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The theory of transportation of measure for general convex cost functions is used to obtain a novel

logarithmic Sobolev inequality for measures on phase spaces of high dimension and hence a

concentration-of-measure inequality. There are applications to the Plancherel measure associated with

the symmetric group, the distribution of Young diagrams partitioning N as N ! 1 and to the mean-

field theory of random matrices. For the potential logˆ(xþ 1), the generalized orthogonal ensemble

and its empirical eigenvalue distribution are shown to satisfy a Gaussian concentration-of-measure

phenomenon. Hence the empirical eigenvalue distribution converges weakly almost surely as the

matrix size increases; the limiting density is given by the derivative of the Vershik probability density.
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1. Introduction

This paper presents a new approach to transportation inequalities and the concentration-of-

measure phenomenon for certain Gibbs measures on phase spaces of high dimension. The

measures in question are not quite product measures, and the potentials are not uniformly

convex. The applications include the following model problem of Dyson (1962). Let us take

n positive unit charges and place them at points ‘1 . ‘2 . . . . . ‘n . 0 on the real line.

The charges are mutually repelling and we suppose that they are subject to an electrostatic

field with potential v(x) ¼ logˆ(xþ 1), so that the total energy is

V (‘) ¼
Xn
j¼1

v(‘ j) �
Xn

j,k¼1: j,k

� log(‘ j � ‘k): (1:1)

Here � . 0 is a scale factor. By convexity of V there should exist some equilibrium

configuration that minimizes the potential.

We regard the ‘ ¼ (‘ j)
n
j¼1 as points in a suitable phase space and V (‘) as the potential of

a Gibbs probability measure �(d‘) ¼ Z�1e�V (‘)d‘1 . . . d‘n involving the product Lebesgue

measure. Henceforth we regard the ‘ as random subject to �(d‘), and we use Z to stand for

a typical partition function (normalizing constant).

The properties as n ! 1 of such ensembles have previously been considered in two

apparently disparate problems.

1. Random permutations. Let N > 1 be an integer and let [N ] ¼ f1, 2, . . . , Ng. The
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group SN of permutations of [N ] has a unique translation-invariant probability measure �N

defined by �N (B) ¼ #(B)=N ! and has a family of inequivalent irreducible representations

that are parametrized by Young diagrams; see Fulton (1997). Such diagrams may be viewed

as partitions of N , so that

º 2 �N :¼ (º j)
N
j¼1 2 ZN : º1 > º2 > . . . > ºN > 0;

XN
j¼1

º j ¼ N

( )
; (1:2)

we often write º ‘ N and let n ¼ n(º) be the largest index with ºn . 0. We can represent the

diagram as a left-justified array of square boxes with a row of º jþ1 boxes below a row of º j

boxes for j > 1. A standard Young tableau is a Young diagram with its boxes numbered from

1, 2, . . . , N so that all of the rows and columns are strictly increasing as one moves

downwards or to the right.

There are f º distinct ways of numbering a Young diagram to give a standard Young

tableau, where f º is given by the hook-length formula

f º ¼ N !

Y
j,k :1< j,k<n

(‘ j � ‘k)

Yn
j¼1

‘ j!

, V (‘) ¼ �log f º, (1:3)

with integers ‘ j ¼ º j þ n� j and � ¼ 1. Up to isomorphism, all irreducible representations

of SN belong to this collection, so it follows from Frobenius’s theorem that, with �º the unit

point mass on the partition º,

�N ¼
X
º:º‘N

f 2
º

N !
�º (1:4)

defines a probability measure on the set of inequivalent irreducible representations of SN ; this

is called the Plancherel measure of SN .

The quantity º1 represents the length of the longest increasing subsequence of a

randomly chosen permutation, and a famous problem of Ulam was to show that º1=N
1=2

converges in probability to 2 as N ! 1. Vershik and Kerov (1977) showed, moreover, that

the shape of the scaled Young diagrams converges in probability to the continuous

distribution on [0, 2] that is specified by (5.4) below. On account of the scaling, it is not

important whether the º j are integers. By a variational argument in a suitable space of

continuous functions, Logan and Shepp (1977) achieved a similar result. In this paper we

do not seek to improve upon the combinatorial results that have been established for the

discrete Plancherel measure as in Deuschel and Zeitouni (1999); rather in Section 4 we

achieve new results for its continuous analogue.

2. Random matrices. Let Mþ
n (R) be the space of positive definite real symmetric

matrices. Each X 2 Mþ
n (R) has a unique list of eigenvalues º ¼ (º j)

n
j¼1, in decreasing order

according to multiplicity, which determines an element of the simplex

˜n ¼ f(º j) 2 Rn
þ : º1 > º2 > . . . > ºn . 0g:
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In Section 6 we shall introduce a potential and Gibbs measure �n on the phase space

Mþ
n (R) such that �n is invariant under the conjugation action X 7! UXU y of the orthogonal

group on Mþ
n (R); this is a variant of the generalized orthogonal ensemble of Dyson (1962).

Further, with the potential v(x) ¼ logˆ(xþ 1) and � ¼ 1, the ordered eigenvalues have joint

distribution

øn(dº) ¼ Z�1
n exp �

Xn
j¼1

v(º j)

( ) Yn
j,k¼1: j,k

(º j � ºk)� dº1 . . . dºn: (1:5)

While there is a well-developed analogy between the distributions of row lengths of

Young diagrams and the eigenvalues of Gaussian random matrices, as presented in Baik et

al. (1999) and Borodin et al. (2000), the methods used in the two settings have often

appeared rather different and unrelated to the general concentration-of-measure phenomenon

in phase space of high dimension. Transportation inequalities in the style of Talagrand

(1996) provide a link between the two theories. Blower (2001) proved concentration

inequalities for eigenvalues of random matrices under the generalized orthogonal ensemble

for potentials such as v(x) ¼ x2 that are uniformly convex; in this paper the method is

extended to potentials that are not uniformly convex. To deal with this we establish new

transportation inequalities for a general class of convex cost function.

In Section 2 we recall basic results about transportation of measure which will be used in

subsequent sections. In Section 4 we consider the convexity properties of V of (1.1), and

deduce logarithmic Sobolev inequalities and concentration inequalities for the continuous

Gibbs measure. These results are deduced from an abstract logarithmic Sobolev inequality

for general convex cost functions that is presented in Section 3. The proof of Theorem 3.1,

which extends that of Bobkov and Ledoux (2000), depends upon the following inequality,

due to Prékopa and Leindler. Let f , g and h be positive and measurable functions on Rn

such that f (sxþ (1 � s)y) > g(x)s h(y)1�s for some 0 , s , 1 and all x, y 2 Rn. Thenð
R n

f (z)dz >

ð
Rn

g(x)dx

� �s ð
Rn

h(y)dy

� �1�s

: (1:6)

Pisier (1989, Lemma 1.2) presents a simple proof.

In Section 5 we consider the empirical distribution of row lengths of Young diagrams as

N ! 1. The empirical distribution has similar properties to the probability measure

(1=n)
Pn

j¼1�º j=n, where (1=n)#f j : º j=n < xg is often called the eigenvalue counting

function. Then in Section 6 we show how the probability measure (1.5) does indeed arise

for the joint eigenvalue distributions of Dyson’s generalized orthogonal ensemble with

potential function logˆ(1 þ x): In Section 7 we use the concentration inequalities of Section

6 to obtain convergence as n ! 1 for various correlation functions associated with the

random matrices. A significant virtue of mean-field and transportation methods is that they

apply at the level of joint eigenvalue distributions for all � . 0, and hence apply likewise to

orthogonal ensembles of real symmetric matrices with � ¼ 1, unitary ensembles of complex

Hermitian matrices with � ¼ 2, and symplectic ensembles of quaternion matrices with

� ¼ 4. We focus on orthogonal ensembles as Johansson’s (1998) theory covers unitary
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ensembles, where the technique of orthogonal polynomials is effective and more precise

results are known.

2. Induced measures and transportation

Let (� j, d j) ( j ¼ 1, 2) be compact metric spaces. We say that f : �1 ! �2 is an

L-Lipschitz function if d2( f (x1), f (x2)) < Ld1(x1, x2) for all x1, x2 2 �1 and some L.

Given a continuous map � : �1 ! �2, we say that � induces the Radon measure $2 on

�2 from the Radon measure $1 on �1 whenð
�2

f (y)$2(dy) ¼
ð
�1

f (�(x))$1(dx) (2:1)

holds for all continuous f : �2 ! R.

