C1
0 (O) denotes the set of infinitely derivable functions with compact

support in O. This is the case if, for example, a is assumed to be strictly elliptic or if,

8i, j, l 2 f1, . . . , kg2,
@ai,j
@xl

2 L2
loc(O);

see Fukushima et al. (1994). The coefficients f (t, x, y, z), gi(t, x, y, z) are assumed to be

Lipschitz in y and z; moreover, we suppose that g(t, x, y, z) ¼
(g1(t, x, y, z), . . . , gd(t, x, y, z)) is a contraction with respect to the variable z.

We prove existence and uniqueness in the weak sense of equation (1.1) and we prove that

the solution t ! u(t, �), considered as an L2(O)-valued process, is a (continuous) Dirichlet

process, i.e. it may be decomposed as

ut ¼ Mt þ At,

where M is a martingale and A a zero quadratic variation process. Thus as is now well

known (see Bertoin 1986; 1987; Föllmer 1981a), the process u satisfies an Itô formula that

we use to establish a comparison theorem. In this particular case, we have the following

theorem:

Theorem 1.1. Let ~ff be a coefficient which satisfies the same hypotheses as f , and
~�� 2 L2(O). Let ~uu be the solution of

@

@ t
~uu(t, x) ¼ @

@xi
aij(x)

@

@xj
~uu(t, x)

� �
þ ~ff (t, x, ~uu(t, x), ˜~uu(t, x)	 (x))

þ gi(t, x, ~uu(t, x), =~uu(t, x)	 (x))
dBi

t

dt
,

with initial condition ~uu0 ¼ ~��. Assume that � < ~�� almost everywhere, and that

f (t, x, ut(x), =u(t, x)	 (x)) < ~ff (t, x, ut(x), =u(t, x)	 (x)) dt � dx� dP-a:e:;

then

8t > 0, ut < ~uut dx� dP-a:e:

Since we use analytical methods, especially the theory of semigroups, we deal in fact

with a much more general class of SPDEs. More precisely, we solve

u(t, x) ¼ �(x) þ
ð t

0

Lu(s, x) þ f (s, x, u(s, x), Du(s, x))ds

þ
ð t

0

gi(s, x, u(s, x), Du(s, x)) dBi
s,

where L is a non-positive (i.e. for all f 2 Dom(L), (Lf , f ) < 0) self-adjoint sub-Markovian
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operator associated with a symmetric Dirichlet form defined on some space L2(W , m(dx))

and which admits a gradient D. The previous standard case corresponds to the case where

W ¼ O, m(dx) ¼ dx,

Lu(x) ¼ @

@xi
aij(x)

@

@xj
u(x)

� �
,

and Du(x) ¼ =u(x)	 (x).

Note that there are many other examples: for instance, one can consider the same second-

order differential operator with von Neumann conditions. For simplicity, one can assume

that a is strictly elliptic; then it is well known that it defines a Dirichlet form (see

Fukushima et al. 1994), and so all our results are valid in this case.

If instead of the Lebesgue measure we consider a measure m which admits a density m(dx) ¼
p(x) dx, this allows us to consider the case of second-order differential operators of the form

Lu(x) ¼ @

@xi
aij(x)

@

@xj
u(x)

� �
� bi(x)

@

@xi
u(x):

We only have to assume that L is a self-adjoint operator on L2(O, m). For example, the

Ornstein–Uhlenbeck operator on Rk corresponds to the case where W ¼ Rk ,

m(dx) ¼ e � jxj2=2 dx, Du ¼ =u and

Lu ¼ 1

2
˜u� x � =u:

One can also consider the infinite-dimensional Ornstein–Uhlenbeck structure: W ¼
C0([0, þ1[; Rk) is the Wiener space endowed with the Wiener measure m, L is the

infinite-dimensional Ornstein–Uhlenbeck operator and D is the Malliavin operator.

SPDEs have been intensively studied in the recent past, and the literature is extensive.

Semigroup methods are developed in Da Prato (1998), Da Prato and Zabczyk (1992) and

Rozovski (1990). Comparison theorems for SPDEs driven by white noise may be found in

Donati-Martin and Pardoux (1993); in Berge (2001), a comparison theorem is established in

the case where L is a second-order operator with von Neumann-type conditions; and

Gyöngy and Rovira (2000) obtained comparison theorems for SPDEs whose coefficients

have polynomial growth. We emphasize the fact that in all these works, the coefficient in

front of the noise does not depend on the term Du. We must also mention that some

comparison theorems can be established in relation to the theory of backward stochastic

differential equations (see Pardoux 1998, for example). Denis and Sto€ııca (2003) obtain the

existence and uniqueness of solutions of SPDEs in a more general context.

2. Preliminaries

2.1. Hypotheses and definitions

Let (W , G, m) be a measurable space. We assume that a (symmetric) Dirichlet form (F, e)

is defined on L2(W , G, m). For the notion and definition of Dirichlet forms, we refer to
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Fukushima et al. (1994) or Bouleau and Hirsch (1991). Moreover, we assume that this

Dirichlet form admits a carré du champ operator, ˆ, and a gradient operator, D. This means

that ˆ is a symmetric bilinear map from F 3 F into L1(W , G, m) such that,

8(u, v) 2 F 3 F, e(u, v) ¼
ð
W

ˆ(u, v)(x)m( dx),

and that there exists a Hilbert space, K, such that D is a map from F into L2(W , G, m; K)

with,

8(u, v) 2 F 3 F, ˆ(u, v)(x) ¼ (Du(x), Dv(x))K m-a:e:,

where (�, �)K denotes the inner product in K.

We recall that, by definition, F is a Hilbert space with respect to the norm,

8u 2 F, kuk2
F ¼ e(u, u) þ kuk2

L2(W ,m),

where in a natural way, we set,

8u 2 L2(W , m), kuk2
L2(W ,m) ¼ (u, u)L2(W ,m) ¼

ð
W

u2(x), m(dx):

In the example we gave in Section 1, it is clear that F is the closure of C1
0 (O) with respect

to k � kF , so F ¼ H1
0(O) if L is strictly elliptic,

8u, v 2 H1
0(O), e(u, v) ¼

X
i, j

ð
O

ai, j(x)
@u

@xi
(x)

@v

@xi
(x) dx,

K ¼ Rn9, where n9 is the number of rows of the matrix 	 , Du ¼ =u	 and,

8u, v 2 F, ˆ(u, v)(x) ¼ ai, j(x)
@u

@xi
(x)

@v

@xj
(x):

We denote by (�, (F t) t>0, P) a filtered probability space (satisfying the usual conditions)

on which a d-dimensional Brownian motion B ¼ (Bi)i2f1,...,dg is defined.

Finally, a time T . 0 is fixed.

2.2. Associated operators

Still following Fukushima et al. (1994) or Bouleau and Hirsch (1991), we know that (F, e)

is associated with an m-symmetric sub-Markovian semigroup denoted by (Pt) t>0; L is its

generator with domain Dom(L), it is a non-positive sub-Markovian operator, and (Eº)º>0 is

the resolution of identity associated with L. All these (bounded or unbounded) operators are

defined on L2(W , m) and are self-adjoint. We have

�L ¼
ðþ1

0

º dEº,

and
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8 f 2 F, e( f , f ) ¼
ðþ1

0

º d(Eº f , f )L2(W ,m):

We also have

F ¼ Dom((�L)1=2):

We recall that Dom(L) � F and that,

8u 2 Dom(L), 8v 2 F, e(u, v) ¼ �
ð
W

Lu(x)v(x)m(dx) ¼ (�Lu, v)L2(W ,m):

2.3. Stochastic integral for Hilbert space-valued processes

In the sections to follow, we will consider stochastic integrals for L2(W , m)-valued

processes, so we need to define these precisely. A general theory of stochastic integration

for Banach space-valued processes is developed in Da Prato and Zabczyk (1992) and in our

setting in Berge (2001). Nevertheless, we briefly recall some results and proofs in order to

set the notation.

Let H be a separable Hilbert space equipped with the norm k � kH . We continue to

consider the filtered probability space (�, (F t) t2[0,T ], P) on which a d-dimensional

Brownian motion B is defined up to time T . Naturally, the norm on the product space

Hd that we will consider is

8x ¼ (x1, . . . , xd) 2 Hd , kxk2
Hd ¼

Xd
i¼1

kxik2
H :

Let X and Y be two H-valued processes. We shall say that X is a modification of Y if,

8t 2 [0, T ], X t ¼ Yt P-a:e:

We shall say that X and Y are equivalent if

X t(w) ¼ Yt(w) for dt � P-almost all (t, w):

These two notions define equivalence relations and, as usual, we will not worry about the

distinction between equivalence classes and processes which are members of these classes.

We remark that the first notion is stronger than the second but that they coincide if the

trajectories of X and Y are almost surely H-continuous.

Definition 2.1. An H-valued process (X t) t2[0,T ] is said to be progressively measurable if, for

each t 2 [0, T ], the map

([0, t] 3�, B([0, t]) � F t) ! (H , B(H))

(s, w) 7! X s(w)

is measurable; here B([0, t]) is the Borel 	 -field on [0, t] and B(H) the Borel 	 -field on H .
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We denote by P(H) the class (with respect to the notion of equivalent processes) of H-

valued progressively measurable processes X such that

kXk2
P(H) ¼ E

ðT
0

kX tk2
H dt

� �
is finite.

To construct the stochastic integral, we start with simple processes and then go on to

consider square-integrable progressively measurable processes.

Definition 2.2. An H-valued process (X t) t2[0,T ] is said to be simple if there exist n 2 N�,
0 ¼ t0 , t1 , . . . , t n ¼ T and n square-integrable H-valued variables X 0, X 1, . . . , X n�1

such that, for all i 2 f0, . . . , n� 1g, X i is F t i -measurable and,

8t 2 [0, T ], X t ¼ X 01f0g(t) þ
Xn�1

i¼0

X i1] ti , tiþ1](t):

We denote by P0(H) the class (with respect to the notion of equivalent processes) of simple

processes.

Following Karatzas and Shreve (1991, Chapter 3), by adapting the proofs of their Lemma

2.2 and Proposition 2.6, we have:

Proposition 2.1. (P(H), k � kP(H)) is a Banach space and P0(H) is dense in it.

We can now construct stochastic integrals in an easy way: assume first that X ¼
(X 1, . . . , X d) belongs to (P0(H))d . Thus, there exist n 2 N�, t0 ¼ 0 , t1 , . . . , t n ¼ T

and, for all (i, j) 2 f0, . . . , n� 1g3 f1, . . . , dg, a square-integrable variable (X
j
i ) which is

F ti -measurable, such that

8 j 2 f1, . . . , dg, 8t 2 [0, T ], X
j
t ¼ X

j
01f0g(t) þ

Xn�1

i¼0

X
j
i1	 ti , tiþ1	(t):

We set,

8t 2 [0, T ], I Xt ¼
ð t

0

X s dBs ¼
Xd
j¼1

Xn�1

i¼0

X
j
i (B

j
tiþ1^ t � B

j
ti^ t):

We have:

Propostion 2.2. In our previous notation, if X 2 P0(H)ð Þd, the process I X satisfies the

following properties:

(i) I X is a square-integrable H-valued martingale.

