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Let f n,K denote a kernel estimator of a density f in R such that
Ð
R

f p(x)dx , 1 for some p . 2. It

is shown, under quite general conditions on the kernel K and on the window sizes, that the centred

integrated squared deviation of f n,K from its mean, k f n,K � E f n,Kk2
2 � Ek f n,K � E f n,Kk2

2 satisfies a

law of the iterated logarithm (LIL). This is then used to obtain an LIL for the deviation from the true

density, k f n,K � f k2
2 � Ek f n,K � f k2

2. The main tools are the Komlós–Major–Tusnády approximation,

a moderate-deviation result for triangular arrays of weighted chi-square variables adapted from work

by Pinsky, and an exponential inequality due to Giné, Latała and Zinn for degenerate U-statistics

applied in combination with decoupling and maximal inequalities.
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1. Introduction

As far as we know, there are no laws of the iterated logarithm for the integrated pth

absolute deviation of a kernel density estimator from its mean, although central limit

theorems do exist (Bickel and Rosenblatt 1973; Rosenblatt 1975; Nadaraya 1989; Hall

1984; Csörgő and Horváth 1988; Beirlant and Mason 1995; a result due to Mason in

Eggermont and LaRiccia 2001; Giné et al. 2003). This anomaly seems to be due to the fact

that there are serious difficulties both in finding the proper way to block and in deriving

sufficiently precise moderate-deviation results. In this paper we show how these difficulties

can be handled in the case p ¼ 2. In the process, we shall spotlight a number of techniques

that should be of independent interest. Unfortunately, our methods do not extend to other

values of p.

In order to make our aim clear let us now fix some notation and introduce our basic

assumptions. Throughout this paper we shall assume that f is a probability density on the

real line R such that ð
R

f p(x)dx , 1 for some p . 2, (1:1)
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and our kernel K is a measurable function such that

kKkv , 1, kKk1 , 1 and

ð
R

K(x)dx ¼ 1, (1:2)

where k � kv denotes the total variation norm and k � kr, 1 < r < 1, the Lr norm with respect

to Lebesgue measure on R, º. Note that condition (1.2) implies kKkr , 1 for all

1 < r < 1. Further, we shall assume that our window sizes fhng form a sequence of

positive numbers satisfying the conditions

hn & 0, hn � n�� for some � 2 (0, 1
3
), (1:3)

and there exists an increasing sequence of positive constants fºkgk>1 satisfying ºkþ1=ºk ! 1

and log log ºk=log k ! 1, as k ! 1, such that

hn is constant for n 2 [ºk , ºkþ1), k 2 N: (1:4)

(Note that the sequence ºk ¼ exp(k=log(e þ k)) satisfies these conditions.) Without loss of

generality, the numbers ºk can be assumed to be integers, as we argue below. In (1.3) and

elsewhere in this paper, An � Bn means that

0 , lim inf
n

An=Bn < lim sup
n

An=Bn , 1:

Let X , X i, i 2 N, be independent and identically distributed (i.i.d.) random variables with

density f . Then f n,K , the classical density estimator of f , is defined as

f n,K (t) :¼ 1

nhn

Xn

i¼1

K
t � X i

hn

� �
, t 2 R: (1:5)

In this notation we write the integrated squared deviation of a kernel density estimator from

its mean as

k f n,K � E f n,Kk2
2:

We are interested in establishing the law of the iterated logarithm (LIL) for the statistic

J n :¼ k f n,K � E f n,Kk2
2 � Ek f n,K � E f n,Kk2

2: (1:6)

Namely, we shall prove under the conditions on f , K and fhng just stated that, for � 2 . 0

defined in Theorem 5.1 below,

lim sup
n!1

� n
ffiffiffiffiffiffi
hn

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 log log n

p J n ¼ 1, almost surely:

This should be compared to a result of Mason (2003), who establishes under appropriate

conditions that, for some �2 . 0,

lim sup
n!1

�
ffiffiffi
n

p fk f n,Kk2
2 � kE f n,Kk2

2gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�2 log log n

p ¼ 1, a:s:,

which shows not unexpectedly that jJ nj is of strictly smaller order than
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jk f n,Kk2
2 � kE f n,Kk2

2j:

We should mention that, with some abuse of notation, when we write log log n it is

understood to equal 1 if n , ee (alternatively, we could always take n to be larger than or

equal to ee).

Our proof of the LIL just described requires all the hypotheses given above. It would be

particularly interesting to know whether the result also holds assuming only square

integrability of the density f .

The following are the basic steps of our approach to proving our LIL. First, we shall

exploit the fact that the integrated squared deviation is, up to its diagonal term, a

degenerate U -statistic. For such statistics there exists a recent exponential bound of the

right order (up to constants) due to Giné et al. (2000). We shall show how to apply this

inequality effectively to block the original sequence and to reduce the domain of integration

of the statistic. Next, we shall approximate the resulting U -statistic by a Gaussian chaos

random variable via the Komlós–Major–Tusnády (KMT) approximation and then derive a

moderate-deviation result for this random variable. Large-deviation results for Gaussian

chaos of order 2 can be found, for instance, in Ledoux and Talagrand (1991, p. 69), but

they are not completely tailored to our purpose. On the other hand, since our Gaussian

chaos is real and diagonalizes, we shall be able to obtain moderate-deviation bounds,

suitable for our needs, just by adapting an easy method of Pinsky (1969). Finally, after we

have established all the necessary ingredients, we shall complete the proof in the usual way

one establishes an LIL.

To clarify what we have in mind, let us introduce some additional notation. Henceforth

we shall write

K h(t � x) :¼ K
t � x

h

� �
and K h(t � x) :¼ K h(t � x) � EK h(t � X ):

With this notation,

J n ¼ 1

n2 h2
n

Wn(R),

where, for any measurable F � R, we set

Wn(F) :¼
ð

F

Xn

i¼1

K h n
(t � X i)

 !2

dt � E

ð
F

Xn

i¼1

K hn
(t � X i)

 !2

dt

¼
X

1<i 6¼ j<n

ð
F

K h n
(t � X i)K h n

(t � X j)dt þ
Xn

i¼1

ð
F

(K
2

h n
(t � X i) � EK

2

h n
(t � X ))dt

:¼ Un(F) þ Ln(F): (1:7)

We shall assume that the measurable set F satisfies the conditionsð
F

f (t)dt . 0, º(fx þ y : x 2 F, jyj , �g \ F c) ! 0 as � & 0: (1:8)
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Basic to our proofs are asymptotic properties of Wn(F) with the choices F ¼ R,

F ¼ [�M , M] and its complement F ¼ [�M , M]c for M . 0, which all satisfy (1.8).

Note that Un(F) is a canonical (degenerate) U -statistic for the law of X , and that the

diagonal term Ln(F) is a sum of independent random variables. As mentioned above, it is

this special form of J n that makes it treatable for the LIL, at least for us here (and also,

before us, for Hall (1984) and Nadaraya (1989) in connection with the central limit

theorem).

In Section 2 we present some variance computations to be used throughout. In Section 3

we show that the residual random variables that remain from the main part of the statistic

when we restrict the domain of integration or when we subtract W m(R) from Wn(R),

m , n, as required for blocking, are asymptotically negligible. In Section 4 we obtain the

necessary moderate-deviation result for Wn([�M , M]). In Section 5 we state the main

result, which is the LIL for the integrated squared deviation of the density estimator from

its mean, and complete its proof.

From a statistical point of view, the integrated squared deviation of the kernel density

estimator from the true density f , k f n,K � f k2
2, is at least as interesting as its integrated

squared deviation from its mean. We shall make some remarks in Section 6 on how our

results apply to the LIL for

k f n,K � f k2
2 � Ek f n,K � f k2

2: (1:9)

In fact J n constitutes the degenerate U -statistic part of (1.9), which can be written as the sum

of J n and a linear term that often dominates and can be dealt with in the usual way. The

same is true for k f n,Kk2
2 � Ek f n,Kk2

2, as mentioned in Mason (2003).

2. Variance computations

Hall (1984) has similar variance computations to those in this section, but under more

restrictive assumptions that we are able to relax mainly because of the following

observation.