By a cost function we mean a continuous function c : �1 3�1 ! [0, 1) with

c(x, y) ¼ c(y, x) and c(x, x) ¼ 0 for all x, y 2 �1; evidently c(x, y) ¼ d(x, y) p gives an

example for 1 < p. Given Radon probability measures w1 and w2 on �1, the transportation

cost of taking w1 to w2 with respect to the cost function c is

Tcc(w1, w2) ¼ inf
�

ð ð
�13�1

c(x, y)�(dx dy)

� �
(2:2)

where � is a probability measure on �1 3�1 with marginals w1 and w2. The Kantorovich–

Rubinstein duality formula asserts that

Tcc(w1, w2) ¼ sup
f , g

ð
�1

f (x)w1(dx) �
ð
�1

g(y)w2(dy) : f (x) � g(y) < c(x, y)

� �
, (2:3)

where f , g : �1 ! R are continuous and bounded functions. When c(x, y) ¼ kx� yk p

R n for

x, y 2 Rn, we write Tc p for the transportation cost and note that Tc1 gives the Wasserstein

metric on probability measures. See Gangbo and McCann (1996) for a historical survey and

recent developments on this topic.

When w1 is absolutely continuous with respect to w2, we define the relative entropy of

w1 with respect to w2 by

Ent(w1jw2) ¼
ð
�1

dw1

dw2

log
dw1

dw2

dw2, (2:4)

where by Jensen’s inequality 0 < Ent(w1jw2) < 1.

In the next section we prove a transportation inequality which bounds the transportation

cost Tcc(w1, w2) by Ent(w1jw2) for a suitable cost function c, a probability measure w2

with special properties in relation to c, and a general w1.
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3. Logarithmic Sobolev inequality for convex cost functions

Let I be an open interval and c a convex cost function on I2, so that:

(i) c(x, y) . 0 for x 6¼ y, and c(x, x) ¼ 0;

(ii) c(x, y) ¼ c(y, x), for all x, y 2 I;

(iii) c is continuously differentiable on I2;

(iv) c is convex on I2;

(v) c(x, y) < a(x) þ b(y) for some continuous functions a, b : I ! R.

To extend the cost function to n variables, we introduce c(n)(x, y) ¼
Pn

j¼1c(xj, yj) for

x ¼ (xj), y ¼ (yj) 2 I n; we shall usually suppress the subscript n for simplicity.

We define the dual cost function for suitable � ¼ (� j) 2 Rn by

c�(x, �) ¼ sup
y

fhy� x, �i � c(x, y) : y 2 I ng, x 2 I n, (3:1)

with h�, �i the standard inner product; c� may be regarded as the Legendre transform of

c(x, y) in the second variable. Hence c�(x, �) is convex in �, and (x 7! �c�(x, �) � hx, �i) is

c-concave in the sense of Gangbo and McCann (1996); see also Villani (2003, p. 33).

The dual cost function c�(x, �) is finite whenever � belongs to f=2c(x, z) : z 2 I ng; here

=2 represents the gradient in the second variable. Indeed, by convexity we have

c(x, y) > c(x, z) þ h=2c(x, z), y� zi,

where we let � ¼ =2c(x, z), which is independent of y; hence

c�(x, �) ¼ sup
y

hy� x, �i � c(x, y)f g < hz� x, �i � c(x, z) , 1:

One can recover c from c� by the formula c(x, y) ¼ sup�fhy� x, �i � c�(x, �) :

c�(x, �) , 1g.

We shall further assume that:

(vi) c�(x, �) is finite and continuous for x 2 I n and � 2 [�1, 1]n.

The principal examples of cost functions in this paper are as follows.

Example 3.1. Let � be a continuously differentiable, strictly increasing, and convex function

on [0, 1) with �(0) ¼ 0. Then c(x, y) ¼ �(jx� yj) gives a translation-invariant cost

function for x, y 2 R such that c�(x, �) ¼ supf�z��(jzj) : z 2 Rg is the usual Legendre

transform of �(jzj). This case is thoroughly discussed in the appendices of Gangbo and

McCann (1996). The choice of �(x) ¼ x2=2 gives the quadratic cost function, for which

c�(x, �) ¼ �2=2, as in Talagrand (1996) and Otto and Villani (2000).

Example 3.2. With subsequent applications to (1.1) in mind, we let

c(x, y) ¼ (x� y)2

xþ y
, x, y . 0: (3:2)
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One can check by calculus that c is convex on (0, 1)2 and, moreover, that

c�(x, u) ¼
1, x . 0, u . 1,

2xf1 � (1 � u)1=2g2, x . 0, �3 < u < 1,

�x(uþ 1), x . 0, u < �3:

8<
: (3:3)

To obtain this formula, note that when u . 1, the function

g(y) ¼ u(y� x) � (y� x)2

yþ x

diverges to infinity as y ! 1. Now take �3 , u , 1 and set v ¼ (y� x)=(yþ x), which

satisfies �1 , v , 1 for 0 , y , 1. The maximum of g occurs where v ¼ 1 � (1 � u)1=2

since 0 ¼ g9(y) ¼ u� 2vþ v2. When u , �3, this stationary point also lies outside the

acceptable range and the maximum occurs at v ¼ �1; that is, y ¼ 0.

This cost function does not satisfy the superlinear growth condition (H3) of Gangbo and

McCann (1996), and hence their optimal transportation theory does not apply. Nevertheless,

c(x, y) has linear growth as y ! 1 for fixed x, so (v) holds, and c(x, y) behaves for x

close to y like a scaled version of the quadratic cost function. These properties make it

especially suitable for dealing with the potential (1.1) where the growth is like y log y, just

faster than linear. In Section 4 we consider this in detail.

In general, we shall exploit the linkage between potentials and cost functions c as above

that is expressed in the following definition.

Definition. Let W : � ! R be a continuous potential function where � is a convex and open

subset of I n. We say that W is c-convex with constant k . 0 if

(1 � s)W (x) þ sW (y) � W ((1 � s)xþ sy) > ks(1 � s)c(x, y) (3:4)

holds for all 0 , s , 1 and all x, y 2 �. Any c-convex potential function is strictly convex.

The following theorem generalizes a result of Schmuckenschläger presented by Bobkov

and Ledoux (2000). Classical logarithmic Sobolev inequalities involve the quadratic cost

function.

Theorem 3.1. Let �(dx) ¼ Z�1e�w(x)dx be the probability measure with potential W on �,

where W is c-convex with constant k and where c satisfies (i)–(vi). Then any positive function

f 2 C1(�), with j@ f =@xjj < k f (x) for all x 2 �, satisfies the logarithmic Sobolev inequalityð
�
f (x)log f (x)

�ð
�
f d�

� �
�(dx) < k

ð
�
c� x,

�= f (x)

k f (x)

� �
f (x)�(dx): (3:5)

Proof. We may assume that f (x) ¼ ek(x), where k is continuously differentiable. Adjusting

the normalizing constants if necessary, we can replace � by a compact convex subset �c of

Rn, so that k has bounded derivatives of all orders on �c.
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By the Prékopa–Leindler inequality (1.6), if gs is a function such that

gs(z) � W (z) > k(x) � (1 � s)W (x) � sW (y) (3:6)

holds for some s 2 (0, 1) and all x, y 2 �c with z ¼ (1 � s)xþ sy, then

Z�1

ð
�c

expfgs(x) � W (x)gdx > Z�1

ð
�c

expf(k(x)=(1 � s)) � W (x)gdx

� �1�s

(3:7)

also holds. To satisfy (3.6) for small s . 0, we select

gs(z) ¼ k(z) þ ks(1 � s)c�(z, �=k(z)=k(1 � s)2) þ Æs2, (3:8)

where Æ is to be chosen so that gs satisfies

gs(z) þ ks(1 � s)c(x, y) > k(x), x, y 2 �c; (3:9)

since W is c-convex, (3.9) implies (3.6). By the mean value theorem we have k(z)

¼ k(x) þ h=k(z), z� xi þ hHesskx0
(z� x), z� xi=2 for some x0 between x and z, where the

final term, involving the Hessian of second-order partial derivatives, is O(kz� xk2) ¼ O(s2)

as s ! 0 þ. Here the implied constants in O terms depend upon the diameter of �c and the

supremum on �c of the norm of Hess k; hence they can be chosen uniformly for x, y 2 �c.