(ii) For all t 2 [0, T ], E[kI Xt k
2
H ] ¼ E[

Ð t
0
kX sk2

Hd ds].

(iii) For P-almost all w, the map
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[0, T ] ! H

t 7! I Xt (w)

is continuous.

(iv) I X satisfies Doob’s inequality:

E sup
t2[0,T ]

kI Xt k
2
H

 !
< 4E

ðT
0

kX tk2
Hd dt

� �
:

Proof. Assertions (i) and (iii) are obvious, and the proof of (ii) is straightforward. Let us

prove Doob’s inequality.

To this end, consider (ek)k2N� an orthonormal basis in H (we consider the case where

the dimension of H is infinite). Then, as X is simple, straightforward calculations yield

E sup
t2[0,T ]

kI Xt k
2
H

 !
¼ E sup

t2[0,T]

Xþ1

k¼1

ð t
0

X s dBs, ek

� �2

H

( ) !

< E
Xþ1

k¼1

sup
t2[0,T]

ð t
0

X s dBs, ek

� �2

H

( ) !

¼ E
Xþ1

k¼1

sup
t2[0,T ]

Xd
i¼1

ð t
0

(X i
s, ek) dBi

s

( )2
0
@

1
A

< 4E
Xþ1

k¼1

Xd
i¼1

ðT
0

(X i
s, ek)dB

i
s

 !2
0
@

1
A

¼ 4E
Xþ1

k¼1

Xd
i¼1

ðT
0

(X i
s, ek)

2 ds

 !

¼ 4E

ðT
0

kX sk2
Hd ds

� �
:

h

Then, thanks to the density of P0(H) in P(H) and Doob’s inequality, we obtain:

Propostion 2.3. Let X be in (P(H))d. There exists a unique H-valued square-integrable

martingale that we denote as before I Xt ¼
Ð t

0
X s dBs for all t 2 [0, T ], such that, for any

sequence (X n)n2N� in (P0(H))d which converges to X in P(H)ð Þd ,
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lim
n!þ1

E sup
t2[0,T ]

kI Xt � I X n

t k2
H

 !
¼ 0:

Moreover, I X satisfies the same properties as in Proposition 2.2.

More precisely, we have that I X admits an H-continuous modification and satisfies Doob’s

inequality.

We end this subsection with the case we are interested in: H ¼ L2(W , m). In this case, a

third variable, x 2 W , appears.

Definition 2.3. Let X be an L2(W , m)-valued process and Y : [0, T ] 3�3 W ! R be in

L2([0, T ] 3�3 W ). Y is said to be a version of X if

8t 2 [0, T ], X t(w, x) ¼ Yt(w, x) for P� m-all (w, x):

It is clear that in this case, Y may be viewed as an L2(W , m)-valued process and is a

modification of X .

Propostion 2.4. Let X 2 (P(L2(W , m)))d. Then, the process I X defined by,

8t 2 [0, T ], I Xt ¼
ð t

0

X s dBs,

admits a version that we denote as before by I X such that, for P� m-almost all

(w, x) 2 �3 W, the map

t 2 [0, T ] 7! I Xt (w, x)

is continuous. Moreover,

E

ð
W

sup
t2[0,T ]

jI Xt (x)j2m(dx)

 !
< 4E

ðT
0

kX sk2
L2(W ,m) ds

� �
:

Proof. Assume first that X is simple. Then, the proposition is clear and a density argument

allows us to complete the proof. h

Remark. By the same proof, we also have that for m-almost all x 2 W , t !
Ð t

0
X s(x) dBs is a

continuous martingale.

2.4. Dirichlet processes

We now introduce the notion of Dirichlet processes. For this purpose, we consider

¨ ¼ (˜N )N2N� , a sequence of subdivisions of [0, T ] such that

lim
N!þ1

j˜N j ¼ 0,
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where j˜j denotes the mesh of any subdivision ˜ of [0, T ]. As previously, we consider a

separable Hilbert space (H , k � kH ), and, for any H-valued process (At) t2[0,T], we put

8˜ 2 ¨, V (A, ˜) ¼
X

t i2˜nfTg
kAtiþ1

� Atik
2
H :

Definition 2.4. Let (At) t2[0,T ] be an adapted and continuous H-valued stochastic process

such that, for all t 2 [0, T ], At 2 L2(�, P; H). We say that A is of zero quadratic variation

throughout ¨ if

lim
N!þ1

E(V (A, ˜N )) ¼ 0:

Definition 2.5. Let (X t) t2[0,T] be an adapted H-valued stochastic process. We say that X is a

continuous Dirichlet process throughout ¨ if and only if there exist

• a square-integrable continuous martingale (Mt) t2[0,T ] with values in H and satisfying

M0 ¼ 0, and

• an H-valued process (At) t2[0,T] of zero quadratic variation throughout ¨

such that

8t 2 [0, T ], X t ¼ Mt þ At:

Remarks.

1. Thus X is a continuous process.

2. There are many (non-equivalent) definitions for Dirichlet processes: one can consider

all subdivisions, or stochastic subdivisions, etc.

3. The Dirichlet processes have been well studied, for example, by Bertoin (1986; 1987).

4. We refer to Föllmer (1981a; 1981b) who developed a stochastic calculus for Dirichlet

processes, and to Fukushima et al. (1994) who proved that Dirichlet processes are

naturally associated with Dirichlet forms.

We now construct a space of Dirichlet processes in which we are going to work.

Definition 2.6. We denote by D¨
T (H), the set of H-valued continuous Dirichlet processes,

t 2 [0, T ] ! X t 2 H, such that

E sup
t2[0,T ]

kX tk2
H

" #
, þ1:

For all X 2 D¨
T (H), we set

kXk¨,T ,H ¼ E sup
t2[0,T]

kX tk2
H

" #
þ sup

˜2¨
E V X , ˜ð Þ½ 	

 !1=2

:
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The following proposition is inspired by Bertoin (1986) and Denis (1994).

Propostion 2.5. (D¨
T (H), k � k,¨,T ,H ) is a Banach space.

Proof. First of all, we observe that if X ¼ M þ A belongs to D¨
T (H), then as M is a square-

integrable martingale,

E sup
t2[0,T ]

kMtk2
H

" #
, þ1,

so

E sup
t2[0,T ]

kAtk2
H

" #
, þ1,

and as lim˜2¨,j˜j!0E V A, ˜ð Þ½ 	 ¼ 0, we have

sup
˜2¨

E[V (A, ˜)] , þ1,

which ensures that kXk¨,T ,H is finite. Moreover, it is easy to verify that k � k¨,T ,H is a norm.

Now consider (X n)n2N�, a Cauchy sequence in D¨
T (H). For each n 2 N�, we write

X n ¼ Mn þ An,

where Mn is a continuous square-integrable martingale which satisfies Mn
0 ¼ 0 and An is an

adapted process of zero quadratic variation throughout ¨.

Thanks to Doob’s inequality, and since, for all k 2 N�, limj˜j!0,˜2¨E[V (Ak , ˜)] ¼ 0, we

have, for all n, m 2 N�,

E sup
t2[0,T ]

kMn
t � Mm

t k
2
H

" #
< 4 lim

j˜j!0,˜2¨
E[V (Mn � Mm, ˜)]

¼ lim
j˜j!0,˜2¨

E[V (X n � X m, ˜)]

< kX n � X mk2
¨,T ,H :

Thanks to the classical theory of martingales, we know that there exists a continuous square-

integrable martingale M with M0 ¼ 0 such that

lim
n!þ1

E sup
t2[0,T]

kMt � Mn
t k

2
H

" #
¼ 0:

Then we deduce that there exists a continuous adapted process A such that

lim
n!þ1

E sup
t2[0,T ]

kAt � An
t k

2
H

" #
¼ 0:

Let us prove now that A is of zero quadratic variation throughtout ¨.
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Let ˜ 2 ¨, p 2 N�; then, for all n, m 2 N�, if we set

I n,m ¼ E[jV1=2(An � A p, ˜) � V 1=2(Am � A p, ˜)j2],

we have

I n,m < E[V (An � Am, ˜)]

< E[jV 1=2(X n � X m, ˜) þ V 1=2(Mn � Mm, ˜)j2]

< 2kX n � X mk2
¨,T ,H þ 2E[kMn

T � Mm
T k

2
H ]:

From this, it is clear that

E[V (A� A p, ˜)] ¼ lim
n!þ1

E[V (An � A p, ˜)

� �
,

uniformly with respect to ˜ 2 ¨. This yields

lim
n!þ1

sup
˜2¨

E[V (A� An, ˜)] ¼ 0:

Finally, as for each ˜ 2 ¨ and n 2 N�,

E[V (A, ˜)] < 2(E[V (An, ˜)] þ E[V (A� An, ˜)]),

it easy to conclude that A is of zero quadratic variation and that

lim
n!þ1

kX � X nk¨,T ,H ¼ 0,

where X ¼ M þ A, and the proof is complete. h

Note, finally, that if H ¼ R, we suppress it.

3. A stochastic partial differential equation

We consider the following SPDE:

u(t, x) ¼ �(x) þ
ð t

0

Lu(s, x) þ f (s, x, u(s, x), Du(s, x))ds

þ
ð t

0

g(s, x, u(s, x), Du(s, x)) dBs: (3:1)

3.1. Hypotheses and notation

Hypothesis 3.1. � 2 L2(W , m).

Hypothesis 3.2. f maps �3 [0, T ] 3 W 3 R3 K to R and
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(a) f is P 3 G3 B(R)3 B( K)-measurable, where P is the predictable 	 -
field on �3 [0, T];

(b) f (�, �, �, 0, 0) 2 L2(�3 [0, T ] 3 W , P� dt � m);

(c) there exists C . 0 such that, for all w, t, x, y, z, y9, z9 2 � 3

[0, T]3 W 3 R3 K 3 R3 K,

j f (w, t, x, y, z) � f (w, t, x, y9, z9)j2 < C(jy� y9j2 þ kz� z9k2
K):

Hypothesis 3.3. g maps �3 [0, T]3 W 3 R3 K to Rd and

(a) g is P r3 G3 B(R)3 B( K)-measurable where P r is the progressive

	 -field on �3 [0, T];

(b) g(�, �, �, 0, 0) 2 L2(�3 [0, T ] 3 W ; Rd);

(c) there exist C . 0 and Æ 2 [0, 2[ such that, for all w, t, x, y, z, y9,

z9 2 �3 [0, T]3 W 3 R3 K 3 R3 K,

jg(w, t, x, y, z) � g(w, t, x, y9, z9)j2 < Cjy� y9j2 þ Ækz� z9k2
K ,

where j � j denotes the Euclidean norm in Rd .

We observe that Hypothesis 3.3 is fulfilled if there exist C9 . 0 and Æ9 2 [0, 1[ such that,

for all w, t, x, y, z, y9, z9,

jg(w, t, x, y, z) � g(w, t, x, y9, z9)j < C9jy� y9j þ Æ9kz� z9kK :

We will work in P(F). We recall that an F-valued process u belongs to P(F) if it is

progressively measurable and

kuk2
P(F) ¼

ðT
0

E(ku(�, t, �)k2
F)dt , þ1,

and that P(F) is a Banach space.