Lemma 2.1. Let j be an integrable function on R and set j�(x) ¼ ��1j(��1x), � . 0: Then,

for all functions g in L p(R), 1 < p , 1,

lim
�&0

kg � j� � gk p ¼ lim
�&0

ð
R

����
ð
R

j(u)(g(x � �u) � g(x))du

����
p

dx

 !1= p

¼ 0: (2:1)

Proof. The generalized Minkowski inequality gives

ð
R

����
ð
R

j(u)(g(x � �u) � g(x))du

����
p

dx

 !1= p
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<

ð
R

ð
R

jj(u)(g(x � �u) � g(x))j pdx

� �1= p

du

¼
ð
R

jj(u)jkg(x � �u) � g(x)k p du,

where the L p norm is with respect to dx. Now, the last integrand is dominated by the

integrable function 2kgk pjj(u)j, and kg(x � �u) � g(x)k p ! 0 as � ! 0 by the L p-

continuity of shifts. Therefore, (2.1) follows by dominated convergence. h

Let us write

Rh(t, s) ¼ h�1

ð
R

[K h(t � x)K h(s � x)] f (x)dx, (2:2)

and define the operator Rh for j 2 L2(F),

Rhj(s) :¼
ð

F

Rh(s, t)j(t)dt: (2:3)

The main object in this section is to prove the following proposition.

Proposition 2.2. Let F satisfy conditions (1.8) and assume kKk1 , 1, kKk2 , 1 and

k f k p , 1 for some p . 2. Then, for any 0 , h < 1,

supfkRhjk2
2 : kjk2 ¼ 1, j 2 L2(F)g < C(K, f , r, p)h1þ1=r, (2:4)

where 1=r þ 2=p ¼ 1 and

C(K, f , r, p) ¼ 2k f k2
pkKkrkKk3

1 þ 2(k f k2
2kKk2

1)2:

Moreover,

lim
h!0

h�1

ð
F 2

R2
h(s, t)ds dt ¼

ð
F

f 2(x)dx

ð
R

ð
R

K(w þ u)K(w)dw

� �2

du: (2:5)

Proof. The proof is a consequence of the following three lemmas.

Lemma 2.3. Inequality (2.4) holds under the hypotheses of Proposition 2.2.

Proof. Let j be a function in L2(F). We have

kRhjk2
2 ¼ h�2

ð
F

ð
F

ð
R

[K h(s � x)K h(t � x)] f (x)j(t)dx dt

� �
2 ds:

¼ h2

ð
F

ð
F

ð
R

K h(s � x)

h

K h(t � x)

h
f (x)dx � �h(s)�h(t)

� �
j(t)dt

� �2

ds,

where
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�h(s) ¼ h�1

ð
R

K
s � x

h

� �
f (x)dx:

The above expression for kRhjk2
2 is less than or equal to

2h2

ð
F

ð
F

ð
R

K h(s � x)

h

Kh(t � x)

h
f (x)dx

� �
j(t)dt

� �2

ds

þ 2h2

ð
F

ð
F

�h(s)�h(t)j(t)dt

� �2

ds:

Now

2h2

ð
F

ð
F

�h(s)�h(t)j(t)dt

� �2

ds ¼ 2h2

ð
F

�2
h(s)ds

ð
F

�h(t)j(t)dt

� �2

< 2h2kjk2
2

ð
R

�2
h(s)ds

� �2

:

By Cauchy–Schwarz,

�2
h(s) < h�1

ð
R

����K s � x

h

� ����� f (x)dx

 !2

< h�1

ð
R

����K s � x

h

� ����� f 2(x)dxkKk1:

Thus, by Fubini, ð
R

�2
h(s)ds < k f k2

2kKk2
1: (2:6)

This gives

2h2kjk2
2

ð
R

�2
h(s)ds

� �2

< 2h2kjk2
2(k f k2

2kKk2
1)2: (2:7)

Next,

2h2

ð
F

ð
F

ð
R

K h(s � x)

h

K h(t � x)

h
f (x)j(t)dx dt

� �2

ds

¼ 2h2

ð
F

ð
R

ð
F

K h(t � x)

h
j(t)dt

� �
f (x)

K h(s � x)

h
dx

� �2

ds,

which, by Cauchy–Schwarz, is bounded from above by

2h2

ð
F

ð
R

ð
F

jK h(t � x)j
h

jj(t)jdt

� �2jK h(s � x)j
h

dx

ð
R

f 2(x)
jK h(s � x)j

h

� �
dx

( )
ds: (2:8)

Since, by Hölder’s inequality with 1=r þ 2=p ¼ 1,
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ð
R

f 2(x)
jK h(s � x)j

h

� �
dx < h1=r�1k f k2

p

ð
R

jK h(s � x)jr

h
dx

� �1=r

¼ h1=r�1k f k2
pkKkr,

the bound in (2.8) is in turn bounded from above by

2h1þ1=rk f k2
pkKkr

ð
F

ð
R

ð
F

jK h(t � x)j
h

jj(t)jdt

� �2jK h(s � x)j
h

dx

( )
ds: (2:9)

Finally we note that, by Fubini,

ð
F

ð
R

ð
F

jK h(t � x)j
h

jj(t)jdt

� �2jK h(s � x)j
h

dx

( )
ds

¼
ð
R

ð
F

jK h(t � x)j
h

jj(t)jdt

� �2

dxkKk1,

which, by Cauchy–Schwarz and then Fubini, is not larger thanð
R

ð
F

jK h(t � x)j
h

j2(t)dt

� �
dxkKk2

1 ¼ kKk3
1kjk

2
2:

Therefore, the bound in (2.9) is dominated by

2h1=rþ1kjk2
2k f k2

pkKkrkKk3
1:

Putting (2.7) together with this bound for (2.9), we obtain

kRhjk2
2 < 2h1=rþ1k f k2

pkKkrkKk3
1kjk

2
2 þ 2h2kjk2

2(k f k2
2kKk2

1)2

< h1=rþ1kjk2
2[2k f k2

pkKkrkKk3
1 þ 2(k f k2

2kKk2
1)2],

that is, inequality (2.4). h

Set

Ch(s, t) :¼ h�1

ð
R

[K h(s � x)K h(t � x)] f (x)dx:

Lemma 2.4.

lim
h!0

h�1

ð
F 2

C2
h(s, t)ds dt ¼

ð
F

f 2(x)dx

ð
R

ð
R

K(w þ u)K(w)dw

� �2

du:

Proof. We obtain

h�1

ð
F 2

C2
h(s, t)ds dt
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¼ h�3

ð
F 2

ð
R

K
s � x

h

� �
K

t � x

h

� �" #
f (x)dx

( )2

ds dt

¼ h�3

ð
F 2

ð
R2

K
s � x

h

� �
K

t � x

h

� �
K

s � y

h

� �
K

t � y

h

� �
f (x) f (y)dx dy

( )
ds dt,

which, by setting y ¼ x � hu, equals

1

h2

ð
F 2

ð
R2

K
s � x

h

� �
K

t � x

h

� �
K

s � x

h
þ u

� �
K

t � x

h
þ u

� �
f (x) f (x � hu)dx du ds dt:

Next, we set z ¼ (s � x)=h and w ¼ (t � x)=h and the above expression becomesð
R2

ð
R

ð
R

K(z)K(w)1h(z, w, x)K(z þ u)K(w þ u) f (x � hu)du

� �
f (x)dx

� �
dz dw,

where

1h(z, w, x) :¼ 1fzh þ x 2 Fg1fwh þ x 2 Fg:

Let us set

Gh(z, w) :¼
ð
R

ð
R

K(z)K(w)1h(z, w, x)K(z þ u)K(w þ u) f (x � hu)du

� �
f (x)dx,

K(z, w) ¼ K(z)K(w)

ð
R

K(z þ u)K(w þ u)du

and

G(z, w) ¼ K(z, w)

ð
F

f 2(x)dx:

It follows from the definitions that

h�1

ð
F 2

C2
h(s, t)ds dt ¼

ð
R2

Gh(z, w)dz dw:

We must now prove that, for all (z, w) 2 R2,

Gh(z, w) ! G(z, w) as h & 0 (2:10)

and

jGh(z, w)j < jK(z)K(w)j k f k2
2kKk2

2: (2:11)

First, we consider (2.10). We have����
ð
R

ð
R

K(z)K(w)K(z þ u)K(w þ u) f (x � hu)du

� �
1h(z, w, x) f (x)dx

�K(z, w)

ð
R

1h(z, w, x) f 2(x)dx

����
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¼
����
ð
R

ð
R

K(z)K(w)K(z þ u)K(w þ u)( f (x � hu) � f (x))du

� �
1h(z, w, x) f (x)dx

����
< jK(z)K(w)j k f k2

ð
R

ð
R

K(z þ u)K(w þ u)( f (x � hu) � f (x))du

� �2

dx

 !1=2

,

which by Lemma 2.1 converges to zero. Now by hypothesis (1.8) on F,ð
R

1h(z, w, x) f 2(x)dx !
ð

F

f 2(x)dx,

and the proof of (2.10) is complete.