So we shall have (3.9) once we verify

ks(1 � s)c� z,
�=k(z)

k(1 � s)2

� �
þ Æs2 > hz� x, �=k(z)i � ks(1 � s)c(x, y)

¼ ks(1 � s) y� z,
�=k(z)

k(1 � s)2

� �
� c(z, y)

� �

þ ks(1 � s)(c(z, y) � c(x, y)): (3:10)

By the mean value theorem there exists x between x and z such that

c(z, y) � c(x, y) ¼ hz� x, =1c(x, y)i, which is of order O(s), and the final term in (3.10)

is O(s2); so we can use the definition (3.1) of c� and take an appropriate Æ in (3.8) to satisfy

(3.9). The implied constants in the O terms depend upon the diameter of �c and the

supremum of k=1c(u, y)k for u between x and z; hence they can be chosen uniformly for

x, y 2 �c.

We return to (3.7) and expand both sides as power series in s, thus obtaining

Z�1

ð
�c

f1 þ ks(1 � s)c�(z, �=k(z)=k(1 � s)2) þ O(s2)gek(z)�W (z) dz

> exp (1 � s)log Z�1

ð
�c

(1 þ sk(x) þ O(s2))ek(x)�W (x)dx

� �� �
: (3:11)

At s ¼ 0, both sides are equal; so the coefficients of s must respect the inequality, and we

deduce
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kZ�1

ð
�c

c�(z, �=k(z)=k)ek(z)�W (z) dz (3:12)

> Z�1

ð
�c

k(x)ek(x)�W (x)dx� Z�1

ð
�c

ek(x)�W (x) dx log Z�1

ð
�c

ek(x)�W (x) dx

� �
,

an expression which is equivalent to (3.5). h

The following results are generalizations of results from Bobkov et al. (2001). The

novelty lies in the wider choice of cost function; in particular, our cost functions need not

be translation-invariant.

Theorem 3.2. Let W, c and � be as in Theorem 3.1. Then � satisfies the transportation

inequality

Tcc(�, �) < k�1 Ent( �j�) (3:13)

for all probability measures � that are absolutely continuous and of finite relative entropy

with respect to �.

Proof. Suppose that f , g : � ! R are continuous and bounded functions such that

g(y) � f (x) < c(x, y) for all x, y 2 �. Then

s((1 � s)kg(y) � W (y)) þ (1 � s)(�sk f (x) � W (x)) < �W ((1 � s)xþ sy) (3:14)

holds for all x, y 2 � and 0 , s , 1 since W is c-convex; hence by the Prékopa–Leindler

inequality (1.6) we haveð
�

e(1�s)k g(x)�W (x) dx=Z

� �s ð
�

e�sk f (x)�W (x) dx=Z

� �1�s

<

ð
�

e�w(x) dx=Z: (3:15)

At s ¼ 0, both sides equal one, so the right derivative of the left-hand side at s ¼ 0 must be

less than or equal to zero, hence

log

ð
�

ek g(x)�W (x) dx=Z

� �
� k
ð
�
f (x)e�w(x) dx=Z < 0: (3:16)

Theorem 63 of Hardy et al. (1952) gives rise to a dual formula for relative entropy,

Ent( �j�) ¼ sup
h

ð
�
h(y)�(dy) :

ð
�

eh(x)�(dx) < 1

� �
, (3:17)

in which we can take, on account of (3.16), the function h(y) ¼ kfg(y) �
Ð
� f (x)�(dx)g and

deduce that

Ent( �j�) > k
ð
�
g(y)�(dy) �

ð
�
f (x)�(dx)

� �
: (3:18)

The required result now follows from the Kantorovich–Rubinstein formula (2.3), where

condition (v) serves as a substitute for compactness. Formulae similar to (3.18) appear in

several papers, including Bobkov and Götze (1999). h
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The dual form of Theorem 3.2 is the following concentration inequality.

Corollary 3.3. Let W, c and � be as in Theorem 3.1, and suppose that ekkxk1 is integrable

with respect to �, where kxk1 ¼
Pn

j¼1jxjj.

(i) Then for any differentiable function g with j@ g=@xjj < L for all x 2 �, the function

QL(g(x)) ¼ inf
y
fLc(x, y) þ g(y) : y 2 �g (3:19)

is finite on � and satisfiesð
�

expfkQL(g(x))=Lg�(dx) < exp k
ð
�
g(y)�(dy)=L

� �
: (3:20)

(ii) If, moreover, g is convex, thenð
�

expf(kg(x)=L) � kc�(x, �=g(x)=L)g�(dx) < exp k
ð
�
g(y)�(dy)=L

� �
: (3:21)

Proof. (i) By the mean value theorem we can write

g(y) þ Lc(x, y) ¼ g(x) � Lfhy� x, �i � c(x, y)g, (3:22)

where � ¼ �=g(x)=L 2 [�1, 1]n, and so QL(g(x)) . �1 by (vi). We observe that kg(x)=L
grows more slowly than kkxk1 as kxk1 ! 1 and hence ek g(x)=L is integrable with respect to

�(dx). Further, QL(g(x)) < g(x). As both sides of (3.20) define increasing functionals of g,

we assume without loss that g is bounded above in the following computation, for one can

then relax the bound with the aid of the monotone convergence theorem. For 0 , t , k=L we

introduce a normalizing constant Z t such that

� t(dx) ¼ Z�1
t exp tQL(g(x)) � t

ð
�
g(y)�(dy)

� �
�(dx) (3:23)

defines a probability measure. The derivative of Z t satisfies

dZ t

dt
¼
ð
�

QL(g(x)) �
ð
�
g d�

� �
exp tQL(g(x)) � t

ð
�
g d�

� �
�(dx)

¼ Z t

ð
�
QL(g(x))� t(dx) �

ð
�
g(y)�(dy)

� �
: (3:24)

We now use the Kantorovich–Rubinstein duality formula (2.3) and (3.19) to deduce that

dZ t

dt
< LZ tTcc(� t, �) (3:25)

and then Theorem 3.2 to obtain

1

Z t

dZ t

dt
<

L

k

ð
�

log
d� t

d�
d� t: (3:26)
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From (3.23) and (3.26) we obtain the differential inequality

1

Z t

dZ t

dt
<

L

k

ð
�

�log Z t þ tQL(g(x)) � t

ð
�
g d�

� �
� t(dx)

¼ � L

k
log Z t þ

Lt

kZ t

dZ t

dt
: (3:27)

It is easy to integrate this differential inequality to obtain

(1 � Lt=k)�1 log Z t � log Z0 < 0: (3:28)

Hence Z t < 1 holds for 0 , t , k=L, since Z0 ¼ 1. Applying Fatou’s lemma, we deduce

(3.20) in the case of t ¼ k=L, as required.

(ii) When g is convex we have, as in (3.22),

QL(g(x)) > g(x) � Lc�(x, �=g(x)=L): (3:29)

Inequality (3.21) is an immediate consequence of (3.20) and (3.29). h

Remarks. (i) The form of QL is suggested by the Hopf–Lax solution of the Hamilton–Jacobi

equation; see Villani (2003, p. 175).

(ii) Marton showed that transportation inequalities may be converted into isoperimetric

inequalities; see Talagrand (1996) or Blower (2001, Theorem 1.5) for details.

4. Logarithmic Sobolev inequality for Plancherel measure

In this section we consider the potential W that gives rise to (1.5), and present the results of

Section 3 in a simple form for the associated Gibbs measure øn. This øn does not satisfy a

logarithmic Sobolev inequality in the classical sense of quadratic cost functions. Whereas

there is interaction between the eigenvalues in the potential (1.1), so øn is not a product

measure, W is nevertheless c-convex, where c is a sum of suitable cost functions in the

various directions.