3.2. Notion of weak solutions

Let u 2 P(F). Following Bouleau and Hirsch (1991), the gradient of u,

(t, w, x) 2 [0, T ] 3�3 W ! D(u(t, �)(w))(x),

admits a version in L2([0, T ] 3�3 W ; K) which is progressively measurable and so

belongs to P L2 W ; Kð Þð Þ (it is easy to prove this if u 2 P0(F), and then using a density

argument).

If f and g denote the coefficients of equation (3.1) which satisfy Hypotheses 3.1–3.3,

the following lemma is easily proved:

Lemma 3.1. Let u 2 P(F). Then processes

t 2 [0, T ] !
ð t

0

f (s, �, u(s, �), Du(s, �))ds
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and

t 2 [0, T ] ! g(t, �, u(t, �), Du(t, �))

admit a version in P(L2(W )) and (P(L2(W )))d, respectively.

We denote by D the set of test functions, which is the tensor product of the two Dirichlet

structures: H1([0, T ]), the standard Sobolev space on [0, T ], and F (for general settings on

this notion, see Bouleau and Hirsch 1991). We recall that j belongs to D if and only if:

• j 2 L2([0, T ] 3 W );

• for almost all x 2 W , j(�, x) 2 H1([0, T ]);

• for almost all t 2 [0, T ], j(t, �) 2 F;

•
Ð T

0

Ð
W
kDj(t, x)k2

K þ j@ tj(t, x)j2m(dx)dt , þ1.

We observe that as a consequence, for m-almost all x 2 W , t ! j(t, x) is continuous, so that

we can set

D0 ¼ fj 2 D, j(T , �) ¼ 0 a:s:g:

Definition 3.1. A function u 2 P(F) is said to be a weak solution of (3.1) if, for all j 2 D0,

ðT
0

(u(t, �), @ tj(t, �))L2(W ,m) � e(u(t, �), j(t, �)) þ ( f (t, �, u(t, �), Du(t, �)), j(t, �))L2(W ,m)dt

þ
ðT

0

(g(t, �, u(t, �), Du(t, �)), j(t, �))L2(W ,m) dBt þ (�, j(0, �))L2(W ,m) ¼ 0 a:s:

In an abuse of notation, albeit a natural one,

t 2 [0, T ] 7! g(t, �, u(t, �), Du(t, �)) ¼ (g1
t (�), . . . , gd

t (�)),

the process t 2 [0, T ] 7! (g(t, �, u(t, �), Du(t, �)Þ, j(t, �)ÞL2(W ,m) is nothing but the Rd-valued

process

t 2 [0, T ] 7! ((g1
t (�), j(t, �))L2(W ,m), . . . , (gd

g(�), j(t, �))L2(W ,m))

and so

ðT
0

(g(t, �, u(t, �), Du(t, �)), j(t, �))L2(W ,m) dBt ¼
Xd
j¼1

ðT
0

(g
j
t(�), j(t, �))L2(W ,m) dB

j
t :
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4. Study of (3.1): existence, uniqueness and probabilistic
behaviour

4.1. The ‘mild’ equation

We wish to study (3.1) in terms of mild solution. This means that, formally for the moment,

we will prove that the solution of (3.1) satisfies,

8t 2 [0, T ], ut ¼ Pt�þ
ð t

0

Pt�s f s, �, us, Dusð Þdsþ
ð t

0

Pt�s g s, �, us, Dusð Þ dBs:

To make sense of this equation, we first study each term on the right, paying particular

attention to its probabilistic behaviour.

Propostion 4.1. Let � be in L2(W , m). Then:

(i) the process

ª : t 2 [0, T ] ! Pt�

admits a version in L2 [0, T ]; Fð Þ;
(ii) for all j 2 D0ðT

0

(Pt�, @ tj t)L2(W ,m)dt ¼ �(�, j(0, �))L2(W ,m) þ
ðT

0

e(Pt�, j t)dt;

(iii) for all 0 < s , t < T,
Ð t
s
ªu du belongs to Dom(L) and

ª t � ªs ¼ L

ð t
s

ªu du

� �
:

Proof. It is well known that for all t 2]0, T ], Pt� 2 F. Moreover,

8t 2 [0, T ], Pt� ¼
ðþ1

0

e�º t dEº�,

so that

8t 2 [0, T ], kPt�k2
F ¼

ðþ1

0

(1 þ º)e�2º t d(Eº�, �)L2(W ,m),

which yields
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ðT
0

kPt�k2
F dt ¼

ðþ1

0

(1 þ º)
1 � e�2ºT

2º
d(Eº�, �)L2(W ,m)

¼
ðþ1

0

1 � e�2ºT

2º
d(Eº�, �)L2(W ,m) þ

ðþ1

0

1 � e�2ºT

2
d(Eº�, �)L2(W ,m)

<

ðþ1

0

T d(Eº�, �) þ
ðþ1

0

1

2
d(Eº�, �)

¼ T þ 1

2

� �
k�kL2(W ,m),

which proves (i).

For assertions (ii) and (iii), assume first that � 2 Dom(L). Then, it is clear that for all

t 2 [0, T ],
Ð t

0
Pu� du belongs to Dom(L), that the map t 2 [0, T ] ! Pt� is L2(W , m)-

differentiable, @Pt�=@ t ¼ L(Pt�), and so

8t 2 [0, T ], Pt��� ¼
ð t

0

L(Pu�)du ¼ L

ð t
0

Pu� du

� �
,

which is assertion (iii).

Moreover, for all j 2 D0,

@ t(Pt�, j t)L2(W ,m) ¼ (LPt�, j t)L2(W ,m) þ (Pt�, @ tj t)L2(W ,m)

¼ �e(Pt�, j t) þ (Pt�, @ tj t)L2(W ,m);

by integrating this relation, we get (ii).

Consider now � 2 L2(W , m) and (�n)n2N� a sequence in Dom(L) which converges to �
in L2(W , m). Thanks to the proof of (i), we know that (Pt�n) tends to Pt� in

L2([0, T ]; F), which yields (ii) by density.

Moreover, if t 2 [0, T ], we have, for all n, m 2 N�,

L

ð t
0

Pu�
n du�

ð t
0

Pu�
m du

� �
¼ Pt(�

n ��m) � (�n ��m):

As Pt is continuous on L2(W , m), it is clear that (L(
Ð t

0
Pu�n du)n2N� ) is a Cauchy sequence

in L2(W , m) and so converges. As L is a closed operator, we conclude that
Ð t

0
Pu� du

belongs to Dom(L) and that

L

ð t
0

Pu� du

� �
¼ lim

n!þ1
L

ð t
0

Pu�
n du

� �
:

The proof is complete. h

Remark. The same proof gives that the (deterministic) process ª belongs to P(F). One has to

note that ª0 ¼ � does not necessarily belong to F but, for all t . 0, ª t 2 F and it is also

well known that the map t 2]0, T ] ! ª t 2 F is continuous.
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Proposition 4.2. Let ¨ ¼ (˜N )N2N� be a sequence of subdivisions of [0, T ] such that

lim
N!þ1

j˜N j ¼ 0,

and let � be in L2(W , m). Then the process

ª : t 2 [0, T ] ! Pt�

is a (deterministic) process of zero quadratic variation and hence belongs to D¨
T (L2(W , m)).

As a consequence, there exists a subsequence in ¨, ª, such that for m-almost all x 2 W, the

map t 2 [0, T ] ! Pt�(x) belongs to D
ª
T and is of zero quadratic variation throughout ª.

Proof. Let ˜ be in ¨. We have

V (ª, ˜) ¼
XN�1

i¼0

ðþ1

0

(e�º t iþ1 � e�º t i)2 d(Eº�, �)L2(W ,m)

¼
ðþ1

0

XN�1

i¼0

(e�º t iþ1 � e�º t i)2 d(Eº�, �)L2(W ,m):

Then, if º > 0, since for all i 2 f0, . . . , N � 1g, je�º t iþ1 � e�º t i j < 1,

0 <
XN�1

i¼0

(e�º t iþ1 � e�º t i)2 <
XN�1

i¼0

(e�º t i � e�º tiþ1 ) ¼ 1 � e�ºT < 1,

and since

XN�1

i¼0

(e�º t iþ1 � e�º t i)2 < sup
i

je�º t iþ1 � e�º t i j3
XN�1

i¼0

(e�º t i � e�º tiþ1 ),

< ºj˜j,

we have that, for all º > 0,

lim
N!þ1

X
ti2˜N nfTg

(e�º t iþ1 � e�º t i)2 ¼ 0,

and we conclude by the dominated convergence theorem with respect to the measure

d(Eº�, �) that

lim
N!þ1

V (ª, ˜N ) ¼ 0:

But it is well known that t ! Pt� is L2(W , m)-continuous, so we have the first part of the

proposition.

Then as,

8N 2 N�, V (ª, ˜N ) ¼
ð
W

V (ª(x), ˜N )m(dx),

there exists a subsequence (Ni)i2N� such that, for m-almost all x 2 W ,
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lim
i!þ1

V (ª(x), ˜Ni
) ¼ 0:

Moreover, thanks to results due to Stein (1970), we know that there exists a version of ª such

that, for m-almost all x 2 W ,

t 2 [0, T ] ! Pt�(x)

is continuous and there exists a constant, C, such thatð
W

sup
t2[0,T]

Ptj�(x)j2m(dx) < Ck�k2
L2(W ,m) , þ1,

ensuring that, for almost all x 2 W ,

sup
t2[0,T ]

ª t(x) , þ1,

which concludes the proof. h

Propostion 4.3. Let h be in L2([0, T ] 3�3 W ) and adapted. Then:

(i) the process Æ : t 2 [0, T ] !
Ð t

0
Pt�shs ds admits a version in P(F);

(ii) for all j 2 D0,ðT
0

(Æ t, @ tj t)L2(W ,m) dt ¼ �
ðT

0

(ht, j t)L2(W ,m) dt þ
ðT

0

e(Æ t, j t)dt P-a:e:

(iii) for all 0 < s , t < T,
Ð t
s
Æu du belongs to Dom(L) P-a.e. and

Æ t � Æs ¼ L

ð t
s

Æu du

� �
þ
ð t
s

hu du P-a:e:

Proof. Assume first that h belongs to the algebraic tensor product C1([0, T ]) �
L2(�, P) � Dom(L) and is adapted. Then, by the same kinds of arguments as in Proposition

4.1, it is clear that Æ belongs to P(F), that if we fix w 2 �, then for all t 2 [0, T ], Æ t(w)

belongs to Dom(L), and that t ! Æ t(w) is L2(W , m)-differientiable and satisfies

8t 2 [0, T ],
dÆ t

dt
(w) ¼ ht(w) þ LÆ t(w):

Henceforth, we suppress w from the notation.