Turning now to (2.11), we have that

jGh(z, w)j < jK(z)K(w)j
ð
R

ð
R

jK(z þ u)K(w þ u)j f (x � hu) f (x)dx du

< jK(z)K(w)j
ð
R

jK(z þ u)K(w þ u)j
ð
R

2�1[ f 2(x � hu) þ f 2(x)]dx du

< k f k2
2jK(z)K(w)j

ð
R

jK(z þ u)K(w þ u)jdu

< jK(z)K(w)j k f k2
2kKk2

2:

The lemma now follows from (2.10), (2.11) and the Lebesgue dominated convergence

theorem. h

Lemma 2.5.

lim
h!0

h�1

ð
F 2

Ch(s, t) � Rh(s, t)ð Þ2
ds dt ! 0:

Proof. Note that

Ch(s, t) � Rh(s, t)ð Þ2¼ h2�2
h(s)�2

h(t),

where �h(s) ¼ h�1
Ð
R

K h s � xð Þ f (x)dx has been defined in the proof of Lemma 2.3. Hence,

by inequality (2.6), ð
R2

Ch(s, t) � Rh(s, t)ð Þ2
ds dt < h2k f k4

2kKk4
1:

h

Lemmas 2.4 and 2.5 prove the limit (2.5), thus completing the proof of Proposition 2.2.

h

In particular, coming back to (1.7), we have shown:
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Corollary 2.6. Under the hypotheses of Proposition 2.2,

lim
n!1

1

n2 h3
n

EU 2
n(F) ¼

ð
F

f 2(x)dx

ð
R

ð
R

K(w þ u)K(w)dw

� �2

du, (2:12)

and there exists h0 ¼ h0(F) . 0 such that

E

ð
F

[K h(t � X 1)K h(t � X2)]dt

� �2

< 2h3kKk2
1kKk2

2

ð
F

f 2(x)dx (2:13)

for all 0 , h < h0:

Proof. The limit (2.12) follows from the limit (2.5) by noting that, by Fubini,

E

ð
F

K h(t � X 1)K h(t � X 2)
	 


dt

� �2

¼ h2

ð
F 2

R2
h(s, t)ds dt:

Inequality (2.13) follows from (2.12) because, by Hölder and Fubini,ð
R

ð
R

K(w þ u)K(w)dw

� �2

du

<

ð
R

ð
R

ð
R

K2(w þ u)du

� �1=2 ð
R

K2(s þ u)du

� �1=2

jK(w)kK(s)jdw ds

¼ kKk2
1kKk2

2:

h

We now consider the variance of the linear term Ln in (1.7). We first observe that

var

ð
F

K
2

h(t � X )dt

� �
< 4

ð
F

ð
F

E K2
h(t � X )K2

h(s � X )
	 


ds dt

þ 8

ð
F

ð
F

EK h(t � X )ð Þ2
EK2

h(s � X )

h i
ds dt

þ 4

ð
F

EK h(t � X )ð Þ2
dt

� �2

:

With the change of variables x ¼ x, w ¼ (t � x)=h and z ¼ (s � x)=h, we see that the first

integral on the right-hand side of the last inequality equals

h2

ð
R3

K2(w)K2(z)1h(z, w, x) f (x)
	 


dx dw dz:

By condition (1.8),

lim sup
h!0

ð
R

1h(z, w, x) f (x)dx <

ð
F

f (x)dx
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so that, by Fatou,

lim sup
h!0

ð
R2

K2(w)K2(z)

ð
R

1h(z, w, x) f (x)dx

� �
dw dz < kKk4

2

ð
F

f (x)dx,

where we recall that 1h(z, w, x) ¼ 1fzh þ x 2 Fg1fwh þ x 2 Fg. Hence, for all h small

enough (depending on F),ð
F

ð
F

E K2
h(t � X )K2

h(s � X )
	 


ds dt < 2h2kKk4
2

ð
F

f (x)dx:

By Lemma 2.1, h�1EjK((t � X )=h)j ! kKk1 f (t) and h�1EK2((t � X )=h) ! kKk2
2 f (t) in

Lr(F) for 1 < r < p, in particular for r ¼ 1 and r ¼ 2. This allows us to bound the other

two summands in the above inequality to the effect that, for all h small enough (depending

on F), ð
F

ð
F

EK h(t � X )ð Þ2
EK2

h(s � X )

h i
ds dt < 2h3kKk2

1kKk2
2

ð
F

f 2(t)dt

ð
F

f (x)dx

and ð
F

EK h(t � X )ð Þ2
dt

� �2

< 2h4kKk4
1

ð
F

f 2(x)dx

� �2

:

Thus, these estimates, Corollary 2.6, (1.7) and the fact that hn ! 0 and nhn ! 1, give the

following:

Corollary 2.7. Under the hypotheses of Proposition 2.2, there exists h90 ¼ h90(F) such that

var

ð
F

K
2

h(t � X )dt

� �
< 9h2kKk4

2

ð
F

f (x)dx, (2:14)

for all 0 , h < h0. In particular,

lim
n!1

1

n2 h3
n

EW 2
n(F) ¼

ð
F

f 2(x)dx

ð
R

ð
R

K(w þ u)K(w)dw

� �2

du: (2:15)

We conclude this section with two easy estimates for the supremum norm of the general

summands in U n and Ln that will be useful later on, namely that for all h . 0, x and y, we

have both ����
ð

F

K h(t � x)K h(t � y)
	 


dt

���� < 4hkKk2
2 (2:16)

and ����
ð

F

K
2

h(t � x)dt � E

ð
F

K
2

h(t � X )dt

���� < 8hkKk2
2: (2:17)

These estimates follow easily from the fact that, by Hölder, for all x 2 R,
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ð
R

K
2

h(t � x)dt < 4hkKk2
2: (2:18)

3. Simplifying the problem: restriction of the domain of
integration and blocking

In this section we obtain exponential tail estimates both for Wn(F), F ¼ [�M , M]c, and for

Wn(R) � W n,m(R), 0 < m , n, where

W n,m(R) :¼
ð
R

X
m,i<n

K hn
(t � X i)

 !2

�E
X

m,i<n

K h n
(t � X i)

 !2
2
4

3
5dt: (3:1)

The derivations are similar. To simplify notation, set

H h(x, y) :¼
ð
R

K h(t � x)K h(t � y)
	 


dt, H h,F(x, y) :¼
ð

F

K h(t � x)K h(t � y)
	 


dt,

(3:2)

for all x, y 2 R, h . 0 and any measurable set F � R, and write H n (H n,F) for H hn
(H h n,F).

Then the variables Un and Ln from (1.7) become

U n(F) ¼
X

1<i6¼ j<n

H n,F(X i, X j), Ln(F) ¼
Xn

i¼1

H n,F(X i, X i) � EH n,F(X i, X i)ð Þ: (3:3)

By analogy with the decomposition (1.7), we also have

Wn(R) � W n,m(R) ¼ 2
Xm

i¼1

Xn

j¼mþ1

H n(X i, X j) þ
X

1<i 6¼ j<m

H n(X i, X j)

þ
Xm

i¼1

H n(X i, X i) � EH n(X i, X i)ð Þ, (3:4)

where the first two summands are of U -statistic type and the third is linear (a sum of centred

i.i.d. random variables).

The linear terms in (1.7) and (3.4) are easy to control by Bernstein’s inequality (see de la

Peña and Giné 1999, p. 167), given Corollary 2.7 and the bound (2.17): under the

hypotheses of Proposition 2.2, for all � . 0, n large enough and 0 < m , n,

Pr

����Xm

i¼1

H n(X i, X i) � EH n(X i, X i)ð Þ
���� . �nh3=2

n

( )

< 2 exp � �2 n2 h3
n

18mh2
nkKk4

2 þ
16

3
�nh5=2

n kKk2
2

0
@

1
A: (3:5)
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To obtain useful bounds for the U -statistic type terms, we will use a recent exponential

inequality for canonical U -statistics due to Giné et al. (2000), which we now describe for

the particular case of i.i.d. random variables.

Let Y , Yi, Y
(1)
i , Y

(2)
j , i, j 2 N, be i.i.d. random variables taking values on some

measurable space (S, S), and let hi, j : S 3 S 7! R be bounded canonical random variables

for the law of Y , that is, EY1
hi, j(Y1, Y2) ¼ EY2

hi, j(Y1, Y2) ¼ 0, where EY1
(EY2

) denotes

integration with respect to the variable Y1 (Y2) only. The following theorem is due to Giné

et al. (2000).