Lemma 4.1. For � . 0, the potential

W (x) ¼
Xn
j¼1

logˆ(xj) �
X

j,k:1< j,k<n

� log(xj � xk) (4:1)

on ˜n is c-convex with constant k ¼ 1
4
for the cost function

c(x, y) ¼
Xn
j¼1

(xj � yj)
2

xj þ yj
, xj, yj . 0: (4:2)
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Proof. We observe that

W (x) þ W (y) � 2W
xþ y

2

� 	
¼
Xn
j¼1

logˆ(xj) þ logˆ(yj) � 2 logˆ
xj þ yj

2

� �� �

þ
X

j,k:1< j,k<n

� log
(xj � xk þ yj � yk)2

4(xj � xk)(yj � yk)
, (4:3)

where the final sum is positive since xj � xk . 0, yj � yk . 0. To deal with a typical term in

the first sum, we take t ¼ (xj þ yj)=2 and h ¼ (xj � yj)=2, then apply the second mean value

theorem to obtain

logˆ(t þ h) þ logˆ(t � h) � 2 logˆ(t) ¼ h2 d2

dt2
logˆ(t ),

for some t between the positive numbers t � h and t þ h. It follows from Euler’s product

formula (Copson, 1935) that

d

dt
logˆ(t) ¼ �ªþ

X1
k¼1

1

k
� 1

k þ t � 1

� �
(4:4)

and hence

d2

dt2
logˆ(t) ¼

X1
k¼1

1

(k þ t � 1)2
>

1

t
: (4:5)

From (4.3) follows the inequality

W (x) þ W (y) � 2W
xþ y

2

� 	
>

1

2

Xn
j¼1

(xj � yj)
2

xj þ yj
¼ 1

2
c(x, y), (4:6)

and this suffices to prove the result. h

Theorem 4.2. Let øn ¼ Z�1
n e�W (nº) dº be the probability measure on ˜n that has scaled

potential

W (nº) ¼
Xn
j¼1

logˆ(nº j) �
X

j,k :1< j,k<n

� log(º j � ºk): (4:7)

Then any positive and continuously differentiable function f, such that j@ f =@xjj < (n=4) f (x)

for all x 2 ˜n and j ¼ 1, . . . , n, satisfies the logarithmic Sobolev inequalityð
˜ n

f (x)log f (x)

�ð
˜n

f døn

� �
øn(dx) <

8

n

ð
˜n

Xn
j¼1

xj

f (x)

@ f

@xj

� �2

øn(dx): (4:8)

Proof. This is a special case of Theorem 3.1 for the cost function c introduced in Lemma

4.1. The corresponding c� is given by (3.3) and satisfies the simple inequality

c�(x, u) < 2xu2 for x . 0 and �1 < u < 1 in one dimension. On ˜n we have
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c�(x, �) ¼
Xn
j¼1

2xj 1 � (1 � � j)
1=2

n o2

<
Xn
j¼1

2xj� j
2, (4:9)

where � ¼ �4(= f )=(nf ) 2 [�1, 1]n. h

We can also obtain concentration inequalities that have a Gaussian form by simplifying

the dual cost function.

Proposition 4.3. Suppose that g is a continuously differentiable function on ˜n
K , where

˜n
K ¼ ˜n \ [0, K]n. Suppose further that j@ g=@xjj < L and that

Ð
˜ n

K
g(x)øn(dx) ¼ 0. Then

ønfx 2 ˜n
K : jg(x)j > �g < 2 expf��2=(32KL2)g, 0 , � , 4KnL: (4:10)

Proof. For the scaled potential of (4.7) we have k ¼ n=4. For 0 < t < 1 and x 2 ˜n
K there

exists y 2 ˜n
K such that QL(tg(x)) ¼ tg(x) � Lc�(x, �t=g(y)=L), and by (4.9) this gives

QL(t g(x)) > tg(x) � 2L�1 t2
Xn
j¼1

xj





 @ g@xj





2

> t g(x) � 2KLnt2: (4:11)

It follows from Corollary 3.3 thatð
˜ n

K

ekQL( t g(x))=Løn(dx) < 1, (4:12)

and hence from (4.12), as in Chebyshev’s inequality, that

ønfx 2 ˜n
K : g(x) . 2KLnt þ �L=(tk)g < e��, � . 0: (4:13)

When 0 , � , 4KnL we can optimize this inequality by selecting � ¼ �2=(32KL2) and

t ¼ �=(4KnL) , 1. A similar argument works with �g, and we can deduce the required

result (4.10). h

Corollary 4.4. The probability measure øn on ˜n satisfiesð
˜n

exp
(4:21=2 � 5)n

4

Xn
j¼1

xj

 !
øn(dx) < exp

n

4

ð
˜n

Xn
j¼1

xjøn(dx)

 !
: (4:14)

Proof. This is an immediate consequence of Corollary 3.3(ii). By Lemma 1 of Boutet de

Monvel et al. (1995), expfskxk1g is øn-integrable for all s 2 R. h

5. The RSK correspondence and the Vershik distribution

We recall from Fulton (1997) the Robinson–Shensted–Knuth correspondence. There is a

natural bijection between SN and the set of pairs of standard Young tableaux with equal
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shape º ‘ N , so we can form a map � : SN ! �N : 	 $ (P, Q) 7! º(	 ) that induces the

Plancherel measure �N from the Haar measure �N .

We rotate and scale each Young diagram º ‘ N and associate it with the probability

density function

hº(x) ¼ 1

N1=2

Xn
j¼1

º jI[( j�1)N�1=2, jN�1=2](x), (5:1)

where I I stands for the indicator function of a set I .

The mean shape of a Young diagram with N boxes is represented by the probability

density function

pN (x) ¼
ð
SN

hº(	 )(x)�N (d	 ), x 2 [0, 1): (5:2)

Now pN is a decreasing function on [0, 1) for each N , and so by Helly’s selection principle

there exists a subsequence ( pN (k)) such that pN (k)(x) ! p�(x) as N (k) ! 1. In fact, p� is

the probability density function on [0, 2] of the Vershik � distribution, as in Vershik and

Kerov (1977). To describe p�, we transform the usual (x, y) coordinates to � ¼ x� y and

� ¼ xþ y, and introduce

Æ(�) ¼
2

�
1 � �2

4

� �1=2

þ �

�
sin�1 �

2
� j�j

2
, �2 < � < 2;

0, j�j . 2;

8><
>: (5:3)

then �(�) ¼ 2Æ(�) þ j�j or

x ¼ Æ(�) þ �=2 þ j�j=2,

p�(x) ¼ Æ(�) � �=2 þ j�j=2: (5:4)

We now investigate the empirical distribution of the scaled row lengths, as given by the

probability measure

	º ¼
1

n

Xn
j¼1

�º j N�1=2 : (5:5)

Proposition 5.1. Let 	 be the probability measure given by the weak limit of the 	º as

N ! 1, so that 	 is absolutely continuous with probability density function q�.

(i) Then q� is decreasing with

q�(x) ¼ � p9�(x)=2, 0 < x < 2: (5:6)

Further, p�(2 � x) induces q�(x)dx from the uniform distribution on [0, 2], so that

x

2
¼
ð p�(2�x)

0

q�(u)du, 0 < x < 2: (5:7)
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In particular, 	 has mean 1
2
.

(ii) q� has algebraic singularities at 0 and 2 and is asymptotic to

q�(x) �

�

2

3�x

2

� ��1=3

, x ! 0þ,

(2 � x)1=2

2�
, x ! 2�,

8>>><
>>>: (5:8)

in the sense that the ratio of left- and right-hand sides converges to one.

Proof. (i) Suppose that (hºN
) converges to p� in measure as N ! 1 for some sequence

of ºN ‘ N . For any bounded and continuous real function f , we have

(n=(2N 1=2))
Ð
f d	º ¼

Ð 2

0
f (hº(x))dx=2, and hence

n

2N1=2

ð
�N

ð2

0

f (y)	ºN
(dy)�N (dº) ¼ 1

2

ð
�N

ð2

0

f (hºN
(x))dx �N (dº): (5:9)

Taking the limit as N ! 1, we deduce from Vershik and Kerov (1977) thatð2

0

f (y)q�(y)dy ¼
ð2

0

f (y)	 (dy) ¼ 1

2

ð2

0

f ( p�(x))dx, (5:10)

and, in particular, ð2

0

xq�(x)dx ¼ lim
N!1

ð1
0

x	ºN
(dx) ¼ 1

2
: (5:11)

It is evident that p�(x) is convex and decreasing on [0, 2] and that its graph is

symmetrical about the line y ¼ x; the latter fact implies that p�( p�(y)) ¼ y. On setting

x ¼ p�(y) in the right-hand side of (5.10) and using the inverse function theorem, we

obtain (5.6) and the equivalent form (5.7). Thus the density of the limiting distribution of

the row lengths is given by the derivative of the Vershik density.

(ii) In (5.4) we can make the change of variables � ¼ �2 cos
 for 0 < 
 < � so that

x ¼ 2

�
sin
� 2

�

 cos
 ¼ 2

�

1

2!
� 1

3!