So, integrating by parts, we obtain that, for all j 2 D0,ðT
0

(Æs, @ sjs)L2(W ,m) ds ¼ �
ðT

0

(hs, js)L2(W ,m) dsþ
ðT

0

e Æs, jsð Þds,

which is relation (ii).
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Still integrating by parts, we have that, for all t 2 [0, T ],

kÆ tk2
L2(W ,m) ¼ 2

ð t
0

@ sÆs, Æsð ÞL2(W ,m) ds

¼ 2

ð t
0

(hs þ LÆs, Æs)L2(W ,m) ds

¼ 2

ð t
0

(hs, Æs)L2(W ,m) ds�
ð t

0

e(Æs)ds

� �
This yields

kÆ tk2
L2(W ,m) þ 2

ð t
0

e(Æs)ds ¼ 2

ð t
0

(hs, Æs)L2(W ,m) ds

<

ð t
0

[khsk2
L2(W ,m) þ kÆsk2

L2(W ,m)]ds: (4:1)

Thanks to Gronwall’s lemma, we conclude that

sup
t2[0,T ]

kÆ tkL2(W ,m) < eT
ðT

0

khtk2
L2(W ,m) dt (4:2)

Then, using equation (4.1), we obtainðT
0

e Æ tð Þdt < 1 þ T eT

2

ðT
0

khtk2
L2(W ,m) dt:

By a density argument, we obtain (i) and (ii).

Consider now 0 < s , t < T, h 2 L2([0, T ] 3�3 W ) and a sequence (hn)n2N of

elements in C1([0, T ]) � L2(�, P) � Dom(L) which converges to h in L2([0, T ] 3�3 W ).

We put,

8n 2 N�, 8u 2 [0, T ], Æn
u ¼

ð u
0

Pu�v h
n
v dv:

It is clear that, for all n 2 N� and P-almost all w 2 �,
Ð t
s
Æn
u du 2 Dom(L) and

L

ð t
s

Æn
u du

� �
¼ Æn

t � Æn
s �

ð t
s

hn
u du:

Thanks to the relations we have established at the beginning of this proof, we conclude thatÐ t
s
Æn
u du converges to

Ð t
s
Æu du in L2(W , m) and that, moreover, L(

Ð t
s
Æn
u du) converges in

L2(W , m) to Æ t � Æs �
Ð t
s
hu du, for P-almost all w 2 W . This ensures that

Ð t
s
Æu du belongs

to Dom(L) and that

Æ t � Æs ¼ L

ð t
s

Æu du

� �
þ
ð t
s

hu du:

h
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We now wish to prove that Æ is a zero quadratic variation process. We start with:

Lemma 4.4. Let ˜ be a subdivision of [0, T ]. In the notation of Proposition 4.3,

V (Æ, ˜) < 2(j˜j þ T )

ðT
0

khtk2
L2(W ,m) dt P-a:e:

Proof. As previously, we prove the inequality for each w 2 �. We have, for all 0 <

s , t < T ,

Æ t � Æs ¼
ð t

0

Pt�u hu du�
ð s

0

Ps�u hu du

¼
ð t
s

Pt�uhu duþ
ð s

0

(Pt�u hu � Ps�u hu)du:

Clearly, 
ð t
s

Pt�uhu du


L2(W ,m)

<

ð t
s

kPt�uhukL2(W ,m) du

<

ð t
s

khukL2(W ,m) du

< t � sð Þ1=2

ð t
s

khuk2
L2(W ,m) du

� �1=2

:

We now fix ˜ ¼ ft0 ¼ 0 , t1 , . . . , tN ¼ Tg, with N > 2. Using the trivial inequality

(aþ b)2 < 2(a2 þ b2), we have that

V Æ, ˜ð Þ < 2
XN�1

i¼0


ð tiþ1

ti

Ptiþ1�u hu du


2

L2(W ,m)

þ
XN�1

i¼1


ð ti

0

Ptiþ1�uhu � Pti�uhu
� �

du


2

L2(W ,m)

0
@

1
A

< 2
XN�1

i¼0

j˜j
ð t iþ1

t i

khuk2
L2(W ,m) duþ

XN�1

i¼1

ti

ð ti
0

kPtiþ1�u hu � Pti�uhuk2
L2(W ,m) du

 !

< 2j˜j
ðT

0

khuk2
L2(W ,m) duþ 2T

XN�1

i¼1

ð t i
0

kPtiþ1�u hu � Pti�uhuk2
L2(W ,m) du:
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We now estimate

A ¼
XN�1

i¼1

ð t i
0

kPtiþ1�uhu � Pti�u huk2
L2(W ,m) du;

for this we use the spectral representation of the semigroup (Pt) t>0.

A ¼
XN�1

i¼1

ð t i
0

ðþ1

0

(e�º( tiþ1�u) � e�º( t i�u))2d(Eºhu, hu)L2(W ,m) du

¼
XN�2

k¼0

ð t kþ1

t k

ðþ1

0

XN�1

i¼k1

(e�º( t iþ1�u) � e�º( t i�u))2 d(Eºhu, hu)L2(W ,m) du

Let us fix k and u 2 [t k , t kþ1], and set

B ¼
XN�1

i¼kþ1

(e�º( tiþ1�u) � e�º( t i�u))2:

Since, for all i 2 fk þ 1, . . . , N � 1g,

0 < (e�º( t i�u) � e�º( t iþ1�u)) < 1,

B <
XN�1

i¼kþ1

(e�º( ti�u) � e�º( t iþ1�u))

¼ e�º( t kþ1�u) � e�º(T�u) < 1:

This yields

A <
XN�2

k¼0

ð t kþ1

t k

ðþ1

0

d(Eºhu, hu)L2(W ,m) du

<

ðT
0

khtk2
L2(W ,m) dt,

and we are done. h

We are now able to prove:

Propostion 4.5. Let ¨ ¼ (˜N )N2N� a sequence of subdivisions of [0, T ] such that

lim
N!þ1

j˜N j ¼ 0,

and h be in L2([0, T ] 3�3 W ) and adapted. Define

Æ : t 2 [0, T ] !
ð t

0

Pt�s hs ds:
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Then, the process Æ admits a version in D¨
T (L2(W , m)) which is of zero quadratic variation.

Moreover, there exists a subsequence in ¨, ª, such that, for m-almost all x 2 W, the map

t 2 [0, T ] ! Æ t(x) belongs to D
ª
T and is of zero quadratic variation throughout ª.

Proof. Consider a sequence (hn)n2N� in C1([0, T ]) � L2(ø, P) � Dom(L) which converges to

h in L2([0, T ] 3�3 W ), and define

8n 2 N�, 8t 2 [0, T ], Æn
t ¼

ð t
0

Pt�s h
n
s ds:

For all n 2 N�, the process Æn belongs to D¨
T (L2(W , m)), because one has the decomposition

8t 2 [0, T ], Æn
t ¼

ð t
0

hn
s dsþ

ð t
0

L(Æn
s )ds: (4:3)

Moreover, relation (4.2) obtained in the proof of Proposition 4.3 and Lemma 4.4 yield that

there exists a constant C . 0 such that

8n, m 2 N�, kÆn � Æmk¨,T ,L2(W ,m) < CE

ðT
0

khn
t � hm

t kL2(W ,m) dt

� �
:

We deduce from this that (Æn)n2N� is a Cauchy sequence in D¨
T (L2(W , m)) and so converges.

It is obvious that Æ is the limit.

To prove the second part, we remark that, for all N 2 N�,

E(V (Æ, ˜N )) ¼ E
X
i

kÆ t N
iþ1

� Æ t N
i
k2
L2(W ,m)

" #

¼
ð
W

E
X
i

jÆ t N
iþ1

(x) � Æ t N
i

(x)j2
" #

m(dx)

¼
ð
W

E[V (Æ(x), ˜N )]m(dx),

and as limN!þ1E(V (Æ, ˜N )) ¼ 0 and m is 	 -finite, we conclude that there exists a

subsequence ª ¼ (˜Ni
)i2N� such that, for m-almost all x 2 W ,

lim
i!þ1

E[V (Æ(x), ˜Ni
)] ¼ 0:

All that remains is to prove that for m-almost all x 2 W , t ! Æ t(x) is continuous P-a.e.

and that E[sup t2[0,T ]jÆ t(x)j2] is finite. We have

sup
t2[0,T ]

jÆ t(x)j ¼ sup
t2[0,T ]






ð t

0

Pt�uhu(x) du






<

ðT
0

sup
s2[0,T ]

jPshu(x)j du:

Results due to Stein (1970) ensure that there exists a constant C such that, for all
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f 2 L2(W , m), the map t 2 [0, T ] ! Pt f admits a version such that, for m-almost all x 2 W ,

t ! Pt f (x) is continuous and, moreover, sup
t2[0,T ]

jPt f j
L2(W ,m) < Ck f kL2(W ,m):

This yields ð
W

E sup
t2[0,T ]

jÆ t(x)j2
" #

m(dx) < T

ð
W

E

ðT
0

sup
s2[0,T ]

jPshu(x)j2 du

" #
m(dx)

¼ E

ðT
0

ð
W

sup
s2[0,T ]

jPshu(x)j2m(dx)du

" #

< C2T E

ðT
0

khuk2
L2(W ,m) du

� �
:

Since, if h belongs to C1([0, T ]) � L2(ø, P) � Dom(L), we have decomposition (4.3), it is

easy to conclude, using a density argument, that for m-almost all x 2 W , the process

t 2 [0, T ] ! Æ t(x) is continuous and that, moreover, E[sup t2[0,T ]jÆ t(x)j2] is finite, and so

belongs to D
ª
T and is of zero-quadratic variation throughout ª. h

We now study the stochastic part in the mild equation.

Propostion 4.6. Let h be in (P(L2(W , m)))d. Then:

(i) the process t 2 [0, T ] ! � t ¼
Ð t

0
Pt�s hs dBs admits a version in P(F);

(ii) for all j 2 D0,ðT
0

(� t, @j t)L2(W ,m) dt ¼ �
ðT

0

(ht, j t)L2(W ,m) dBt þ
ðT

0

e(� t, j t)dt P-a:e:;

(iii) for all 0 < s , t < T ,
Ð t
s
�u du belongs to Dom(L) and

� t � �s ¼ L

ð t
s

�u du

� �
þ
ð t
s

hu dBu P-a:e:

Remark. Here again, if h ¼ (h1, . . . , hd), then we take

• Pt�s hs to mean (Pt�s h
1
s , . . . , Pt�s h

d
s ), and

• (ht, j t)L2(W ,m) to mean ((h1
t , j t)L2(W ,m), . . . , (hdt , j t)L2(W ,m)).

Proof. We denote by S the set of processes h such that:

8(t, x, w) 2 [0, T ] 3 W 3�, h(t, x, w) ¼
Xn�1

i¼0

1] ti , tiþ1](t)hi(x, w),
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where n 2 N�, 0 < t0 < t1 < . . . < tn < T and, for all i 2 f0, 1, . . . , n� 1g,

8(x, w) 2 W 3�, hi(x, w) ¼
Xni
j¼1

1
A

j

i
(w)h

j
i (x),

where ni 2 N� and, for all j 2 f1, . . . , nig, A
j
i 2 F t i and h

j
i 2 Dom(L).

As Dom(L) is dense in L2(W , m), we can easily prove that S is a dense subspace in

P0 L2(W , m)ð Þ, hence in P(L2(W , m)).