Theorem 3.1. There exists a universal constant L , 1 such that, if A, B, C, D are as

defined below, then

Pr

���� X
1<i, j<n

hi, j(Y
(1)
i , Y

(2)
j )

���� > x

( )
< L exp � 1

L
min

x2

C2
,

x

D
,

x2=3

B2=3
,

x1=2

A1=2

� �� �
(3:6)

for all x . 0. Moreover, the same inequality holds for the undecoupled U-statisticP
1<i 6¼ j<n hi, j(Yi, Y j). Here

D ¼ k(hi, j)kL2!L2

:¼ sup E
X

i, j

hi, j(Y
(1)
i , Y

(2)
j ) f i(Y

(1)
i )g j(Y

(2)
j ) : E

X
i

f 2
i (Y

(1)
i ) < 1, E

X
j

g2
j(Y

(2)
j ) < 1

( )
,

C2 ¼
X

i, j

Eh2
i, j(Yi, Y j),

B2 ¼ max
i, j

�����
X

i

Eh2
i, j(Y

(1)
i , y)

�����1,

�����
X

j

Eh2
i, j(x, Y

(2)
j )

�����1
2
4

3
5

and

A ¼ max
i, j

khi, jk1:

As indicated in Giné et al. (2000), but not precisely stated there, inequality (3.6) forP
i 6¼ j<n hi, j(Yi, Y j) follows by decoupling from the inequality for the decoupled statistic by

making hi,i ¼ 0, which does not increase the size of the parameters.

If hi, j ¼ H independently of i and j, then the above parameters simplify a little, and, in

particular,

D ¼ n sup EH(Y1, Y2)l(Y1)g(Y2) : El2(Y1) < 1, Eg2(Y2) < 1
� 


,

and

B2 ¼ n max kEH2(Y , y)k1, kEH2(x, Y )k1
	 


:

We will now apply Theorem 3.1 to hi, j ¼ H h,F,i, j ¼ H h,F . We already have, from Section

2, bounds on the A and C terms of the inequality. For the D term we have:
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Lemma 3.2. Assume f satisfies (1.1) and kKkr , 1 for r ¼ 1 and r ¼ q, where

1=p þ 1=q ¼ 1 with p as in (1.1). Set

D ¼ k(H h,F,i, j)kL2!L2

:¼ n sup E H h,F(X1, X 2)l(X1)g(X 2)½ � : El2(X1) < 1, Eg2(X2) < 1
� 


:

Then

D < nk f k pkK hk1kK hkq < 4nh1þ1=qk f k pkKk1kKkq: (3:7)

Proof. First we note that, as in (2.18), for r > 1 and all x 2 R,

kK hkr
r :¼

ð
R

jK h(t � x)jr dt < 2r�1

ð
R

jK h(t � x)jr dt þ E

ð
R

jK h(t � x)jr dt

� �
¼ 2r hkKkr

r:

(3:8)

The special form of H h,F implies that

D ¼ n sup

ð
F

E K h(t � X )j(X )
� �	 
2

dt : Ej2(X ) < 1

� �
:

Then, if Ej2(X ) < 1,ð
R

[EjK h(t � X )j(X )j]2 dt ¼
ð
R

ð
R

jK h(t � x)j(x)j f (x)dx

� �2

dt

<

ð
R

ð
R

jK h(t � x)j f (x)dx

ð
R

jK h(t � x)jj2(x) f (x)dx

� �
dt

< k f k pkK hkq

ð
R

ð
R

jK h(t � x)jj2(x) f (x)dx dt

< k f k pkK hkqkK hk1:

This inequality, combined with inequality (3.8) for r ¼ 1 and r ¼ q, gives (3.7). h

If p ¼ 2 the above inequality shows that the order of D is at most nh3=2
n , but this is not

enough for our purposes, as we will see later. On the other hand, if k f k1 , 1 then the

bound above gives an order of at most nh2
n for D. Any power of hn larger than 3

2
is useful

below.

Note that since 1 , q , 2 in Lemma 3.2, the right-hand side of inequality (3.7) is finite if

(1.1) holds and kKkr , 1 for r ¼ 1 and r ¼ 2.

As for the B term, since, by (2.16),

EH2
h,F(X , y) ¼ E

ð
F

K h t � Xð ÞK h t � yð Þ
	 


dt

� �2

< 16h2kKk4
2,

we have

734 E. Giné and D.M. Mason



B2 < 16nh2kKk4
2: (3:9)

Gathering together the above bounds (2.16), (3.9), (2.13) and (3.7) respectively for A, B,

C and D, Theorem 3.1 and inequality (3.5), we obtain the following proposition.

Proposition 3.3. Let X i be i.i.d. with density f satisfying condition (1.1) for some p . 2. Let

F be a measurable subset of R satisfying condition (1.8), let K be a measurable kernel such

that kKk1 , 1 and kKk2 , 1, let hn ! 0 and let Wn(F) be defined as in (1.7). Then there

exist a constant k0 (depending only on K) and n0 (depending on F, f , K and fhng) such

that, for all � . 0 and for all n > n0,

PrfjWn(F)j > �nh3=2
n g (3:10)

< k0 exp � 1

k0

min
�2ð

F

f 2(x)dx

,
�

h1=q�1=2
n

, (�2 nhn)1=3, (�nh1=2
n )1=2, �2 nhn, �nh1=2

n

2
64

3
75

0
B@

1
CA,

where q is the conjugate of p. In particular, if the sequence hn satisfies condition (1.3) for

some 0 , � , 1, then, for every � . 0 there exist k0 and n0 as above such that

Pr

����Wn(F)

���� > �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log log n

p
nh3=2

n

( )
< k0 exp � �2 log log n

k0

ð
F

f 2(x)dx

0
B@

1
CA (3:11)

for all n > n0.

Similarly,

Proposition 3.4. Let X i be i.i.d. with density f satisfying condition (1.1) for some p . 2. Let

K be a measurable kernel such that kKk1 , 1 and kKk2 , 1, and let hn ! 0. Then there

exist a constant k0 (depending only on K) and n0 (depending on f , K and fhng) such that,

for all � . 0 and for all n > n0, 0 < m , n,

Pr

���� X
1<i6¼ j<m

H n(X i, X j)

���� > �nh3=2
n

( )
(3:12)

< k0 exp � 1

k0

min
�2 n2

m2
,

�n

mh1=q�1=2
n

,
�2 n2 hn

m

� �1=3

, (�nh1=2
n )1=2

" # !

and
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Pr

����Xm

i¼1

Xn

j¼mþ1

H n(X i, X j)

���� > �nh3=2
n

( )

< k0 exp � 1

k0

min
�2 n2

m(n � m)
,

�nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m(n � m)

p
h1=q�1=2

n

,
�2 n2 hn

m _ (n � m)

 !1=3

, (�nh1=2
n )1=2

2
4

3
5

0
@

1
A:

Proposition 3.4, together with inequality (3.5), covers the three terms in the

decomposition (3.4) of Wn(R) � W n,m(R).

4. Moderate deviations

The object of this section is to derive a moderate-deviation result for Wn([�M , M]). First,

we approximate this statistic by a diagonalizable Gaussian chaos of order 2 as a

consequence of the KMT approximation, and then, essentially following Pinsky (1966), we

derive a moderate-deviation result for the approximating Gaussian chaos.

4.1. Using KMT

Let X , X 1, X 2, . . . , be a sequence of i.i.d. random variables in R with common Lebesgue

density f . For each integer n > 1, let

Fn(t) ¼ n�1
Xn

i¼1

1fX i < tg, �1 , t , 1, (4:1)

denote the empirical distribution function based on X 1, . . . , X n, and

Æn(t) ¼
ffiffiffi
n

p
[Fn(t) � F(t)], �1 , t , 1, (4:2)

be the corresponding empirical process. Komlós et al. (1975) proved the following Brownian

bridge approximation to Æn.

Theorem 4.1. There exists a probability space (�, A, P) with i.i.d. random variables

X 1, X2, . . . , with density f and a sequence of Brownian bridges B1, B2, . . . , such that, for

all n > 1 and x 2 R,

Pr Dn > n�1=2(a log n þ x)
� 


< b exp(�cx), (4:3)

where

Dn ¼ sup
�1, t,1

jÆn(t) � Bn(F(t))j (4:4)

and a, b and c are positive constants that do not depend on n, x or f .