� �

3 � 1

4!
� 1

5!

� �

5þ . . .

� �
(5:12)

and from (5.6) we deduce

q�(x) ¼ � 1

2

dp�=d


dx=d

¼ �� 


2

: (5:13)

From these identities the asymptotic expansions follow. h

Remarks. (i) Some similar observations were made in Remark 1.7 of Borodin et al. (2000).

The Wigner semicircle law likewise has a square-root singularity, so (5.8) was to be expected

from the general analogy between eigenvalues of random matrices and random permutations

which is considered by Baik et al. (1999). The density is unbounded at 0 since only a

logarithmic repulsion term prevents the charges from accumulating there.
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(ii) In the next section we shall consider a particular random matrix ensemble for which

the asymptotic eigenvalue distribution has such an equilibrium configuration. The ensemble

in question is an orthogonal ensemble, although similar techniques work for unitary and

symplectic ensembles.

6. Generalized orthogonal ensemble: concentration of measure

Let Ms
n(R) be the space of real symmetric n3 n matrices and Mþ

n (R) the convex open

subset of strictly positive definite matrices. Let X y be the transpose of X 2 Mn(R), let �
denote the trace functional �(X ) ¼ trace(X ) and kXkMn

the usual operator norm. The

Hilbert–Schmidt norm is kXkc2 ¼ �(X yX )1=2. For X 2 Ms
n(R), and v a real function

defined on the spectrum of X , we form v(X ) by functional calculus; in particular, we can

take v(x) ¼ logˆ(xþ 1) and introduce V (X ) ¼ �(v(X )) for X 2 Mþ
n (R).

We can take dX to be the product of the standard Lebesgue measure on the matrix

entries on or above the leading diagonal, and form the probability measure

�n(dX ) ¼ Z�1
n expf�V (nX )gIMþ

n (R)(X )dX (6:1)

for some normalizing constant Zn. By the estimates of Boutet de Monvel et al. (1995), there

exist 0 , c, K , 1 such that �nfX 2 Mþ
n (R) : kXkMn

. Kg < e�cn for all sufficiently

large n; see also Corollary 4.4. We let �(K)
n be the conditional probability measure that arises

from conditioning �n on fX 2 Mþ
n (R) : kXkMn

< Kg for some K . 2. This ensemble is the

matrix analogue of Plancherel measure on the Young diagrams, for reasons which we shall

now explain.

For X 2 Mþ
n (R), there exists a real orthogonal matrix U such that U yXU is the diagonal

matrix Dº with diagonal entries º ¼ (º1 > º2 > . . . > ºn . 0) given by the decreasing list

of eigenvalues with multiplicity. The ensemble �(K)
n (dX ) is invariant under the conjugation

action (X 7! U yXU ) of the orthogonal matrices on Mþ
n (R), hence the term ‘orthogonal

ensemble’. It follows by standard arguments that the eigenvalue map ¸ : X 7! Dº induces

from �(K)
n (dX ) the probability measure

ø(K)
n (dº) ¼ Z�1

n exp �
Xn
j¼1

v(nº j)

( ) Y
j,k:k. j

jº j � ºk jI˜n
K
(º)dº1dº2 . . . dºn (6:2)

on the simplex ˜n
K ¼ fº 2 Rn

þ : K > º1 > º2 > . . . > ºn . 0g, where the factorQ
j,k:k. j(º j � ºk) arises from the Jacobian of the transformation; see Mehta (1991). The

potential resembles (4.1), or (1.1) with ‘ j=n $ º j.

This ensemble is a variant of the generalized orthogonal ensemble, as considered by

Dyson (1962), Mehta and many others. While the potential V (X ) is scaled to V (nX ) in

(6.1), it follows from Stirling’s formula that, as n ! 1,

n logˆ(nxþ 1) � n2x log nx=e � n2 logˆ(xþ 1) þ n2 log n, x > 1;

so, after normalization, the asymptotic properties of the ensemble (6.1) are similar to those of

the generalized orthogonal ensemble of Boutet de Monvel et al. (1995, p. 601) in which the
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potential is scaled to nV (X ) on Ms
n(R). Our main result is a concentration inequality which

improves with increasing dimension. The potential v(x) ¼ logˆ(xþ 1) has v 0(x) ! 0 as

x ! 1, so we need to refine considerably the arguments of Blower (2001, Section 3).

Theorem 6.1. (i) Let F : (Mþ
n (R), c2) ! R be an L-Lipschitz function such thatÐ

Mþ
n (R)F(X )�(K)

n (dX ) ¼ 0. Thenð
Mþ

n (R)

expftF(X )g�(K)
n (dX ) < expf(Knþ 1)L2 t2=n2g, t 2 R: (6:3)

(ii) Let G : (˜n
K , Rn) ! R be an L-Lipschitz function such that

Ð
˜n

K
G(º)ø(K)

n (dº) ¼ 0.

Then ð
˜n

K

expftG(º)gø(K)
n (dº) < expf(Knþ 1)L2 t2=n2g, t 2 R: (6:4)

The proof of Theorem 6.1 depends upon the following non-commutative extension of

Lemma 4.1; the reader may compare (6.5) with (4.2). Guionnet and Zeitouni (2000) prove a

version for general convex functions v. We refer the reader to Horn and Johnson (1991) for

a general characterization of matrix monotone functions.

Lemma 6.2. Let v(x) ¼ logˆ(1 þ x) and V (X ) ¼ �(v(X )). Then:

(i) X 7! v(X ) is operator convex on Mþ
n (R);

(ii) V is a locally uniformly convex function on Mþ
n (R), in the sense that

sV (X ) þ (1 � s)V (Y ) � V (sX þ (1 � s)Y ) >
s(1 � s)

4(K þ 1)
kX � Yk2

c2 , 0 < s < 1, (6:5)

holds whenever X and Y in Mþ
n (R) have operator norm less than or equal to K.

Proof of Lemma 6.2. The proof involves a non-commutative analogue of Lemma 3.3 in the

form of a complicated integral formula which we derive and then simplify.

(i) It follows from Euler’s product formula, as in Copson (1935), that

v(z) ¼ �log(1 þ z) þ
X1
k¼1

(1 þ z)log 1 þ 1

k

� �
� log 1 þ z þ 1

k

� �� �
(6:6)

¼
ð1

1

�1

t
þ 1

t þ z

� �
dt þ

X1
k¼1

(1 þ z)log 1 þ 1

k

� �
þ
ð1

1

�1

t
þ k

kt þ 1 þ z

� �
dt

� �
;

this involves positive combinations of z and (t þ z)�1 for t . 1. Since these are operator

convex functions on (0, 1), we deduce that

sv(X ) þ (1 � s)v(Y ) � v(sX þ (1 � s)Y ) > 0, 0 < s < 1, (6:7)

holds for all matrices with X , Y > 0 in the sense of operators; hence v is operator convex.
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(ii) Let us pause to observe that for A, B 2 Ms
n(R) with A > �I > 0, the trace satisfies

�(ABABA) > �3�(B2) by commutativity.

To establish local uniform convexity of V , we introduce

ł(s) ¼ �f(tI þ sX þ (1 � s)Y )�1g, 0 < s < 1, (6:8)

and use the mean value theorem to obtain the identity

sł(1) þ (1 � s)ł(0) � ł(s) ¼ s(1 � s)

2
ł 0(s)

for some s with 0 , s , 1. One can calculate the derivatives to deduce

s�f(tI þ X )�1g þ (1 � s)�f(tI þ Y )�1g � �f(tI þ sX þ (1 � s)Y )�1g (6:9)

¼ s(1 � s)

2
�f(tI þ Z)�1(X � Y )(tI þ Z)�1(X � Y )(tI þ Z)�1g,

where Z ¼ sX þ (1 � s)Y , and then obtain, from the preceding observation about the trace,

(6:9) >
s(1 � s)

2(1 þ K)3
�f(X � Y )2g, (6:10)

since (tI þ Z)�1 > (t þ K)�1 I .