Assume first that h 2 Sd . It is clear that the process

8t 2 [0, T ], � t ¼
ð t

0

Pt�s hs dBs

admits a version both in L2([0; T ] 3�; Dom(L)) and P(F). A direct calculation or a

generalized Itô formula (see, for example, Protter 1985, Theorem 3.2) yields

� t ¼
ð t

0

hs dBs þ L

ð t
0

�u du 4:4ð Þ

¼
ð t

0

hs dBs þ
ð t

0

L�u du:

Let j 2 D0; thanks to the Itô’s formula, we have

0 ¼
ðT

0

(� t, @ tj t)L2(W ,m) dt þ
ðT

0

(ht, j t)L2(W ,m) dBt þ
ðT

0

(L� t, j t)L2(W ,m) dt

¼
ðT

0

(� t, @ tj t)L2(W ,m) dt þ
ðT

0

(ht, j t)L2(W ,m) dBt �
ðT

0

e(� t, j t)dt,

which corresponds to assertion (ii).

To conclude using a density argument, we estimate E[sup t2[0,T ]k� tk2
L2(W ,m)] and

E[
Ð T

0
e(� t, � t)dt]. Once again we apply Itô’s formula, which yields that, for all t 2 [0, T ],

k� tk2
L2(W ,m) þ 2

ð t
0

e(�u, �u)ds ¼ 2

ð t
0

(�u, hu)L2(W ,m) dBu þ
ð t

0

khuk2
L2(W ,m) du (4:5)

so that

E sup
t2[0,T ]

k� tk2
L2(W ,m)

" #
< 2E sup

t2[0,T ]






ð t

0

(�u, hu)L2(W ,m) dBu






" #

þ 2E

ðT
0

khuk2
L2(W ,m) du

� �
:

Using the Burkholder–Davies–Gundy inequality, we obtain that there exists a constant C

such that
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E sup
t2[0,T ]

k� tk2
L2(W ,m)

" #
< 2CE

ðT
0

(�u, hu)
2
L2(W ,m) du

� �1=2
" #

þ 2E

ðT
0

khuk2
L2(W ,m) du

� �

< 2CE sup
t2[0,T ]

k� tkL2(W ,m) 3

ðT
0

khuk2
L2(W ,m) du

� �1=2
" #

þ 2E

ðT
0

khuk2
L2(W ,m) du

� �
,

and so, for any � . 0, we have that

E sup
t2[0,T ]

k� tk2
L2(W ,m)

" #
< C�E sup

t2[0,T ]

k� tk2
L2(W ,m)

" #
þ C

�
þ 2

� �
E

ðT
0

khuk2
L2(W ,m) du

� �
:

For this inequality, we have used the trivial inequality

ab <
1

2

a2

�
þ �b2

� �
:

Then, taking � small enough, we obtain that there exists another constant, still denoted by C,

such that

E sup
t2[0,T]

k� tk2
L2(W ,m)

" #
< CE

ðT
0

khuk2
L2(W ,m) du

� �
:

Then, relation (4.5) yields

E

ðT
0

e(�u, �u)ds

� �
< E

ðT
0

(�u, hu)L2(W ,m) dBu

� �
þ 1

2
E

ð t
0

khuk2
L2(W ,m) du

� �
,

and so we have

E

ðT
0

e(�u, �u)ds

� �
<

1

2
E

ðT
0

khuk2
L2(W ,m) du

� �
:

By density, we get assertions (i) and (ii).

For (iii), we remark that if h 2 S, it is given by relation (4.4). The general case is

obtained by density as in the proof of Proposition 4.3. h

We now turn our attention to the probabilistic behaviour of the process �. This is given

by the following propostion.

Propostion 4.7. Let ¨ ¼ (˜N )N2N� be a sequence of subdivisions of [0, T ] such that

lim
N!þ1

j˜N j ¼ 0,

and h be in (P(L2(W , m)))d. Then the process t 2 [0, T ] ! � t ¼
Ð t

0
Pt�s hs dBs admits a

version in D¨
T (L2(W , m)) whose martingale part is
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t 2 [0, T ] !
ð t

0

hs dBs,

and whose zero quadratic variation part is

t 2 [0, T ] ! L

ð t
0

�s ds

� �
:

Proof. Let N 2 N� and ˜ ¼ f0 ¼ t0 , t1 , . . . , tN ¼ Tg be in ¨. Then

E[V(�, ˜)] ¼ E
XN�1

i¼0


ð t iþ1

t i

Ptiþ1�s hs dBs þ
ð ti

0

(Ptiþ1�s hs � Pti�s hs)dBs


2

L2(W ,m)

2
4

3
5

< 2
XN�1

i¼0

E


ð tiþ1

ti

Ptiþ1�s hs dBs


2

L2(W ,m)

2
4

3
5

þ 2
XN�1

i¼1

E


ð t i

0

(Ptiþ1�shs � Pti�s hs)dBs


2

L2(W ,m)

2
4

3
5

¼ 2
XN�1

i¼0

E

ð t iþ1

t i

kPtiþ1�s hsk2
L2(W ,m) ds

� �

þ 2
XN�1

i¼1

E

ð t i
0

kPtiþ1�s hs � Pti�s hsk2
L2(W ,m) ds

� �

< 2E

ðT
0

khsk2
L2(W ,m) ds

� �
þ 2

XN�1

i¼1

E

ð ti
0

kPtiþ1�s hs � Pti�s hsk2
L2(W ,m) ds

� �
:

So, the same quantity A appears as in the proof of Lemma 4.4; this yields

E(V (�, ˜)) < 4E

ðT
0

khsk2
L2(W ,m) ds

� �
Moreover, as h 2 S, we have the decomposition,

8t 2 [0, T ], � t ¼
ðT

0

hs dBs þ
ðT

0

L�s ds,

which ensures that � 2 D¨
T (L2(W , m)). Thanks to the previous inequalities, we have

k�k¨,T ,L2(W ,m) < CE

ðT
0

khsk2
L2(W ,m) ds

� �
,

where C is a constant.
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Consider now the general case. Let h 2 P(L2(W , m)) and (hn)n2N� a sequence in S
which converges to h in P(L2(W , m)). We put

8n 2 N�, 8t 2 [0, T ], �n
t ¼

ð t
0

Pt�s h
n
s dBs:

We have that

8n, m 2 N�, k�n � �mk2
¨,T ,L2(W ,m) < CE

ðT
0

khn
u � hm

u k
2
L2(W ,m) du

� �
:

So (�n)n2N� is a Cauchy sequence in D¨
T (L2(W , m)) which converges to �. Moreover, it is

clear that the martingale part of �n converges to that of �, which allows us to conclude using

Proposition 4.1. h

The question which now arises, is whether or not the process t ! � t(x) is a Dirichlet

process for m-almost all x. Unfortunately, we do not know how to prove this. Nevertheless,

we have the following propostion.

Propostion 4.8. Let ¨ ¼ (˜N )N2N� be a sequence of subdivisions of [0, T ] such that

lim
N!þ1

j˜N j ¼ 0,

and h be in (P(F))d. Then for m-almost all x 2 W, the process t 2 [0, T ]

! � t(x) ¼
Ð t

0
Pt�s hs(x) dBs is a semi-martingale which satisfies

E sup
t2[0,T ]

j� t(x)j2
" #

, þ1,

so it admits a version in D¨
T .

Proof. Assume first that h belongs to S; this clearly ensures that � is in

L2([0, T ] 3�; Dom(L)) and we estimate E(
Ð T

0
kL� tk2 dt), for which purpose we use the

spectral representation. For all t 2 [0, T ], one has

L� t ¼
ð t

0

LPt�s�s dBs

¼
ð t

0

ðþ1

0

ºe�º( t�s) dEºhs dBs,

so

E(kL� tk2
L2(W ,m)) ¼ E

ð t
0

ðþ1

0

º2e�2º( t�s)(dEºhs, hs)L2(W ,m) ds

� �
,

this yields
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E

ðT
0

kL� tk2 dt

� �
¼ E

ðT
0

ð t
0

ðþ1

0

º2e�2º( t�s)(dEºhs, hs)L2(W ,m) ds dt

� �

¼ E

ðT
0

ðþ1

0

ðT
s

º2e�2º( t�s) dt(dEºhs, hs)L2(W ,m) ds

� �

< E

ðT
0

ðþ1

0

º

2
(dEºhs, hs)L2(W ,m) ds

� �

<
1

2
E

ðT
0

khsk2
F ds

� �
:

As S is dense in P(F), we conclude that if h 2 P(F) then � 2 L2([0, T ] 3�; Dom(L)).

Moreover, thanks to the previous proposition, we know that � admits the decomposition

� t ¼
ð t

0

hs dBs þ L

ð t
0

�s ds

� �

¼
ð t

0

hs dBs þ
ð t

0

L�s ds

for all t 2 [0, T ]; it is now easy to conclude using the remark at the end of Section 2.3.

h

4.2. Equivalence between weak and mild solutions

We now consider the mild equation

u(t, x) ¼ Pt�(x) þ
ð t

0

Pt�s f (s, �, u(s, �), Du(s, �))(x) ds

þ
ð t

0

Pt�s g(s, �, u(s, �), Du(s, �))(x) dBs: (4:6)

Let us remark that thanks to previous results and Lemma 3.1, this equation makes sense in

P(F). Moreover, we have:

Propostion 4.9. u 2 P(F) is a weak solution of (3.1) if and only if it satisfies (4.6).

Proof. Let u be in P(F). We put:

8t 2 [0, T ], Æ t ¼
ð t

0

Pt�s f (s, �, u(s, �), Du(s, �))(x) ds

and
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� t ¼
ð t

0

Pt�s g(s, �, u(s, �), Du(s, �))(x) dBs:

Let j be in D0. Then, thanks to Proposition 4.1,ðT
0

(Pt�, @ tj t)L2(W ,m) dt ¼ �(�, j(0, �))L2(W ,m) þ
ðT

0

e(Pt�, j t):

Proposition 4.3 givesðT
0

(Æ t(�), @ tj t(�))L2(W ,m) dt ¼ �
ðT

0

( f (t, �, u(t, �), Du(t, �)), j t)L2(W ,m) dt þ
ðT

0

e(Æ t, j t)dt,

and from proposition 4.6,ðT
0

(� t, @j t)L2(W ,m) dt ¼ �
ðT

0

(g(t, �, u(t, �), Du(t, �)), j t)L2(W ,m) dBt þ
ðT

0

e(� t, j t)dt:

From this, we deduce easily that if u 2 P(F) satisfies (4.6), then u satisfies (3.1).