Here we assume that K satisfies conditions (1.2) – in particular, that K is of finite
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variation – and that hn satisfies conditions (1.3). With the notation from the Introduction,

we see by integrating by parts that, for all x 2 R,

En(x) :¼
ffiffiffiffiffiffiffiffi
nhn

p
f n,K (x) � E f n,K (x)½ � ¼

ffiffiffiffiffiffi
n

hn

r ð
R

K
x � t

hn

� �
d Fn(t) � F(t)½ �

¼
ffiffiffiffiffiffi
n

hn

r ð
R

F(t) � Fn(t) � F(x) � Fn(x)ð Þ½ �dK
x � t

hn

� �
:

Thus on the probability space of the KMT theorem we have, uniformly in x 2 R,���� ffiffiffiffiffiffiffiffi
nhn

p
f n,K (x) � E f n,K (x)½ � � h�1=2

n

ð
R

Bn F(x)ð Þ � Bn F(t)ð Þ½ �dK
x � t

hn

� �����
<

2Dnffiffiffiffiffiffi
hn

p kKkv:

Define the Gaussian process

ˆn(x) :¼ �h�1=2
n

ð
R

Bn F(t)ð Þ � Bn F(x)ð Þ½ �dK
x � t

hn

� �

¼ h�1=2
n

ð
R

K
x � t

hn

� �
dBn F(t)ð Þ:

Eventually we will be deriving a moderate-deviation result for

1

nh3=2
n

Wn([�M , M]) ¼ 1ffiffiffiffiffiffi
hn

p
ðM

�M

En(t)ð Þ2�E En(t)ð Þ2
h i

dt

from one for

1ffiffiffiffiffiffi
hn

p
ðM

�M

ˆn(t)ð Þ2�E ˆn(t)ð Þ2
h i

dt:

Therefore we will need to control the size of the following difference:

Dn(M) ¼ 1ffiffiffiffiffiffi
hn

p
����
ðM

�M

[(En(t))2 � E(En(t))2]dt �
ðM

�M

[(ˆn(t))2 � E(ˆn(t))2]dt

����
¼ 1ffiffiffiffiffiffi

hn

p
����
ðM

�M

[(En(t))2 � (ˆn(t))2]dt

����
<

4MkKkv

hn

Dn sup
x

(jEn(x)j þ jˆn(x)j)

<
8MkKk2

v

h3=2
n

Dn(kÆnk1 þ kBnk1), (4:5)

where the last bound follows because, obviously,
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sup
x

(jEn(x)j þ jˆn(x)j) < 2kKkvffiffiffiffiffiffi
hn

p (kÆnk1 þ kBnk1):

The Dvoretzky–Kiefer–Wolfowitz inequalities (see Shorack and Wellner 1986, p. 354),

namely

Pr(kÆnk1 . z) < 2 exp(�2z2) and Pr(kBnk1 . z) < 2 exp(�2z2), z . 0,

together with inequality (4.5) and the KMT inequality (4.3), readily imply the following

proposition.

Proposition 4.2. Assuming K satisfies conditions (1.2) and fhng satisfies conditions (1.3), for

any ª . 0 there exists c . 0 such that

Pr Dn(M) >
c(log n)2

h3=2
n

ffiffiffi
n

p
( )

, n�ª: (4:6)

Regarding the Gaussian process ˆn(x), it is easily checked that Eˆn(x) ¼ 0 for all x and

that

Rn(x, y) ¼ E En(x)En(y)½ � ¼ E ˆn(x)ˆn(y)½ �,

with Rn(x, y) ¼ Rh n
(x, y) defined as in (2.2). Since, by (2.18),

E

ð
F

ˆ2
n(s)ds

� �
¼
ð

F

Rn(s, s)ds < 4kKk2
2 , 1,

it then follows that the Gaussian process ˆn(t) has a version with all its sample paths in

L2(F). The following well-known fact about L2(F)-valued Gaussian processes will be needed

below.

Proposition 4.3. A centred non-degenerate Gaussian process ˆ tð Þ, t 2 F
� 


, for F a Borel

subset of R, with covariance function

R(s, t) ¼ E(ˆ(t)ˆ(s)), s, t 2 F,

has a version with all of its sample paths in L2 Fð Þ if and only if

0 ,

ð
F

R(s, s)ds , 1:

If this is the case, then

0 ,

ð
F 2

R2(s, t)ds dt , 1,

and the spectrum of the operator

Rj(s) ¼
ð

F

R(s, t)j(t)dt, j 2 L2(F),
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consists of a sequence of non-negative eigenvalues º1 > º2 > . . . > 0 in ‘1, corresponding to

eigenvectors e1, e2, . . . , that can be taken to be orthonormal, in which case

R(s, t) ¼
P

iºiei(s)ei(t) in the L2(F 3 F) sense; moreover, for this sequence of eigenvalues

and eigenvectors,

ˆ(t) ¼ d

X1
k¼1

º1=2

k ek(t)Z k ,

ð
F

[(ˆ(t))2 � E(ˆ(t))2]dt ¼
X1
k¼1

ºk(Z2
k � 1),

where Z1, Z2, . . . , are i.i.d. N (0, 1) random variables and

X1
k¼1

ºk ¼
ð

F

R(s, s)ds and
X1
k¼1

º2
k ¼

ð
F 2

R2(s, t)ds dt:

Proof (sketch). The condition
Ð

F
R(s, s)ds ¼

Ð
F

Eˆ2(s)ds , 1 is clearly sufficient for ˆ to

have a version with almost all its sample paths in L2, and it is necessary by the Fernique–

Landau–Shepp integrability theorem (see Fernique 1970). The second condition,Ð
F 2 (Eˆ(s)ˆ(t))2 ds dt , 1, follows from the previous one by Cauchy–Schwarz. Then the

operator R is positive semidefinite Hilbert–Schmidt (actually, trace class) and its spectrum

consists of a sequence of non-negative eigenvalues ºi with orthogonal eigenfunctions ei such

that R(s, t) ¼
P

iºiei(s)ei(t) in the L2 sense (see Dunford and Schwartz 1964, exercises 44

and 56, pp. 1083 and 1087). The rest of the statements are now easily verified. h

As a last step in the derivation of a moderate-deviation result for the statistic J n, we are

thus left with the estimation of the tail probabilities of random variables of the formP1
k¼1ºk Z2

k � 1
� �

, where Z k are i.i.d. N (0, 1) and
P

ºk , 1.

4.2. A modification of a moderate-deviation result of Pinsky (1966)

Let Y , Y1, Y2, . . . , be a sequence of i.i.d. random variables with mean 0, variance 1 and

finite absolute (2 þ �)th moment with 0 , � < 1: Let ºn,1, ºn,2, . . . , be a sequence of

constants indexed by n > 1 such that

jºn,1j > jºn,2j, . . . , for all n > 1, (4:7)

and

0 , ˜2
n :¼

X1
k¼1

º2
n,k , 1, for all n > 1: (4:8)

Set, for each n > 1,
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Sn :¼ 1

˜n

X1
k¼1

ºn,k Yk : (4:9)

The next lemma follows by application of the classical Lindeberg method.

Lemma 4.4. Let g be a function with three bounded continuous derivatives. Then

jEg(Sn) � Eg(Z)j < Ckg�k jºn,1j
˜n

� ��

[EjY j2þ� þ EjZj2þ�],

where Z is a standard normal random variable, kg�k :¼ kg 0k1 þ kg-k1 and C is a

constant that depends only on �.

Proof. Let Z1, Z2, . . . , be a sequence of independent standard normal random variables. Set

º0,1 ¼ Y0 ¼ Z0 ¼ 0: We see that

E[g(Sn) � g(Z)] ¼ Eg
1

˜n

X1
k¼1

ºn,k Yk

 !
� Eg

1

˜n

X1
k¼1

ºn,k Z k

 !

¼
X1
m¼1

Eg Bm,n þ
ºn,mYm

˜n

� �
� Eg Bm,n þ

ºn,m Z m

˜n

� �� �
¼:
X1
m¼1

Am,

where

Bm,n :¼ 1

˜n

Xm�1

k¼0

ºn,k Z k þ
1

˜n

X1
k¼mþ1

ºn,k Yk :

Using the Taylor estimate����g(x þ y) � g(x) � yg9(x) � y2

2
g 0(x)

���� < jyj2þ�kg�k,

we obtain

X1
m¼1

jAmj < kg�k
X1
m¼1

E

���� ºn,mYm

˜n

����
2þ�

þ E

���� ºn,m Z m

˜n

����
2þ�

" #

< kg�k EjY j2þ� þ EjZj2þ�
	 
X1

m¼1

���� ºn,m

˜n

����
2þ�

,

which, since
P1

m¼1º
2
n,m=˜

2
n ¼ 1, is

< kg�k EjY j2þ� þ EjZj2þ�
	 
 jºn,1j

˜n

� ��

:

h

Remark. In Section 6 we will make use of the following fact, whose proof differs only
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formally from the proof of Lemma 4.4. Assume that for each n, Yn, Y1,n, Y2,n, . . . , Yn,n are

i.i.d. random variables with mean 0 and variance 1 such that, for some 0 , � < 1,

M� :¼ sup
n>1

EjYnj2þ� , 1:

Then, setting Sn ¼
Pn

i¼1Yi,n=
ffiffiffi
n

p
, we have, for all n and for any g as in Lemma 4.4,

jEg(Sn) � Eg(Z)j <
Ckg�k M� þ EjZj2þ�

	 

n�=2

,

in the notation of that lemma.