Consequently, the integral formula (6.6) gives

sV (X ) þ (1 � s)V (Y ) � V (sX þ (1 � s)Y )

¼
ð1

1

(s�f(tI þ X )�1g þ (1 � s)�f(tI þ Y )�1g � �f(tI þ sX þ (1 � s)Y )�1g)dt

þ
X1
k¼1

ð1
1

�
s�f((kt þ 1)I þ X )�1g þ (1 � s)�f((kt þ 1)I þ Y )�1g

� �f((kt þ 1)I þ sX þ (1 � s)Y )�1g
�
k dt

>
s(1 � s)

2

ð1
1

dt

(t þ K)3
þ
X1
k¼1

k dt

(kt þ 1 þ K)3

( )
kX � Yk2

c2 : (6:11)

We evaluate these integrals and obtain

(6:11) >
s(1 � s)

2

1

2(1 þ K)2
þ
X1
k¼1

1

2(k þ 1 þ K)2

( )
kX � Yk2

c2

>
s(1 � s)

4(1 þ K)
kX � Yk2

c2 : (6:12)

h

Proof of Theorem 6.1. (i) The transportation inequality
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Tc2(�, �(K)
n ) <

4(nK þ 1)

n2
Ent(�j�(K)

n ) (6:13)

with cost function k � k2
c2 follows from Lemma 6.2(ii) as in Theorem 3.2, and we gain the

advantageous constant 4(Knþ 1)=n2 in this inequality by scaling X and Y in (6.5). This

transportation inequality implies the concentration inequality (6.3) by the following

argument; similar techniques have been used by Bobkov and Götze (1999).

The required concentration inequalityð
Mþ

n (R)

exp tF(X ) � (Knþ 1)L2 t2

n2

� �
�(K)
n (dX ) < 1 (6:14)

holds for all L-Lipschitz functions F with
Ð

Mþ
n (R)F(X )�(K)

n (dX ) ¼ 0, if and only if

Ent(rj�(K)
n ) > t

ð
Mþ

n (R)

F(X )r(dX ) � (Knþ 1)L2 t2

n2
(t . 0) (6:15)

holds for all such F and all probability measures r that are of finite relative entropy with

respect to �(K)
n . Optimizing over t, we see that the preceding inequality is equivalent to the

inequality

4(Knþ 1)

n2
Ent(rj�(K)

n ) >
1

L2

ð
Mþ

n (R)

F(X )r(dX ) �
ð
Mþ

n (R)

F(X )�(K)
n (dX )

 !2

(6:16)

holding for all L-Lipschitz functions. By the Kantorovich–Rubinstein duality formula, this is

equivalent to the transportation inequality

4(Knþ 1)

n2
Ent(rj�(K)

n ) > Tc1(r, �(K)
n )2

for the cost function k � kc2 . This follows from the quadratic transportation inequality (6.13)

by the Cauchy–Schwarz inequality.

(ii) The eigenvalue map ¸ : (Mþ
n (R), c2) ! (˜n, Rn) induces ø(K)

n from �(K)
n and is

1-Lipschitz by Lidskii’s theorem; see Simon (1979). Hence we can deduce (6.4) from (6.3)

by taking F(X ) ¼ G(¸(X )) and following the proof from Blower (2001, Section 4).

Alternatively, one can argue as in the proofs of Proposition 4.3 and Corollary 3.3. h

Corollary 6.3. Let º j ¼
Ð
˜n

K
º jø(K)

n (dº) be the mean of the jth largest eigenvalue.

(i) Thenð
˜ n

K

exp t2
Xn
j¼1

(º j � º j)
2

( )
ø(K)

n (dº) < expf4t2(K þ n�1)g, t2 < n2=(4(nK þ 1)):

(6:17)

(ii) Moreover, the largest eigenvalue satisfiesð
˜ n

K

expft2n(º1 � º1)2gø(K)
n (dº) < f1 � 4t2(K þ n�1)g1=2, t2 < n=(4(nK þ 1)): (6:18)
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Proof. (i) Let ª(d�) ¼ (2�)�1=2e��2=2d� be the N (0, 1) Gaussian distribution and ª�n be its

n-fold product on Rn. Then we can writeð
˜n

K

exp t2
Xn
j¼1

(º j � º j)
2=2

( )
ø(K)

n (dº)

¼
ð
˜ n

K

ð
Rn

exp t
Xn
j¼1

� j(º j � º j)

( )
ª�n(d�1 . . . d�n)ø

(K)
n (dº): (6:19)

The next step is to interchange the order of integration and bound the resulting integrand byð
˜ n

K

exp t
Xn
j¼1

� j(º j � º j)

( )
ø(K)

n (dº) < exp
(nK þ 1)t2

n2

Xn
j¼1

�2
j

( )
, (6:20)

which follows from (6.4). Hence we haveð
˜ n

K

exp
t2

2

Xn
j¼1

(º j � º j)
2

( )
ø(K)

n (dº) <

ð
R n

exp
(nK þ 1)t2

n2

Xn
j¼1

�2
j

( )
ª�n(d�1 . . . d�n)

¼ 1 � 2t2(nK þ 1)

n2

� ��n=2

: (6:21)

By elementary estimates on n log(1 � x=n) we can deduce the stated result (6.17).

(ii) Inequality (6.18) is proved by a similar but easier argument. h

Remark. The main virtue of inequality (6.17) is the lack of any scaling on the sum on the

left-hand side, while the exponent on the right-hand side improves as n increases.

7. Mean field theory and weak convergence

Let 	 (º)
n ¼ (1=n)

Pn
j¼1�º j

be the empirical eigenvalue distribution, where typically the º j are

random subject to ø(K)
n . We let 	 n be the integrated density of states; that is, the probability

measure defined via F. Riesz’s theorem byð
[0,K]

f (x)	 n(dx) ¼
ð
˜n

K

ð
[0,K]

f (x)	 (º)
n (dx)ø(K)

n (dº) (7:1)

for all continuous f : [0, K] ! R. See Boutet de Monvel et al. (1995) for a general

discussion.

Proposition 7.1. Under the laws ø(K)
n , the empirical distributions of eigenvalues converge

weakly almost surely in the sense thatðK
0

f (x)	 (º)
n (dx) �

ðK
0

f (x)	 n(dx) ! 0, as n ! 1, (7:2)

almost surely with respect to �1
n¼1ø

(K)
n for all continuous real functions f.
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Proof. By the Stone–Weierstrass theorem, it suffices to prove this for an L-Lipschitz function

f . Then

Gn(º) ¼
ð
f d	 (º)

n �
ð
f d	 n

is an (Ln�1=2)-Lipschitz function ˜n
K ! R by the Cauchy–Schwarz inequality; further,Ð

Gn(º)ø(K)
n (dº) ¼ 0 holds by the definition of 	 n.

We deduce from Theorem 6.1(ii) that, for each � . 0,

ø(K)
n fº 2 ˜n

K : jGn(º)j > �g < expf��2n3=(4CL2(Knþ 1))g, n > 1: (7:3)

Since the right-hand side is of rapid decay as n ! 1, it follows from the first Borel–Cantelli

lemma that

(ºn) 2
Y1
n¼1

˜n
K : jGn(ºn)j > � for infinitely many n

( )

has measure zero with respect to �1
n¼1ø

(K)
n . Hence Gn(ºn) ! 0 almost surely as n ! 1.

h

According to the mean-field theory of Johansson (1998) and Boutet de Monvel et al.

(1995), the 	 n are also weakly convergent as n ! 1, and their limit is the measure

q�(x)dx of Section 5. For the sake of completeness, we reproduce some of this material in

the style of transportation theory before presenting new applications. The potential for the

eigenvalue distribution (6.2) is, for some constant Cn,

V (nº) ¼
Xn
j¼1

logˆ(nº j þ 1)
X

1< j,k<n

log(º j � ºk) þ Cn: (7:4)

This we approximate by the mean-field Hamiltonian

Hn(º) ¼
Xn
j¼1

logˆ(nº j þ 1) � n

ðK
0

logjº j � yjqn(y)dy

� �
, (7:5)

where qn is a probability density function on [0, K] that satisfies

qn(x) ¼ Z�1
n exp �vn(x) þ n

ðK
0

logjx� yjqn(y)dy

� �
, x 2 [0, K], (7:6)

with K . 2 and vn(x) ¼ logˆ(nxþ 1) þ snx; here sn ¼ nc1, where c1 is a Lagrange

multiplier. Using convexity in a suitable Hilbert space, Boutet de Monvel et al. (1995) prove

the existence of qn as the unique minimizer of

774 G. Blower



�n(q) ¼ 1

2

ðð
[0,K]2

log
1

jx� yj q(x)q(y)dx dy

þ 1

n
log

ðK
0

exp �vn(x) þ n

ðK
0

logjx� yjq(y)dy

� �
dx=K

� �
(7:7)

amongst probability measures on [0, K] of finite logarithmic energy. The qn converge

pointwise as n ! 1 to a probability density function q� that satisfiesðK
0

logjº� yjq�(y)dy ¼ º log º=e þ c1º� c2, (7:8)

for constants c1 and c2, on the support of q�. Since º log º=e þ c1º� c2 is convex on (0, 1),

the support consists of a single interval as in Boutet de Monvel et al. (1995, p. 592). We can

identify the constant c2 by integrating to obtain

c2 ¼
ðK

0

(x log x=e þ c1x)q�(x)dx�
ðð

[0,K]2

logjx� yjq�(x)q�(y)dx dy: (7:9)