Conversely, if u 2 P(F) is a solution of (3.1), then we define the process

ûu(t, x) ¼ Pt�(x) þ
ð t

0

Pt�s f (s, �, u(s, �), Du(s, �))(x)ds

þ
ð t

0

Pt�s g(s, �, u(s, �), Du(s, �))(x) dBs:

Using the previous calculus and notation, we haveðT
0

(ûu(t, �), @ tj(t, �))L2(W ,m) dt ¼ �(�, j(0, �))L2(W ,m) þ
ðT

0

e(Pt�, j(t, �))dt

�
ðT

0

( f (t, �, u(t, �), Du(t, �)), j(t, �))L2(W ,m) dt

þ
ðT

0

e(Æ(t, �), j(t, �))dt

�
ðT

0

(g(t, �, u(t, �), Du(t, �)), j(t, �))L2(W ,m) dBt

þ
ðT

0

e(�(t, �), j(t, �))dt a:s:

So, we have that, for all j 2 D0,
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ðT
0

(ûu(t, �), @ tj(t, �))L2(W ,m) dt ¼ �(�, j(0, �))L2(W ,m) þ
ðT

0

e(ûu(t, �), j(t, �))dt

�
ðT

0

(g(t, �, u(t, �), Du(t, �)), j(t, �))L2(W ,m) dBt

�
ðT

0

( f (t, �, u(t, �), Du(t, �)), j(t, �))L2(W ,m) dt a:s:

But, as u is a solution of (3.1), for all j 2 D0,ðT
0

(u(t, �), @ tj(t, �))L2(W ,m) dt ¼ �(�, j(0, �))L2(W ,m) þ
ðT

0

e(u(t, �), j(t, �))dt

�
ðT

0

(g(t, �, u(t, �), Du(t, �)), j(t, �))L2(W ,m) dBt

�
ðT

0

( f (t, �, u(t, �), Du(t, �)), j(t, �))L2(W ,m) dt a:s:

We now put v(t, x) ¼ u(t, x) � ûu(t, x); it is clear that v belongs to P(F) and that, for all

j 2 D0, ðT
0

(v(t, �), @ tj(t, �))L2(W ,m) dt ¼
ðT

0

e(v(t, �), j(t, �))dt a:s:

So, v is solution in the weak sense of the equation @ tv t � Lv t ¼ 0 with initial condition

v(0, �) ¼ 0. Thanks to Lemma 4.10, the proposition is proved. h

Lemma 4.10. 0 is the unique weak solution in P(F) of the equation:

@ tv t � Lv t ¼ 0,

with initial condition v0 ¼ 0.

Proof. We remark that this equation is deterministic. Let v 2 P(F) be a solution in the weak

sense of this equation.

Consider ł, an element of L2([0, T ]) � Dom(L), and define

8t 2 [0, T ], j t ¼
ðT
t

Ps� tłs ds:

It is now standard to prove that j 2 D0 and

@ tj t ¼ �ł t � Lj t:

As v is a solution in the weak sense, we haveðT
0

(v(t, �), @ tj(t, �))L2(W ,m) dt ¼
ðT

0

e(v(t, �), j(t, �))dt;

Solutions of SPDEs considered as Dirichlet processes 811



this yields ðT
0

(v(t, �), ł(t, �))L2(W ,m) dt ¼ 0,

because

(v(t, �), �Lj(t, �))L2(W ,m) ¼ e(v(t, �), j(t, �)):

We now conclude by density that for any ł 2 L2([0, T ] 3 W , dt � m(dx)),ðT
0

ð
W

v(t, x)ł(t, x)m(dx)dt ¼ 0,

and so v ¼ 0 dt � m(dx)-everywhere.

4.3. Existence and uniqueness of the solution of (3.1)

4.3.1. Preliminaries on Dirichlet forms

In this short section, we recall a few properties satisfied by Dirichlet forms. All the proofs

of the following properties may be found in Bouleau and Hirsch (1991). We denote by ˛0
1

the set of normal contraction from R into R. More precisely, a function G : R ! R belongs

to ˛0
1 if and only if G(0) ¼ 0 and

8(x, y) 2 R2, jG(x) � G(y)j < jx� yj:
One fundamental property of Dirichlet forms is the following:

Propostion 4.11. Let u 2 F; then for all G 2 ˛0
1, G(u) belongs to F and

e(G(u), G(u)) < e(u, u):

Corollary 4.12. For all u 2 F, uþ belongs to F and

e(uþ, uþ) < e(u, u):

Definition 4.1. (F, e) is said to be local if and only if, for all u, v 2 F, for all a 2 R,

(uþ a)v ¼ 0 ) e(u, v) ¼ 0:

We remark that if (F, e) is local then, for all u 2 F, e(uþ, u) ¼ e(uþ, uþ).

Moreover, if º denotes the Lebesgue measure on R, it is well known that any function

G 2 ˛0
1 is º-everywhere differentiable and so G9 is defined (º-a.e.). Still following Bouleau

and Hirsch (1991, Section I.5.2), we have:

Propostion 4.13. Assume that (F, e) is local. Let u 2 F and (Gn)n2N� be a sequence in ˛0
1

and G 2 ˛0
1. Assume that
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lim
n!þ1

G9n ¼ G9 º-a:e:

Then

lim
n!þ1

Gn(u) ¼ G(u) in F:

Proposition 4.14. Assume that (F, e) is local. Let u 2 F and G 2 ˛0
1. Then

ˆ(G(u), G(u)) ¼ G9(u)2ˆ(u, u):

We remark that as G9 is defined º-a.e., G9(u)2ˆ(u, u) is defined m-a.e. because we have

the following fundamental property, which Bouleau and Hirsch (1991, Section I.7) refer to

as the ‘absolute continuity property of image measure’:

Theorem 4.15. Assume (F, e) is local. Let u be in F; then

u � (ˆ(u, u) � m) 
 º:

Corollary 4.16. For all u 2 F,

ˆ(uþ, uþ) ¼ 1fu.0gˆ(u, u), m-a:e:

In other words,

kDuþk2
K ¼ 1fu.0gkDuk2

K , m-a:e:

4.3.2. An Itô formula for Dirichlet processes

An Itô formula for (Rk-valued) Dirichlet processes was first proved in Föllmer (1981a) and

also studied by Bertoin (1986; 1987). Our goal here is to establish an Itô formula for

L2(W , m)-valued Dirichlet processes. For this purpose, we restrict ourselves to a subset of

D¨
T (L2(W , m)).

Definition 4.2. Let ¨ ¼ (˜N )N2N� be a sequence of subdivisions of [0, T ] such that

lim
N!þ1

j˜N j ¼ 0:

We denote by ~DD¨
T (L2(W , m)) the set of processes X 2 D¨

T (L2(W , m)) such that there exist

h 2 (P(L2(W , m)))d and a zero-quadratic variation process A which satisfy

8t 2 [0, T ], X t ¼
ð t

0

hs dBs þ At:

Definition 4.3. Let k 2 N� and X ¼ (X 1, . . . , X k) be in (~DD¨
T (L2(W , m)))k; then for all

i, j 2 f1, . . . , kg the L1(W , m)-valued finite variation process hX i, X ji is well defined:
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hX i, X ji ¼
ð t

0

his h
j
s ds,

where
Ð �

0
his dBs(

Ð �
0
h j
s dBs) is the martingale part of X i (X j).

It is easy to verify that in this case,

hX i, X jiT ¼ lim
j˜j!0

X
t l2˜

(X i
t lþ1

� X i
t l

) � (X
j
t lþ1

� X
j
t l ),

in L1(�3 W ).

We remark also that if Æ is an adapted process in L1([0, T ] 3�3 W ), then the process

t 2 [0, T ] !
ð t

0

Æs dhX i, X jis ¼
ð t

0

Æs h
i
s h

j
s ds

is well defined and may be viewed as a continuous L1(W )-valued process.

Theorem 4.17. Let k 2 N�, ¨ ¼ (˜N )N2N� be a sequence of subdivisions of [0, T ] such that

lim
N!þ1

j˜N j ¼ 0,

and (X t) t2[0,T ] be in (~DD¨
T (L2(W , m)))k . Let f : Rk ! R a C2 function such that f (XT ) is in

L1(�3 W ) and, for all i, j 2 f1, . . . , kg, @2 f =@xi@xj is bounded-continuous. Then

f (XT ) ¼ f (X 0) þ
Xk
i¼1

ðT
0

@

@xi
f (X t)dX

i
t þ

1

2

X
i, j

ðT
0

@2

@xi@xj
f (X s)dhX i, X ji t,

where, for all i 2 f1, . . . , kg,ðT
0

@

@xi
f (X t)dX

i
t ¼ lim

˜2¨,j˜j!0

X
t l2˜nfTg

@

@xi
f (X t l )(X

i
t lþ1

� X i
t l

)

in L1(�3 W , P� m).

Proof. For simplicity, we only give the proof in the case k ¼ 1. Let N be in N�. By Taylor’s

formula we have, for m-almost all x 2 W ,

f (XT (x)) � f (X 0(x)) ¼
X

t l,T2˜N

[ f (X t lþ1
(x)) � f (X t l (x))]

¼
X

t l,T2˜N

f 9(X t l (x))(X t lþ1
(x) � X t l (x))

þ 1

2
f 0(X t l (x))(X t lþ1

(x) � X t l (x))2 þ R(X t l (x), X t lþ1
(x)),

where, for all a, h 2 R,
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R(a, aþ h) ¼ h2

ð1

0

[ f 0(aþ th) � f 0(a)](1 � t)dt:

So 



 X
t l,T2˜N

R(X t l (x), X t lþ1
(x))





 < X
t l,T2˜N






ð1

0

[ f 0(X t l (x) þ t(X t lþ1
(x) � X t l (x)))

�

� f 0(X t l (x))](1 � t)dt






�
3

X
t l,T2˜N

jX t lþ1
(x) � X t l (x)j2:

We put

8N 2 N�, RN ¼ sup
t l,T2˜N






ð1

0

[ f 0(X t l þ t(X t lþ1
� X t l )) � f 0(X t l )](1 � t)dt






and we now prove that RN 3

P
t l,T2˜N

jX t lþ1
� X t l j2 goes to 0 as N tends to +1 in

L1(�3 W ). For this purpose, we decompose X as

8t 2 [0, T ], X t ¼
ð t

0

hs dBs þ At,

where A is a zero quadratic variation process.

Consider (˜Nm
)m2N� a subsequence of (˜N )N2N� . Then as

sup
t l,T2˜Nm

(At lþ1
� At l )

2 <
X

t l,T2˜Nm

(At lþ1
� At l )

2,

we have that sup t l,T2˜Nm
(At lþ1

� At l )
2 goes to 0 as m goes to +1 in L1(�3 W ). One can

therefore extract another subsequence (Nmq
)q2N� such that, for m-almost all x 2 W ,

lim
q!þ1

sup
t l,T2˜Nmq

jAt lþ1
(x) � At l (x)j ¼ 0 P-a:e:

As the martingale part of X admits a continuous version for almost all (w, x) 2 �3 W , we

have that, for almost all x 2 W ,

lim
q!þ1

sup
t l,T2˜Nmq

jX t lþ1
(x) � X t l (x)j ¼ 0 P-a:e:

By the dominated convergence theorem one deduces that, for m-almost all x 2 W ,

lim
q!þ1

RNmq
(x) ¼ 0 P-a:e:

As
P

t i,T2˜N
jX tiþ1

� X ti j2 converges in L1(�3 W ) and (RN )N2N� is uniformly bounded, we

obtain that

lim
q!þ1

RNmq
3

X
ti,T2˜Nmq

jX tiþ1
� X ti j2 ¼ 0,

in L1(�3 W ). From this, we deduce that (RN 3
P

ti,T2˜N
jX tiþ1

� X ti j2)N2N� goes to 0 in
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L1(�3 W ). To see this, assume that it is not true, then by the dominated convergence

theorem we easily get a contradiction.