Set, with 0 , � < 1,

bn ¼ jºn,1j
˜n

� ��

: (4:10)

Theorem 4.5. Assume that bn ! 0 as n ! 1: Then, for any sequence an converging to

infinity at the rate a2
n þ log bn ! �1,

exp � a2
n

2
1 þ �ð Þ

� �
< Pr Sn > anð Þ < exp � a2

n

2
1 � �ð Þ

� �
(4:11)

for all 0 , � , 1 and for all n sufficiently large depending on �.

Proof. Let g be any function on R with three bounded continuous derivatives satisfying

g(x) ¼ 0 for x < �1
2
, 0 < g(x) < 1 for x 2 �1

2
, 1

2

� �
, and g(x) ¼ 1 for x > 1

2
: For example, we

could use

g(x) ¼

1 for x > 1
2
,

exp �
1
2
� x

1
2
þ x

 !4
0
@

1
A for x 2 �1

2
, 1

2

� �
,

0 for x < �1
2
:

8>>>>>><
>>>>>>:

We then see that

Eg Sn � an � 1
2

� �
< P Sn > anf g < Eg Sn � an þ 1

2

� �
,

and, applying Lemma 4.4, we obtain that, for some constant C . 0,

Eg Z � an � 1
2

� �
� Cbn < Pr Sn > anf g < Eg Z � an þ 1

2

� �
þ Cbn,

from which we readily obtain

PrfZ > an þ 1g � Cbn < Pr Sn > anf g < PrfZ > an � 1g þ Cbn:

Now �log PrfZ > an � 1g ¼ 1
2
a2

n 1 þ o(1)ð Þ and by assumption bn=PfZ > an � 1g ! 0:
The proof is thus complete. h
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We are interested in the following special case of Theorem 4.5. Set, for each n > 1,

Vn :¼ 1ffiffiffi
2

p
˜n

X1
k¼1

ºn,k Z2
k � 1

� �
: (4:12)

Corollary 4.6. Assume that bn ! 0 as n ! 1: Then, for any sequence an converging to

infinity at the rate a2
n þ log bn ! �1,

exp � a2
n

2
1 þ �ð Þ

� �
< Pr �Vn > anf g < exp � a2

n

2
1 � �ð Þ

� �
(4:13)

for all 0 , � , 1 and for all n sufficiently large depending on �:

Applying Proposition 4.3 to the Gaussian process ˆn(x) : x 2 [�M , M]f g, where M . 0,

we obtain that ðM

�M

[(ˆn(t))2 � E(ˆn(t))2]dt ¼
X1
k¼1

ºn,k(Z2
k � 1),

where ºn,1 > ºn,2 > . . . > 0 are the eigenvalues of the operator Rhn
on L2 [�M , M]ð Þ

defined by Rh n
: We recall that, by Proposition 2.2,

sup kR2
hjk

2
2 : kjk2 ¼ 1, j 2 L2([�M , M])

n o
< C(K, f , r, p)h1þ1=r,

where p is given by condition (1.1), the constant is finite and r ¼ r( p) . 0, which implies

that for all large enough n,

ºn,1 < C1=2(K, f , r, p)h1=2þ1=(2r):

Moreover, by Propositions 2.2 and 4.3,

lim
n!1

1

hn

E

ðM

�M

(ˆn(t))2 � E(ˆn(t))2
	 


dt

" #2

¼ lim
n!1

2

hn

X1
k¼1

º2
n,k

¼ lim
n!1

2

hn

ðM

�M

ðM

�M

R2
n(s, t)ds dt

¼ 2

ðM

�M

f 2(x)dx

ð
R

ð
R

K(w þ u)K(w)dw

� �2

du

¼: � 2(M):

Set

Vn(M) :¼ 1ffiffiffiffiffiffi
hn

p
� (M)

ðM

�M

[(ˆn(t))2 � E(ˆn(t))2]dt: (4:14)

Since
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ºn,1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
X1
k¼1

º2
n,k

s <
C1=2(K, f , r, p)h1=2þ1=(2r)

nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
X1
k¼1

º2
n,k

s � h1=(2r)
n ! 0,

we can apply Corollary 4.6 to conclude that whenever an converges to infinity at the rate

a2
n þ log bn ! �1,

exp � a2
n

2
1 þ �ð Þ

� �
< Pr �Vn(M) > anf g < exp � a2

n

2
1 � �ð Þ

� �
, (4:15)

for all 0 , � , 1 and for all n sufficiently large depending on �:
If hn satisfies condition (1.3) then bn is dominated by a constant times h1=(2r)

n � n��=(2r)

and we can obviously take an ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log log n

p
. Since, for this an,

lim
n!1

an

c(log n)2=(nh3
n)1=2

¼ 1,

Proposition 4.2 together with inequality (4.15) (that is, the moderate-deviation result for the

Gaussian chaos) immediately give the following proposition.

Proposition 4.7. Let an ¼ C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log log n

p
, with 0 , C , 1. Assuming K satisfies conditions

(1.2), that fhng satisfies conditions (1.3), and that f satisfies condition (1.1) andÐ M

�M
f 2(x)dx . 0, we have

exp � a2
n

2
1 þ �ð Þ

� �
� 1

n2
< Pr � 1

� (M)nh3=2
n

Wn([�M , M]) > an

( )

< exp � a2
n

2
1 � �ð Þ

� �
þ 1

n2
(4:16)

for all 0 , � , 1 and for all n sufficiently large depending on �:

Define

� 2 :¼ � 2(1) ¼ 2

ð
R

f 2(x)dx

ð
R

ð
R

K(w þ u)K(w)dw

� �2

du: (4:17)

Since � (M) ! � as M ! 1, we will be able to replace � (M) by � in (4.16) for M large

enough.

5. The LIL for the second moment of the deviation of a kernel
density estimator with respect to its mean

We now present the main result of this paper.

Theorem 5.1. Let f , K and fhng satisfy hypotheses (1.1)–(1.4), and set
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J n :¼ k f n,K � E f n,Kk2
2 � Ek f n,K � E f n,Kk2

2

as in (1.6). Set � 2 :¼ 2k f k2
2

Ð
R

Ð
R

K(w þ u)K(w)dw
� �2

du as in (4.17). Then,

lim sup
n!1

� n
ffiffiffiffiffiffi
hn

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 log log n

p J n ¼ 1, a:s: (5:1)

Proof. We decompose the proof into three parts.

(i) The lower bound. We begin by observing that the random variable

lim sup
n

Wn(R)

� nh3=2
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log log n

p

is measurable with respect to the tail � -algebra of the sequence fX ig. This follows from the

fact that, by Proposition 3.4 and inequality (3.5), given m , 1, there exist � . 0 and

k0 , 1 such that, for all � . 0 and all n large enough,

PrfjWn(R) � W n,m(R)j > �� nh3=2
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log log n

p
g < k0 exp � �2 n�

k0

� �
, (5:2)

and therefore, for every finite m, jWn(R) � W n,m(R)j= � nh3=2
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log log n

p� �
! 0 a.s. Note

that W n,m does not depend on X 1, . . . , X m. This observation applies as well if we replace Wn

by jWnj or by �Wn.