The constant c1 may be adjusted so as to change the value of the mean
Ð
xq�(x)dx. We can

regard q� as a minimizer of the variational problem

inf
q

1

2

ðð
(0,1)2

log
1

jx� yj q(x)q(y)dx dyþ
ð1

0

x log
x

e
q(x)dx

� �
over all probability density functions q on (0, 1) that have finite logarithmic energy and that

are subject to the constraint
Ð1

0
xq(x)dx ¼ c3. On account of Proposition 5.1, we take c3 ¼ 1

2
.

(The similar variational problem considered in Logan and Shepp (1997, p. 213) involves a

different range of integration in the quadratic functional and a different function space.)

The logarithmic interaction of the eigenvalues is so feeble that they decouple in the limit

as n ! 1, in the sense of the following theorem, which expresses quantitatively the weak

factorization of the integrated density of states.

Theorem 7.2. There exists a sequence of product probability measures ~øøn on ˜n
K such thatð

˜n
K

Fn(º)ø(K)
n (dº) �

ð
˜n

K

Fn(º) ~øøn(dº) ! 0, as n ! 1, (7:10)

for all sequences of (Ln�1=2)-Lipschitz functions Fn : ˜n
K ! R and all L with 0 , L , 1.

Proof. We introduce the Hamiltonian

~HHn(º) ¼
Xn
j¼1

vn(º j) � n

ðK
0

logjº j � yjq�(y)dy

� �
(7:11)

which differs from Hn(º) only in that it involves the equilibrium configuration q� instead of

qn and includes the Lagrange multiplier. The corresponding Gibbs probability measure is

~øøn(dº) ¼ ~ZZ�1
n e�

~HHn(º) dº on ˜n
K , where by symmetry
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~ZZn ¼
1

n!

ðK
0

exp �vn(x) þ n

ðK
0

logjx� yjq�(y)dy

� �
dx=K

� �n

: (7:12)

By Stirling’s formula and (7.8), we can write the exponent in (7.12) as

� vn(x) þ n

ðK
0

logjx� yjq�(y)dy

¼ �nc2 � 1
2

log 2�n� 1
2

log x� nx log nþ O((1 þ nx)�1),

as n ! 1, and so we can estimate the integral in (7.12) by usingðK
0

exp(�nx log n)

x1=2
dx ¼ �

n log n

� �1=2

þ O
exp(�Kn log n)

K1=2n log n

� �
, n ! 1:

Hence, we have

log ~ZZn ¼ �n2c2 þ O(n log n) (7:13)

as n ! 1, where c2 is given by (7.9).

Let Fn : ˜n
K ! R be an (Ln�1=2)-Lipschitz function. Then the difference between the

means of Fn with respect to the true and approximate Gibbs measures satisfies




ð
˜n

K

Fn(º)ø(K)
n (dº) �

ð
˜ n

K

Fn(º) ~øøn(dº)





 < Ln�1=2Tc1( ~øøn, ø
(K)
n )

< Ln�1=2fTc2( ~øøn, ø
(K)
n )g1=2 (7:14)

by the Kantorovich–Rubinstein duality formula (2.3) and the Cauchy–Schwarz inequality.

Further, by the transportation inequality (6.6) for the Gibbs measure,

(7:14) <
L

n1=2

4(nK þ 1)

n2
Ent( ~øønjø(K)

n )

� �1=2

: (7:15)

Now ~HHn(º) and V (nº) involve the same logˆ terms, so the relative entropy satisfies

Ent( ~øønjø(K)
n ) ¼

ð
˜ n

K

(log Zn � log ~ZZn þ V (nº) � ~HHn(º)) ~øøn(dº)

¼ log Zn � log ~ZZn �
ð
˜n

K

X
j,k: j,k

logjº j � ºk j ~øøn(dº)

þ
ð
˜ n

K

ðK
0

Xn
j¼1

n logjº j � yjq�(y)dy ~øøn(dº): (7:16)

To control the normalizing constant Zn, we introduce the probability measure Qn(dº)

¼ n!q�(º1) . . . q�(ºn)dº1 . . . dºn on ˜n
K and apply Jensen’s inequality to obtain
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0 < Ent(øK
n jQn) ¼

ð
˜n

K

log
dø(K)

n

dQn

ø(K)
n (dº) (7:17)

¼ �log n!� log Zn �
ð
˜ n

K

V (nº) þ
Xn
j¼1

log q�(º j)

( )
ø(K)

n (dº):

The final sum here is O(n), since Proposition 7.1 givesð
˜ n

K

1

n

Xn
j¼1

log q�(º j)ø
(K)
n (dº) !

ð
q�(x)log q�(x)dx, as n ! 1,

where the latter integral is finite by Proposition 5.1. We have, on substituting (7.13) and

(7.17) into (7.16),

Ent( ~øønjø(K)
n ) (7:18)

< n2

ðK
0

(x log x=e þ c1x)q�(x)dx� n2

ðK
0

ðK
0

logjx� yjq�(x)q�(y)dx dy

� n

ð
˜ n

K

Xn
j¼1

º j log º j=e þ c1º j

 !
ø(K)

n (dº) �
ð
˜ n

K

X
j,k : j,k

logjº j � ºk j ~øøn(dº)

þ
ð
˜ n

K

ðK
0

Xn
j¼1

n logjº j � yjq�(y)dy ~øøn(dº) þ
ð
˜ n

K

X
j,k: j,k

logjº j � ºk jø(K)
n (dº)

þ O(n log n):

First we consider the latest integral. As in classical potential theory, we introduce

�n ¼ sup
º

n

2

� ��1 X
j,k:1< j,k<n

log(º j � ºk) � 1

n

Xn
j¼1

ðK
0

logjº j � yjq�(y)dy : º 2 ˜n
K

( )

(7:19)

and define the Fekete points at stage n to be points (º j) at which the supremum is attained.

Further, we observe that the sequence (�n)
1
n¼1 is decreasing; this follows from a simple

counting argument as in Ransford (1995, p. 153). The atomic probability measures, that

assign mass 1=n to each of the Fekete points at stage n, converge weakly to the equilibrium

distribution q�(x)dx as n ! 1; see Johansson (1998). As in (5.7), one can show that q� is a

continuous function on (0, K] and that there exists Æ , 1 such that xÆq�(x) ! 0 as x ! 0 þ.

Hence
Ð

logjº� yjq�(y)dy is a continuous and subharmonic function of º; so one can follow

the proof from Ransford (1995) to show that �n ! 0 as n ! 1.

Boutet de Monvel et al. (1995, p. 606 (ii)) show that
Ð
º	 n(dº) !

Ð
ºq�(º)dº andÐ

º log (º=e)	 n(dº) !
Ð
º log (º=e)q�(º)dº as n ! 1. Further, they show convergence of

the logarithmic energy
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ðð
[0,K]2

logjs� tjqn(s)qn(t)ds dt !
ðð

[0,K]2

logjs� tjq�(s)q�(t)ds dt

as n ! 1.

Hence the sum in (7.18) is o(n2) as n ! 1. When combined with (7.15), this implies

the limit (7.10). h

For some purposes, it is convenient to relax the ordering assumptions on the eigenvalues.

In terms of the Gibbs measure (6.2), we enlarge the phase space to [0, K]n and renormalize

by dividing by n!. As the potential is symmetrical with respect to permutation of the

º1, . . . , ºn, we shall continue to use the notation ø(K)
n (dº).

Corollary 7.3. Let rn,k be the k-point correlation function of the ensemble ø(K)
n , that is,

n!=(n� k)! times the probability density function of º1, . . . , ºk , where º1, . . . , ºn are the

unordered random eigenvalues subject to ø(K)
n on [0, K]n. Then

(n� k)!

n!