This yields

lim
j˜j!0,˜2¨

E

ð
W





 X
t l,T2¨

R(X t
l
(x), X t lþ1

(x))





m(dx)

" #
¼ 0:

Moreover, standard arguments allow us to conclude that

lim
N!þ1

X
t l,T2˜N

f 0(X t l )(X t lþ1
� X t l )

2 ¼ lim
N!þ1

X
t l,T2˜N

f 0(X t l )

ð t lþ1

t l

hs dBs

� �2

¼
ðT

0

f 0(X s)dhX , X is,

in L1(�3 W , P� m).

Now it is clear that
P

t l,T2˜ f 9(X t l )(X t lþ1
� X t l ), converges in L1(�3 W , P� m), and

we put ðT
0

f 9(X t)dX t ¼ lim
j˜j!0,˜2¨

X
t l,T2˜

f 9(X t l )(X t lþ1
� X t l ),

which ends the proof. h

Remark. We note that
Ð T

0
f 9(X t)dX t is not a true stochastic integral (see Bertoin 1987).

Corollary 4.18. Let X 2 ~DD¨
T (L2(W , m)), j a C2 function defined from [0, T ] to R and G a

C2 function defined from R to R with bounded second derivative and such that G(XT )

belongs to L1(�3 W ). Then

j(T )G(XT ) ¼ j(0)G(X0) þ
ðT

0

j9(s)G(X s) dsþ
ðT

0

j(s)G9(X s)dX s

þ 1

2

ðT
0

j(s)G 0(X s)dhX , X is,

P� m-a.e., whereðT
0

j(s)G9(X s)dX s ¼ lim
j˜j!0,˜2¨

X
t l2˜nfTg

j(t l)G9(X t l )(X t lþ1
� X t l ),

in L1(�3 W ).

Proof. If m(W ) , þ1, this is a special case of the previous theorem. Otherwise, it is easy to

verify that the same proof works. h
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So, this weak stochastic integration gives a sense to the term ‘ du’ in the equation. More

precisely, we have

Propostion 4.19. Let f be in L2([0, T ] 3�3 W ) adapted and g be in (P(L2(W , m)))d. We

define

8t 2 [0, T ], ut ¼
ð t

0

Pt�s f s dsþ
ð t

0

Pt�s gs dBs:

Let j be a C2 function defined from [0, T ] to R, G : R ! R be a C2 function with bounded

second-order derivative such that G(0) ¼ 0. Then,

E

ð
W

ðT
0

j(t)G9(ut)dut(x) dx

� �
¼ �E

ðT
0

j(t)e(G9(ut), ut)dt

� �

þ E

ðT
0

j(t)(G9(ut), f t)L2(W ,m) dt

� �
:

Proof. Assume first that f belongs to C1([0, T ]) � Dom(L) � L2(�) and g to

(C1([0, T ]) � Dom(L) � L2(�))d . We have already shown that u is a semi-martingale and

that one has the decomposition,

8t 2 [0, T ], ut ¼
ð t

0

Lus dsþ
ð t

0

f s dsþ
ð t

0

gs dBs,

see Propositions 4.3 and 4.6. Then the result is easy to prove.

One has to note that in all cases, the quantity
Ð T

0
j(t)e(G9(ut), ut)dt is well defined (P-

a.e.) because G 0 is bounded and so, using the properties of Dirichlet forms recalled in

Section 4.3.1, there exists a constant C such that,

8t 2 [0, T ], 8v 2 F, e(G9(v), G9(v)) < Ce(v, v):

For the general case, consider a sequence ( f n)n2N in C1([0, T ]) � Dom(L) � L2(�) which

converges to f in L2([0, T ] 3�3 W ) and a sequence (gn)n2N in (C1([0, T ]) �
Dom(L) � L2(�))d which converges to g in (P(L2(W , m)))d . We define, for all n 2 N,

8t 2 [0, T ], un
t ¼

ð t
0

Pt�s f
n

s dsþ
ð t

0

Pt�s g
n
s dBs:

As G(0) ¼ 0 and G 0 is bounded, it is clear that quantities G(un
T ) and G(uT ) are in

L1(�3 W ), so thanks to Itô’s formula (see Corollary 4.18), we have that, for all n 2 N,ðT
0

j(t)G9(un
t )du

n
t ¼ G(un

T ) �
ðT

0

j9(t)G(un
t )dt

� 1

2

ðT
0

j(t)G 0(un
t )jgn

t j2 dt:
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In the proofs of Propositions 4.3 and 4.6, we established that un converges to u in

L2([0, T ] 3�; F) and that

lim
n!þ1

E sup
t2[0,T ]

kun
t � utk2

L2(W ,m)

 !
¼ 0:

So G(un
T ) converges to G(uT ) in L1(�3 W ) and

Ð T
0
j9(t)G(un

t )dt to
Ð T

0
j9(t)G(ut)dt.

Moreover, as G 0 is bounded and continuous, we obtain that j(t)G 0(un
t )jgn

t j2 tends to

j(t)G 0(ut)jgtj2 in L1([0, T ] 3�3 W ) (once again, to see this, assume it is not true and use

a double extraction procedure to yield a contradiction). As a consequence,ðT
0

j(t)G9(un
t )dun

t

converges to ðT
0

j(t)G9(ut)dut

in L1(�3 W ). Since, for all n 2 N,

E

ð
W

ðT
0

j(t)G9(un
t )dun

t (x)dx

� �
¼ �E

ðT
0

j(t)e(G9(un
t ), u

n
t )dt

� �

þ E

ðT
0

j(t)(G9(un
t ), f

n

t )L2(W ,m)dt

� �
,

we just have to let n tend to +1 to obtain the desired equality. Once again, we use the fact

that as (F, e) is a Dirichlet form, there exists a positive constant C such that

8n 2 N, 8t 2 [0, T ], e(G9(un
t ), G9(un

t )) < Ce(un
t , un

t ),

which ensures, for example, that

E

ðT
0

j(t)e(G9(un
t ), un

t )dt

� �
converges to

E

ðT
0

j(t)e(G9(ut), ut)dt

� �
:

h

Remark. The hypothesis G(0) ¼ 0 is not necessary if m(W ) , þ1.

4.3.3. The theorem of existence and uniqueness

Theorem 4.20. Under Hypotheses 3.1–3.3, equation (3.1) admits a unique solution in P(F).
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Proof. We will prove existence and uniqueness of the solution of the mild equation. For this

purpose, let ª, � be positive constants. We consider the following norm on P(F):

8u 2 P(F), kukª,� ¼ E

ðT
0

e�ª t(�kutk2
L2(W ,m) þ e(ut, ut))dt

� �
:

It is clear that k � kª,� is equivalent to k � kP(F). We consider the map, ¸, from P(F) into

P(F) defined, for all u 2 P(F), for all (t, x) 2 [0, T [3W , by

¸u(t, x) ¼ Pt�(x) þ
ð t

0

Pt�s f (s, �, u(s, �), Du(s, �))(x) ds

þ
ð t

0

Pt�s g(s, �, u(s, �), Du(s, �))(x) dBs:

Let u and v be in P(F). We put:

8s 2 [0, T ], f s ¼ f (s, �, us, Dus) � f (s, �, vs, Dvs),

8s 2 [0, T ], gs ¼ g(s, �, us, Dus) � g(s, �, vs, Dvs),

8t 2 [0, T ], ut ¼ ¸(u) t �¸(v) t ¼
ð t

0

Pt�s f s dsþ
ð t

0

Pt�s gs dBs:

Henceforth, we fix ¨, a sequence of subdivisions of [0, T ] whose mesh tends to 0. By Itô’s

formula, we obtain

e�ªT u2
T ¼ �ª

ðT
0

e�ªsu2
s dsþ 2

ðT
0

e�ªsus dus(x) þ
ðT

0

e�ªs dhu, uis

¼ �ª

ðT
0

e�ªsu2
s dsþ 2

ðT
0

e�ªsus dus þ
ðT

0

e�ªsjgsj2 ds:

Now, thanks to Proposition 4.19, we have that

E

ð
W

ðT
0

e�ªsus(x) dus(x)m(dx)

� �
¼ �E

ðT
0

e�ªse(us, us)ds

� �

þ E

ðT
0

e�ªs(us, f s)L2(W ,m) ds

� �
:
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This yields

E(e�ªTkuTk2
L2(W ,m)) ¼ �ªE

ðT
0

e�ªskusk2
L2(W ,m) ds

� �

� 2E

ðT
0

e�ªse(us, us)ds

� �

þ 2E

ðT
0

e�ªs(us, f s)L2(W ,m) ds

� �

þ E

ðT
0

e�ªskjgsjk2
L2(W ,m) ds

� �
:

Then, using the hypotheses satisfied by g, we have

ªE

ðT
0

e�ªskusk2
L2(W ,m) ds

� �
þ 2E

ðT
0

e�ªse(us, us)ds

� �
< 2E

ðT
0

e�ªs(us, f s)L2(W ,m) ds

� �

þ CE

ðT
0

e�ªskus � vsk2
L2(W ,m) ds

� �
þ ÆE

ðT
0

e�ªse(us � vs, us � vs)ds

� �
,

where C and Æ 2 [0, 2[ are the constants which appear in Hypotheses 3.1–3.3. Moreover,

using hypotheses on f , we have, for all � . 0,

2E

ðT
0

e�ªs(us, f s)L2(W ,m) ds

� �
<

1

�
E

ðT
0

e�ªskusk2
L2(W ,m) ds

� �

þ �E

ðT
0

e�ªsk f sk2
L2(W ,m) ds

� �

<
1

�
E

ðT
0

e�ªskusk2
L2(W ,m) ds

� �

þ C�E

ðT
0

e�ªskus � vsk2
L2(W ,m) ds

� �

þ C�E

ðT
0

e�ªse(us � vs, us � vs)ds

� �
:

Finally, we have that

(ª� 1=�)E

ðT
0

e�ªskusk2
L2(W ,m) ds

� �
þ 2E

ðT
0

e�ªse(us, us)ds

� �

< C(1 þ �)E

ðT
0

e�ªskus � vsk2
L2(W ,m) ds

� �
þ (C�þ Æ)E

ðT
0

e�ªse(us � vs, us � vs)ds

� �
:

Now, we choose � small enough and then ª such that
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C�þ Æ , 2 and
ª� 1=�

2
3 (C�þ Æ) ¼ C(1 þ �):

If we set � ¼ (ª� 1=�)=2, then

8u, v 2 P(F)2, k¸(u) �¸(v)kª,� <
(C�þ Æ)

2
ku� vkª,�:

We conclude thanks to the fixed point theorem. h

Theorem 4.21. Assume Hypotheses 3.1–3.3. Let u be the unique solution of (3.1) in P(F)

and ¨ ¼ (˜N )N2N� a sequence of subdivisions of [0, T ] such that

lim
N!þ1

j˜N j ¼ 0:

Then u admits a version that we still denote by u, which belongs to ~DD¨
T (L2(W , m)).

Moreover, its martingale part is

t !
ð t

0

g(s, �, us, Dus) dBs,

and the zero quadratic variation part is

t ! �þ L

ð t
0

us ds

� �
þ
ð t

0

f (s, �, us, Dus)ds:

Proof. As u satisfies the mild equation, this is a simple consequence of Propositions 4.2, 4.5

and 4.7. h

Remark. As a consequence, we have that t ! ut is L2(W, m)-continuous P-a.e.