The object here is to prove the lower bound for the LIL, that is, that

lim sup
n

Wn(R)

� nh3=2
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log log n

p > 1 a:s: (5:3)

(The same proof applies to �Wn, hence also to jWnj.) If (5.3) is not true then, by the

previous observation, there exists c , 1 such that

lim sup
n

Wn(R)

� nh3=2
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log log n

p ¼ c a:s: (5:4)

Now let rk ¼ k k . Then

lim sup
k

W rk
(R)

� rk h3=2
rk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log log rk

p ¼ c9 < c a:s:, (5:49)

and, by the argument used in the proof of (5.2), the same is true of W rk ,rk�1
, so that, by

independence and Borel–Cantelli, there exists c 0 , 1 such thatX
k

PrfW rk ,rk�1
(R) > c 0� rk h3=2

rr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log log rk

p
g , 1: (5:5)

If we set mk ¼ rk � rk�1, and define W 9mk
just as W mk

but with hmk
replaced by hrk

, then

W mk
has the same distribution as W rk ,rk�1

, and since mk=rk ! 1, it follows from (5.5) that,

with c- , 1,
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X
k

Pr W m k
(R) > c-� mk h3=2

r k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log log mk

pn o
, 1: (5:59)

On the other hand, for any � . 0, in particular for some 0 , C :¼ c-(1 þ �) , 1, and for

any M . 0,

Pr W 9mk
(R) > c-� mk h3=2

r k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log log mk

pn o
> Pr W 9mk

([�M , M]) > C� mk h3=2
r k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log log mk

pn o
�PrfjW 9mk

([�M , M]c)j > �c-� mk h3=2
r k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log log mk

p
g: (5:6)

Since
Ð

[�M ,M]c f 2(x)dx ! 0 as M ! 1, it follows from inequality (3.11) in Proposition 3.3

that there exists M0 , 1 such that, for all M . M0,X
k

Pr W 9mk
([�M , M]c) > �c-� mk h3=2

r k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log log mk

pn o
, 1: (5:7)

Now let � . 0 be such that b :¼ C2(1 þ �)3 , 1 and let M . M0 be such that

�=� (M) , 1 þ �. Then, the left-hand side of (4.16) in Proposition 4.7 gives that, for all k

large enough,

Pr W 9mk
([�M , M]) > C� mk h3=2

r k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log log mk

pn o
> exp �b log log mkð Þ � 1

m2
k

,

and the right-hand side of this inequality is the general term of a divergent series, that is,X
k

Pr W mk
([�M , M]) > C� mk h3=2

r k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log log mk

pn o
¼ 1: (5:8)

Combining (5.6)–(5.8) givesX
k

Pr W m k
(R) > c-� mk h3=2

r k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log log mk

pn o
¼ 1,

which contradicts (5.59), therefore proving inequality (5.3).

(ii) Blocking for the upper bound. Let fºkg be the sequence specified by condition (1.4).

Replacing ºk by nk :¼ minfn 2 N : n > ºkg produces a sequence of natural numbers with

the same properties as the original sequence fºkg except for strict monotonicity; however,

fnkg is non-decreasing and eventually strictly monotone, that is, there is k0 2 N such that

fnkg is strictly monotone on [k0, 1). So, without loss of generality we assume that there

exists a non-increasing sequence fnkg of natural numbers, strictly increasing on [k0, 1),

k0 , 1, such that nkþ1=nk ! 1 and log log nk=log k ! 1, as k ! 1, and that the

sequence fhng satisfies the following condition:

hn is constant for n 2 [nk , nkþ1), k 2 N: (1:49)

For each k 2 N, let I k be the blocks

I k :¼ [nk , nkþ1) \N,
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and notice that, by (1.49), hn, as a function of n, is constant on I k for all k. Also, I k 6¼ ˘ for

k > k0. In order to prove the upper bound for the LIL, that is,

lim sup
n

jWn(R)j
� nh3=2

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log log n

p < 1 a:s:, (5:9)

it clearly suffices to prove that, for every � . 0,X
k>k0

Pr max
n2 I k

jWn(R)j . (1 þ �)� nk h3=2
n k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log log nk

p� �
, 1: (5:10)

Here we prove the following lemma.

Lemma 5.2. Under the hypotheses of Theorem 5.1,X
k>k0

Pr max
n2 I k

jWn(R) � W n k
(R)j . �� nkh3=2

n k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log log nk

p� �
, 1 (5:11)

for every � . 0.

This lemma clearly reduces proving (5.10) to showing thatX
k>k0

Pr jW nk
(R)j . (1 þ �)� nk h3=2

nk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log log nk

pn o
, 1 (5:12)

for every � . 0.

Proof of Lemma 5.2. For n 2 I k, k > k0, we have

Wn(R) � W n k
(R) ¼ 2

Xn

j¼n kþ1

Xn k

i¼1

H nk
(X i, X j) þ W n,nk

(R), (5:13)

and here we are making use of (1.49). Conditionally on X 1, . . . , X n k
, the random variablesPnk

i¼1 H nk
(X i, X j), j ¼ nk þ 1, . . . , nkþ1 � 1, are i.i.d. and therefore, by Montgomery-

Smith’s maximal inequality (Montgomery-Smith 1993; see for example, de la Peña and Giné

1999, p. 6), we have

Pr max
n2 I k

���� Xn

j¼nkþ1

Xn k

i¼1

H n k
(X i, X j)

���� . t

( )
< 9 Pr

���� X
n kþ1�1

j¼n kþ1

Xn k

i¼1

H n k
(X i, X j)

���� . t

30

8<
:

9=
; (5:14)

for all t . 0. Let us now consider the second summand in (5.13),

W n,n k
(R) ¼

X
nk,i 6¼ j<n

H nk
(X i, X j) þ

Xn

i¼nkþ1

H n k
(X i, X i) � EH nk

(X i, X i)ð Þ

:¼ Un,nk
þ Ln,n k

:

On the way to proving (5.11) we must eliminate the maximum from probabilities of the form
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Prfmaxn2 I k
jUn,nk

j . tg. This can be achieved by decoupling, adding the diagonal, and then

applying Montgomery-Smith’s maximal inequality twice (iteratively). Typically one decouples

norms of Banach space valued U -statistics (perhaps with varying kernels), so we must show

that maxn2 I k
jU n,n k

j is such a norm. Proceeding as in de la Peña and Giné 1999, p. 108 we set

~HH n k ,r :¼ 0, . . . ,r � 1 0, H n k
, . . . , H n k

� �
2 Rn kþ1�1,

meaning that the first r � 1 coordinates are zero and the remaining ones up to nkþ1 � 1 are

H n k
. We consider ~HH nk ,r as a function with values in ‘1n kþ1�1, that is, in Rnkþ1�1 with norm the

maximum of the absolute values of the coordinates, k(a1, . . . , an kþ1�1)k ¼ maxjaij. With this

notation, it is easy to see that

max
n2 I k

jU n,n k
j ¼

�����
X

nk,i 6¼ j<n kþ1�1

~HH nk ,i_ j

�����:
Then, by direct application of the decoupling result of de la Peña and Montgomery-Smith

(1994) (see de la Peña and Giné 1999, pp. 125–126) to this norm of a generalized vector-

valued U -statistic, we obtain that there exists a universal constant C such that, for all t . 0,

Pr max
n2 I k

jU n,n k
j . t

� �
< C Pr max

n2 I k

jUdec
n,nk

j . t

C

� �
,

where

U dec
n,n k

¼
X

n k,i 6¼ j<n

H nk
(X

(1)
i , X

(2)
j ),

with the random variables X
(1)
i and X

(2)
j , i, j 2 N, being i.i.d. copies of X 1. This is not

directly treatable by Montgomery-Smith’s maximal inequality, which requires i.i.d. random

variables, but adding the diagonal (which we can subtract later), we have

Pr max
n2 I k

���� X
nk,i, j<n

H n k
(X

(1)
i , X

(2)
j )

���� . t

( )

< Pr(2)Pr(1) max
n2 I k

max
m2 I k

���� Xn

i¼nkþ1

Xm

j¼n kþ1

H n k
(X

(1)
i , X

(2)
j )

 !���� . t

( )

< 9 Pr(2)Pr(1) max
m2 I k

���� X
nkþ1�1

i¼n kþ1

Xm

j¼nkþ1

H n k
(X

(1)
i , X

(2)
j )

 !���� . t

30

8<
:

9=
;

¼ 9 Pr(1)Pr(2) max
m2 I k

���� Xm

j¼nkþ1

Xnkþ1�1

i¼n kþ1

Hnk
(X

(1)
i , X

(2)
j )

0
@

1
A���� . t

30

8<
:

9=
;

< 81 Pr

���� X
n kþ1�1

j¼nkþ1

Xn kþ1�1

i¼n kþ1

H nk
(X

(1)
i , X

(2)
j )

���� . t

900

8<
:

9=
;,
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where Pr(1) and Pr(2) refer to conditional probabilities given respectively the X (2) and the X (1)

variables. In the second inequality we have applied the Montgomery-Smith maximal

inequality to the ‘1 norms of the successive sums of vectors (
Pm

j¼nkþ1 H n k
(X

(1)
i ,

X
(2)
j ) : m 2 I n k

), which are i.i.d. conditionally on the X (2) variables, and, in the last

inequality, to the absolute values of the successive sums of random variablesPnkþ1�1
i¼n kþ1 H n k

(X
(1)
i , X

(2)
j ), which are i.i.d. conditionally on the X (1) variables.