ð
[0,K]n

f (º1, . . . , ºk)rn,k(º1, . . . , ºk)dº1 . . . dºk

!
ð

[0,K] k
f (º1, . . . , ºk)q�(º1) . . . q�(ºk)dº1 . . . dºk (7:20)

as n ! 1 for all continuous functions f : [0, K]k ! R.

Weak convergence of the integrated density of states is the special case k ¼ 1, which

involves linear statistics.

Proof. It suffices to prove this for an L-Lipschitz function f ; further, we may assume that

f (º1, . . . , ºk) is symmetrical with respect to permutation of the variables º1, . . . , ºk . For

each vector º ¼ (º1, . . . , ºn) 2 [0, K]n and each subset Æ of [n] that has k elements, we

introduce the (partial) vector ºÆ ¼ (ºÆ1
, . . . , ºÆ k

). The real function

Fn(º) ¼ (n� k)!k!

n!

X
Æ:Æ�[n],#Æ¼k

f (ºÆ), º 2 [0, K]n, (7:21)

is Lipschitz with constant kLn�1=2, since only about k=n of the sets Æ involve any given

index j 2 [n].

By definition of the k-point function, we haveð
[0,K]n

Fn(º)ø(K)
n (dº) ¼ (n� k)!

n!

ð
[0,K] k

f (º1, . . . , ºk)rn,k(º1, . . . , ºk)dº1 . . . dºk : (7:22)

By Theorem 7.2 and equation (7.6), we can replace the measure in the left-hand side by the

product measure qn(º1) . . . qn(ºn)dº1 . . . dºn and only change the expression by o(1) as

n ! 1. Since qn(º)dº converges weakly to q�(º)dº as n ! 1, the required result

follows. h
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Corollary 7.4. For any continuous function f : [0, K]k ! R that is symmetrical with respect

to permutation of variables, the functions Fn of (7.21) satisfy

1

n
log

ð
[0,K]n

expfnFn(º)gø(K)
n (dº) !

ð
[0,K] k

f (º1, . . . , ºk)q�(º1) . . . q�(ºk)dº1 . . . dºk

(7:23)

as n ! 1.

Proof. It suffices to prove this for L-Lipschitz functions f . As in the preceding proof, Fn is

then (kLn�1=2)-Lipschitz on [0, K]n and hence by Theorem 6.1(ii) satisfiesð
[0,K]n

exp nFn(º) � n

ð
[0,K]n

Fn(�)ø(K)
n (d�)

� �
ø(K)

n (dº) < exp
k2(Knþ 1)L2

n

� �
: (7:24)

Hence we have, for large n,

1

n
log

ð
[0,K] n

exp nFn(º)f gø(K)
n (dº) ¼

ð
[0,K]n

Fn(�)ø(K)
n (d�) þ O(1=n),

which implies the result by (7.20). h

Proposition 7.5. Let X be a random matrix subject to the Gibbs measure �(K)
n .

(i) Then the logarithm of its mean characteristic function satisfies

1

n
log

ð
Mþ

n (R)

det(zI � X )�(K)
n (dX ) !

ðK
0

log(z� x)q�(x)dx (7:25)

as n ! 1, uniformly on compact subsets of E ¼ fz 2 Cn[0, 1) : dist(z, [0, K]) . 6K1=2g.
Here the logarithm on the right-hand side is determined by the choice 0 , arg z , 2�, and
the choice on the left-hand side has arg z n ¼ n arg z.

(ii) Let ª be a simple contour that winds round [0, K], but remains at distance greater

than 6K1=2 from [0, K]. Then �n(z) ¼
Ð

Mþ
n (R) det(zI � X )�(K)

n (dX ) has all its zeros inside ª
for all sufficiently large n.

Proof. (i) Let g be the complex-valued function g(x) ¼ log(z� x) for fixed z 2 Cn[0, 1).

Then g is continuously differentiable on [0, K] with jg9(x)j < L ¼ dist(z, [0, K])�1, so

L2 , 1=(36K) for z 2 E. We let Gn(x) ¼
Pn

j¼1 g(xj) for x ¼ (xj) 2 [0, K]n, and we have real

and imaginary parts

An(x) þ iBn(x) ¼ Gn(x) �
ð

[0,K]n
Gn(y)ø(K)

n (dy),

where An and Bn have Lipschitz constant Ln1=2. The inequality jeAnþiBn � 1j <
eAn jeiBn � 1j þ jeAn � 1j holds by basic facts about complex numbers, and hence the estimate
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ð

[0,K]n
eAnþiBnø(K)

n (dx) � 1






<

ð
[0,K]n

e2An(x)ø(K)
n (dx)

� �1=2 ð
[0,K]n

4 sin2(Bn(x)=2)ø(K)
n (dx)

� �1=2

þ
ð

[0,K]n
e2An(x)ø(K)

n (dx) � 1

� �1=2

(7:26)

follows by the Cauchy–Schwarz inequality. By Theorem 6.1(ii) the final integral satisfies

0 <

ð
[0,K]n

e2An(x)ø(K)
n (dx) � 1 < e4L

2(Knþ1)=n � 1 < e(Knþ1)=9Kn � 1 , 1
4
, (7:27)

for all large n; similar estimates hold for the other integrals in (7.26). Henceð
[0,K]n

expfGn(x)gø(K)
n (dx) ¼ (1 þ 
n)exp

ð
[0,K] n

Gn(x)ø(K)
n (dx)

� �
(7:28)

where j
nj , 1, and, by Corollary 7.3,

1

n

ð
[0,K]n

Gn(x)ø(K)
n (dx) !

ðK
0

log(z� x)q�(x)dx, as n ! 1: (7:29)

Since both factors on the right-hand side of (7.28) are non-zero, we can now take logarithms

with appropriate choices of the argument and deduce that

1

n
log

ð
[0,K] n

expfGn(x)gø(K)
n (dx) !

ðK
0

log(z� x)q�(x)dx, as n ! 1: (7:30)

As the measure ø(K)
n is induced from �(K)

n by the eigenvalue map, this gives the required

result.

(ii) By the argument principle, the number of zeros of �n(z) that lie inside ª equals

1

2�i

ð
ª

�9n(z)

�n(z)
dz ¼ 1

2�i

ð
ª


9n(z)


n(z) þ 1
dzþ

ð
[0,K]n

1

2�i

ð
ª

Xn
j¼1

dz

z� º j

( )
ø(K)

n (dº), (7:31)

where j
nj , 1 on ª by (i). Hence both sides of (7.31) equal n. h

Remarks. (i) I do not know whether uniform convergence occurs in (7.25) for all

z 2 Cn[0, 1). Unlike in the case of the unitary ensemble, where the theory of orthogonal

polynomials applies, one does not know in advance that the left-hand side of (7.25) is

holomorphic on Cn[0, 1). Let us consider the simple random matrix model where

Y ¼ I 2 M2(R) with probability 1
2

and Y ¼ 0 with probability 1
2
. The mean characteristic

polynomial equals (º� 1
2
)2 þ 1

4
, which has complex zeros. This strange possibility seems hard

to eliminate from the context of Proposition 7.5.

(ii) Tracy and Widom (1998) have obtained a determinant formula involving quaternions

for the k-point correlation function of (7.20). For the determinants of random matrices with
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respect to the Gaussian orthogonal ensemble, Delannay and Le Caër (2000) have computed

the Mellin transform of the probability density function. The formulae thus obtained do not

offer a straightforward path to concentration inequalities.
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Delannay, R. and Le Caër, G. (2000) Distribution of the determinant of a random real symmetric

matrix from the Gaussian orthogonal ensemble. Phys. Rev. E (3), 62, 1526–1536.

Deuschel, J.-D. and Zeitouni, O. (1999) On increasing subsequences of i.i.d. samples. Combin. Probab.

Comput., 8, 247–263.

Dyson, F.J. (1962) Statistical theory of the energy levels of complex systems I. J. Math. Phys., 3,

140–156.

Fulton, W.F. (1997) Young Tableaux, London Math. Soc. Stud. Texts 35. Cambridge: Cambridge

University Press.

Gangbo, W. and McCann, R.J. (1996) The geometry of optimal transportation. Acta Math., 177,

113–161.

Guionnet, A. and Zeitouni, O. (2000) Concentration of spectral measure for large matrices. Electron.

Comm. Probab., 5, 119–136.
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