Theorem 4.22. Let ¨ ¼ (˜N )N2N� a sequence of subdivisions of [0, T ] such that

lim
N!þ1

j˜N j ¼ 0:

Assume that f and � satisfy hypotheses 3.1–3.3 and that g is defined from [0, T ] 3 R with

values in Rd, measurable and satisfies:

(i) g(�, 0) 2 L2([0, T ]; Rd);

(ii) there exists C . 0 such that, for all t, y, y9,

jg(t, y) � g(t, y9)j < Cjy� y9j:

Let u be the unique solution in P(F) of the SPDE

u(t, x) ¼ �(x) þ
ð t

0

Lu(s, x) þ f (s, x, u(s, x), Du(s, x))ds

þ
ð t

0

g(s, u(s, x))dBs: (4:7)
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Then there exists a subsequence, ª, in ¨ such that, for m-almost all x 2 W, the map

t 2 [0, T ] ! ut(x)

belongs to D
ª
T.

Proof. First of all, we know that equation (4.7) admits a unique solution in P(F). Then, as g

is uniformly Lipschitz, this yields that the map t 2 [0, T ] ! g(t, ut) belongs to P(F) (see

Section 4.3.1). So the result is a consequence of Propositions 4.5, 4.8 and 4.2.

The fact that we can choose the same subsequence, ª, which appears in those

propositions is easy to prove, either by a double extraction argument or by extracting an m-

almost everywhere subsequence simultaneously in the proofs of Propostions 4.5 and 4.8.

h

Remark. As a consequence we have that, in this case, for m-almost all x 2 W , t ! ut(x) is

continuous P-a.e.

5. Application: a comparison theorem for parabolic SPDEs

One way to prove comparison theorems for partial differential equations is to use the

probabilistic interpretation and thus the Itô calculus; for example, for PDEs with terminal

condition, one can use the theory of backward differential equations (see Pardoux 1998) and

for SPDEs one can use the doubly stochastic interpretation (see Bally and Matoussi 2001).

We give here a direct proof based on stochastic calculus associated with Dirichlet processes

which allows us to deal with a more general case and with SPDEs whose coefficient in

front of the noise depends on the gradient of u.

We continue to consider equation (3.1), now rewritten as

@ut

@ t
¼ Lut þ f (t, �, ut, Dut) þ g(t, �, ut, Dut)

dBt

dt
,

u0 ¼ �,

with unique solution u.

Consider ~�� 2 L2(W , m) and

~ff : �3 [0, T ] 3 W 3 R3 K ! R

which satisfies the same hypotheses as f (see Section 3.1). We denote by ~uu the unique

solution of

@ ~uu

@ t
¼ L~uut þ ~ff (t, �, ~uut, D~uut) þ g(t, �, ~uut, D~uut)

dBt

dt
,

~uu0 ¼ ~��:
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Finally, we define, for all t 2 [0, T ],

ûut ¼ ut � ~uut,

f̂f t ¼ f (t, �, ut, Dut) � ~ff (t, �, ~uut, D~uut),

ĝg t ¼ g(t, �, ut, Dut) � g(t, �, ~uut, D~uut):

As in the case of (forward or backward) stochastic differential equations, the main idea is to

evaluate E(kûuþt k
2
L2(W ,m)) using Itôs formula and then to apply Gronwall’s lemma.

Lemma 5.1. Assume (F, e) is local. Then, for all t 2 [0, T ],

E(kûuþt k
2
L2(W ,m)) ¼ E(((�� ~��)þ)2) � 2E(

ð t
0

e(ûuþs , ûuþs )ds)

þ 2E

ð t
0

(ûuþs , f̂f s)L2(W ,m) ds

� �

þ E

ð t
0

k1fûus.0gj ĝgsjk2
L2(W ,m) ds

� �
:

Proof. First of all, we fix ¨ a sequence of subdivisions of [0, T ] whose mesh tends to 0.

Thanks to the previous results, we know that ûu belongs to D¨
T (L2(W , m)). To prove the

lemma, we approximate the function ł : y 2 R ! (yþ)2 by a sequence (łn)n2N� of regular

functions. Throughout this proof, the constant C may change from line to line.

Let j be a C1 increasing function such that

8y 2] �1, 1], j(y) ¼ 0, 8y 2 [2, þ1[, j(y) ¼ 1:

We set, for all n 2 N�,

8y 2 R, łn(y) ¼ y2j(ny):

It is easy to verify that (łn)n2N� converges uniformly to the function ł and that, moreover,

we have the estimates

8y 2 Rþ, 8n 2 N�, 0 < łn(y) < ł(y), 0 < ł9n(y) < Cy, jł 0n(y)j < C:

Thanks to Itôs formula, for all n 2 N� and t 2 [0, T ], we have m� P-almost everywhere

łn(ûut) ¼ łn(�� ~��) þ
ð t

0

ł9n(ûus)dûus þ
1

2

ð t
0

ł 0n ûusð Þdhûu, ûuis:

As the martingale part of ûu is
Ð �

0
ĝgs dBs,ð t

0

ł 0n(ûus)dhûu, ûuis ¼
ð t

0

ł 0n(ûus)j ĝgj2s ds:
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Proposition 4.19 yields

E

ð
W

ð t
0

ł9n(ûus(x))dûus(x)m(dx)

� �
¼ �E

ð t
0

e(ł9n(ûus), ûus)ds

� �

þ E

ð t
0

(ł9n(ûus), f̂f s)L2(W ,m) ds

� �
:

Thanks to the properties of Dirichlet forms we recalled in Section 4.3.1 and as ł9n is

differientiable with (uniformly) bounded derivative, we know that, for all v 2 F, ł9n(v)

belongs to F and, moreover,

e(ł9n(v), ł9n(v)) < Ce(v, v),

and so, for all s 2 [0, t] and n 2 N�,

je(ł9n(ûus), ûusÞj < Ce(ûus, ûus):

At this stage, we have proved that, for all n 2 N� and all t 2 [0, T ],

E

ð
W

łn(ûut(x))m(dx)

� �
¼ E(łn(�� ~��)) � E

ð t
0

e(ł9n(ûus), ûus)ds

� �

þ E

ð t
0

(ł9n(ûus), f̂f s)L2(W ,m) ds

� �

þ 1

2
E

ð
W

ð t
0

ł 0n(ûus(x))j ĝgj2s(x)dsm(dx)

� �
:

The dominated convergence theorem yields that ł 0n(ûus(x))j ĝgj2s converges to 21fûus.0gj ĝgsj2 in

L1(�3 W 3 [0, T ], P� m� dt) as n tends to +1 and it is clear that

lim
n!þ1

E(łn(�� ~��)) ¼ E(((�� ~��)þ)2):

Let s 2 [0, T ]; as (ł 0n)n converges º-a.s. to the function (t 2 R ! 21f t.0g)), Proposition 4.13

ensures that ł9n(ûus) converges to 2ûuþs in F. So, for all s 2 [0, T ],

lim
n!þ1

e(ł9n(ûus), ûus) ¼ 2e(ûuþs , ûus) ¼ 2e(ûuþs , ûuþs ),

because we assume that (F, e) is local. This easily yields

lim
n!þ1

E

ð t
0

e(ł9n(ûus), ûus)ds

� �
¼ 2E

ð t
0

e(ûuþs , ûuþs )ds

� �
:

In the same way, one has

lim
n!þ1

E

ð t
0

(ł9n(ûus), f̂f s)L2(W ,m)ds

� �
¼ 2E

ð t
0

(ûuþs , f̂f s)L2(W ,m) ds

� �
,

and the proof is complete. h

We are now able to prove the comparison theorem:
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Theorem 5.2. Assume (F, e) is local, � < ~�� m-a.e. and

f (t, x, ut(x), Dut(x)) < ~ff (t, x, ut(x), Dut(x)) dt � m� P-a:e:

Then

8t 2 [0, T ], ut < ~uut m� P-a:e:,

Proof. Thanks to our hypotheses on g, we have that, for dt � m-almost all (s, x),

j ĝgs(x)j2 < Cjûus(x)j2 þ ÆkDûus(x)k2
K P-a:e:,

where Æ is a constant in [0, 2[.

Using Corollary 4.16, we obtain that, for dt � m-almost all (s, x),

1fûus(x).0gj ĝgs(x)j2 < C1fûus(x).0gjûus(x)j2 þ Æ1fûus(x).0gkDûus(x)k2
K

¼ Cjûuþs (x)j2 þ ÆkDûuþs (x)k2
K P-a:e:,

and so

E

ð t
0

k1fûus(x).0g ĝgs(x)k2
L2(W ,m) ds

� �
< CE

ð t
0

kûuþs (x)k2
L2(W ,m) ds

� �

þ ÆE

ð t
0

e(ûuþs , ûuþs )ds

� �
:

This yields, thanks to the previous lemma,

E kûuþt (x)k2
L2(W ,m)

� 	
þ 2(1 � Æ)E

ð t
0

e(ûuþs , ûuþs )ds

� �
< CE

ð t
0

kûuþs (x)k2
L2(W ,m) ds

� �

þ 2E

ð t
0

(ûuþs , f̂f s)L2(W ,m) ds

� �
:

We now decompose f̂f in the following way

f̂f s ¼ f f (s, �, us, Dus) � ~ff (s, �, us, Dus)g þ f ~ff (s, �, us, Dus) � ~ff (s, �, ~uus, D~uus)g:
As we assumed that f < ~ff ,

ûuþs � f̂f s ¼ ûuþs � f f (s, �, us, Dus) � ~ff (s, �, us, Dus)g þ ûuþs � f ~ff (s, �, us, Dus) � ~ff (s, �, ~uus, D~uus)

< ûuþs � f ~ff (s, �, us, Dus) � ~ff (s, �, ~uus, D~uus)g

and so, thanks to our assumptions on ~ff , for m-almost all x 2 W ,

jûuþs (x) � f̂f s(x)j < Cûuþs (x) � (jûus(x)j þ kDûus(x)kK )

¼ Cjûuþs (x)j2 þ Cûuþs (x) 3 1fus(x).0gkDûus(x)kK

¼ Cjûuþs (x)j2 þ Cûuþs (x)kDûuþs (x)kK :
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Once again, we use the inequality 2ab < �a2 þ b2

� to conclude that, for any � . 0, there exists

a constant C . 0 such that, for almost all s 2 [0, T ] and almost all x 2 W ,

jûuþs (x) f̂f s(x)j < C(ûuþs (x))2 þ �kDûus(x)k2
K :

This yields

E(kûuþt (x)k2
L2(W ,m)) þ (2 � Æ� �)E

ð t
0

e(ûus, ûus)ds

� �
< CE

ð t
0

kûuþs (x)k2
L2(W ,m) ds

� �
:

Taking � small enough, we obtain that, for all t 2 [0, T ],

E(kûuþt (x)k2
L2(W ,m)Þ < CE

ð t
0

kûuþs (x)k2
L2(W ,m) ds

� �
,

and we conclude thanks to Gronwall’s lemma.
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