Using the previous bound, adding and subtracting the diagonal to the U -statistics Un,n k
,

and aplying Montgomery-Smith to the resulting sums of i.i.d. random variables and to

Ln,n k
, we finally obtain that, for all t . 0,

Pr max
n2 I k

jW n,n k
(R)j . t

� �
< C Pr max

n2 I k

jU dec
n,n k

j . t

2C

� �
þ Pr max

n2 I k

jLn,nk
j . t

2

� �

< C Pr max
n2 I k

���� X
n k,i, j<n

H nk
(X

(1)
i , X

(2)
j )

���� . t

4C

( )

þ C Pr max
n2 I k

���� X
nk,i<n

H n k
(X

(1)
i , X

(2)
i )

���� . t

4C

( )

þ Pr max
n2 I k

jLn,n k
j . t

2

� �

< 81C Pr

���� X
nk,i, j,n kþ1

H n k
(X

(1)
i , X

(2)
j )

���� . t

3600C

( )

þ 9C Pr

���� X
n k,i,nkþ1

H nk
(X

(1)
i , X

(2)
i )

���� . t

120C

( )
(5:15)

þ 9C Pr

���� X
n k,i,nkþ1

H n k
(X i, X i) � EH nk

(X i, X i)ð Þ
���� . t

60C

( )
:

So, by (5.13)–(5.15), the proof of Lemma 5.2 reduces to showing that, for every � . 0,

we have

X
k>k0

Pr

���� X
n kþ1�1

j¼nkþ1

Xn k

i¼1

H n k
(X i, X j)

���� . �� nk h3=2
n k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log log nk

p8<
:

9=
; , 1, (5:16)

X
k>k0

Pr

���� X
nk,i, j,n kþ1

H nk
(X

(1)
i , X

(2)
j )

���� . �� nk h3=2
nk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log log nk

p( )
, 1, (5:17)

X
k>k0

Pr

���� X
nk,i,n kþ1

H n k
(X

(1)
i , X

(2)
i )

���� . �� nk h3=2
n k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log log nk

p( )
, 1 (5:18)
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and

X
k>k0

Pr

���� X
n k,i,n kþ1

H nk
(X i, X i) � EH nk

(X i, X i)ð Þ
���� . �� nk h3=2

n k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log log nk

p( )
, 1:

(5:19)

By (3.5), the general term of the series in (5.19) is dominated from some k on by

exp(�cnk hn k
) for some c . 0, which is the general term of a convergent series. Likewise, by

Bernstein’s inequality and the variance estimate (2.13), the general term of the series (5.18) is

eventually dominated by exp (�cnk h1=2
n k

) for some c . 0, which is also the general term of a

convergent series. Proposition 3.4 will take care of (5.16) and (5.17). For instance, if we look

at the four quantities in the exponent on the right-hand side of inequality (3.13) in the present

case of (5.16), we see that the first term is of the order of a constant times

nk

nkþ1 � nk

log log nk 	 M k log k

for some sequence M k ! 1 as k ! 1, and the other three terms are of the order of

positive powers of nk . So we can take k large enough to overwhelm the constant (which may

be large, depending on �) and obtain that, given � . 0, from some k on,

Pr

���� X
nkþ1�1

j¼n kþ1

Xnk

i¼1

H nk
(X i, X j)

���� . �� nk h3=2
nk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log log nk

p8<
:

9=
; <

C

k2
,

proving (5.18). The same argument, this time based on (3.12), proves (5.17). h

(iii) The upper bound. By parts (i) and (ii) of this proof, Theorem 5.1 will be proved if

we show that the series in (5.12) converges for all � . 0, as mentioned above. For M . 0,

Pr jW n k
(R)j . (1 þ �)� nk h3=2

n k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log log nk

pn o
< Pr jW n k

([�M , M])j . 1 þ �

2

� �
� nk h3=2

nk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log log nk

p� �

þ Pr jW nk
([�M , M]c)j . �

2
� nk h3=2

n k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log log nk

p� �
(5:20)

Given � . 0, since k f k2 , 1, there is M1 , 1 such thatð
[�M ,M]c

f 2(x)dx ,
�2� 2

4k0

for all M > M1, where k0 is the constant in inequality (3.11), which gives, by Proposition

3.3, that

Pr jW nk
([�M , M]c)j . �

2
� nkh3=2

n k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log log nk

p� �
< k0 exp �2 log log nkð Þ,

from some k on, and this is the general term of a convergent series. As for the first series in
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(5.20), if we choose � . 0 such that (1 þ �=2)2(1 � �) ¼ ª . 1, then the right-hand side of

inequality (4.16) in Proposition 4.7 for

ank
¼ 1 þ �

2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log log nk

p
< 1 þ �

2

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log log nk

p

� (M)
,

gives that, from some k on,

Pr jW n k
([�M , M])j . 1 þ �

2

� �
� nk h3=2

n k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log log nk

p� �
<

1

n2
k

þ exp �ª log log nkð Þ,

which is the general term of a convergent series. Combining the last two estimates with

(5.20) gives that, for every � . 0,X
k

Pr jW n k
(R)j . (1 þ �)� nk h3=2

n k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log log nk

pn o
, 1,

that is, (5.12). Together with Lemma 5.2, this proves the upper part of the LIL and inequality

(5.9). Taken together with the proof of the lower bound in (i), this means that the proof of the

theorem is complete. h

6. Remarks on the LIL for the integrated squared deviation of
a kernel density estimator from the true density

The integrated squared deviation of f n,K from f , defined as

I n ¼
ð
R

f n,K (t) � f (t)ð Þ2 dt, (6:1)

constitutes a measure of global performance for the estimator f n,K of f . It is not our aim

here to study this statistic; however, Theorem 5.1 may be seen as the main step in the

derivation of an LIL for I n, and it turns out that it is the only step with interesting difficulties

(the rest is more or less routine, except for the case hn � n�1=5). In this section we describe

how to apply Theorems 5.1 and 4.5 to derive such an LIL. We will not try to do so under best

conditions, but only under the ‘stated conditions’ of Hall (1984) for the central limit theorem,

and then we will only obtain an approximate result for hn � n�1=5. Most details will be left

to the reader.

Consider the following decomposition obtained from I n by adding and subtracting

E f n,K (t) inside the square in (6.2):

I n � EI n ¼ J n þ
2

nhn

ð
R

E f n,K (t) � f (t)ð Þ
Xn

i¼1

K h n
(t � X i)dt: (6:2)

Theorem 5.1 applies to J n. For the second term on the right of (6.2), assuming (1.2) and

K > 0,

ð
R

xK(x)dx ¼ 0,

ð
R

x2 K(x)dx :¼ 2k , 1 (6:3)
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for K and that

f , f 9, and f 0 are bounded and uniformly continuous on R (6:4)

for f (these are Hall’s ‘stated conditions’), Lemma 1 from Hall (1984) shows that

E

ð
R

E f n,K (t) � f (t)ð ÞK h n
(t � X i)dt

� �2

’ h6
n k2v2,

where

v2 :¼
ð
R

f 0(x)ð Þ2
f (x)dx �

ð
R

f 0(x) f (x)dx

� �2

(6:5)

and k is defined in (6.3), and that the fourth moments of these random variables are O h12
n

� �
.

Hence, by the remark following Lemma 4.4, we can apply Theorem 4.5 to

Sn :¼ 1ffiffiffi
n

p
Xn

i¼1

ð
R

E f n,K (t) � f (t)ð ÞK hn
(t � X i)dt

h3
n kv

with bn � n�1=2, an ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log log n

p
and all n large enough. Now, given the moderate-

deviation inequality (4.11) for Sn, we can proceed in a standard way (as, given (1.4), blocking

for these sums of independent random variables offers no problems) to obtain

lim sup
n

ffiffiffi
n

p

2kvh2
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log log n

p
���� 2

nhn

ð
R

E f n,K (t) � f (t)ð Þ
Xn

i¼1

K h n
(t � X i)dt

���� ¼ 1 a:s: (6:6)

Theorem 5.1 and the limit (6.6) then give the following proposition.

Proposition 6.1. Assume (1.3) and (1.4) for fhng, (1.2) and (6.3) for K and (6.4) for f . Then

lim sup
n

n
ffiffiffiffiffiffi
hn

p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log log n

p jI n � EI nj ¼ 1 a:s: if hn � 1

n�
and

1

5
, � ,

1

3
,

lim sup
n

ffiffiffi
n

p

2kvh2
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log log n

p jI n � EI nj ¼ 1 a:s: if hn � 1

n�
and 0 , � ,

1

5
,

and there exists C , 1 such that

lim sup
n

n9=10ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log log n

p
����I n � EI n

���� ¼ C a:s: if hn � 1

n1=5
:
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