
Random scale perturbation of an AR(1)

process and its properties as a nonlinear

explicit filter

VALENT INE GENON-CATALOT 1 and MATHIEU KESSLER2

1Laboratoire MAP 5 (FRE-CNRS 2428), UFR de Mathématiques et Informatique, Université
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We study the properties of a nonlinear model of filtering in discrete time which leads to explicit

computations. The signal is a standard AR(1) process, but noises are multiplicative and non-Gaussian.

If the initial distribution of the AR(1) process is taken to belong to a specified class, the prediction

and optimal filters also belong to this class and the prediction and updating steps are explicit. We

prove the existence of a stationary version for the prediction filter and complete the theoretical study

with simulations to illustrate the behaviour of the filter.
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1. Introduction

State-space models and hidden Markov models form a class of stochastic models which are

a class of stochastic models traditionally used in numerous fields of applications. In these

models, the process of interest is a Markov chain (Un, n > 1) which is not observed. Given

the whole sequence of state variables (U n), the observed variables (Z n, n > 1) are

conditionally independent and the conditional distribution of Zi only depends on the

corresponding state variable Ui. A concrete description is often obtained as follows.

Suppose that (�n, n > 1) is a sequence of independent and identically distributed (i.i.d.)

random variables (the noise), independent of the unobserved Markov chain (U n, n > 1).

Now let the observed process be given, for all n > 1, by

Z n ¼ F(Un, �n): (1)

Then, the sequence (Z n) satisfies the above properties. In examples where these models are

involved, the function F is most often known together with the common distribution of the

�n. (For general references, see, for example, Elliott et al. 1995.) One of the concrete

problems raised by these observations is the prediction or filtering of (U n). This requires the

computation for each n of the conditional distribution of Un given Z n�1, . . . , Z1 (the
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prediction filter) and the conditional distribution of U n given Z n, Z n�1, . . . , Z1 (the optimal

filter).

Given an initial distribution for U1, there is a well-known algorithm that allows the

successive conditional distributions to be computed:

L(U1) �!updating
L(U1jZ1) �!prediction

L(U2jZ1)

�!updating
L(U2jZ2, Z1) �!prediction

L(U3jZ2, Z1) . . .

These distributions are, however, not generally explicit: the problem of exact computation

quickly becomes intractable unless they all belong to the same parametric family. In this case

it is enough to express the algorithm in terms of the parameters. The most popular example

of such a situation is the Kalman filter that evolves in the family of Gaussian distributions.

Another example is proposed in Genon-Catalot (2003) where (U n) is a standard AR(1)

process (as in the Kalman filter) but noises are multiplicative (Z n ¼ Un�n) and non-Gaussian.

This results in a nonlinear model with non-compact state space. Our goal in this paper is to

study its theoretical properties more deeply and to illuminate the numerical behaviour of the

filtering algorithm through simulations.

The study of stability properties of the filters is the subject of a huge number of

contributions in which it is essentially always assumed that the state space is finite or

compact (see, for example, Del Moral and Guionnet 2001, and the references therein). Very

few references address stability properties for nonlinear models when the state space is non-

compact. This is mainly due to the lack of explicit formulae for the steps of the algorithm.

When the unobserved autoregressive process is stationary we prove, using the explicit

expressions derived in Genon-Catalot (2003), stability properties of the filter in our model.

We complete the theoretical study with simulations. These provide, in our opinion, a

good insight into the way the steps of the algorithm perform. The numerical implementation

is easy and shows that the unobserved variables are well predicted.

In Section 2, we present the model and the formulae we need from Genon-Catalot

(2003). The filtering algorithm works within a class F of distributions called ‘serial

Gaussian’ (SG), which are specified by a scale and a mixture parameter. In Section 3, when

(U n) is stationary, we successively prove the stability of the scale and the mixture

parameters of the prediction filter �njn�1 : 1 ¼ L(U njZ n�1, . . . , Z1). We deduce the existence

of a stationary regime for the Markov process U n, Z n, �njn�1 : 1

� �
n>1

with values in

R3 R3 F . We investigate the numerical properties of the filter Section 4. These properties

are illustrated in the stationary case and in the explosive case for (Un). The appendices

contain some formulae and the proof of a technical lemma.

2. The model

This section recalls the model and filtering algorithm described in Genon-Catalot (2003).

Consider the AR(1) signal (U n) given by the state equation
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Unþ1 ¼ aUn þ �nþ1, (2)

where a is a real number and (�n) is a sequence of i.i.d. real-valued random variables with

distribution N (0, �2). The initial variable U1 is assumed to be independent of (�n, n > 2).

Assume that we observe the random variables (Z n) related to (Un) through the

observation equation

Z n ¼ Un�n, (3)

where (�n) is a sequence of i.i.d. real-valued random variables independent of the sequence

(U n).

We make the following assumptions:

Assumption 2.1. For all n , �n has density

f 1(z) ¼
º

jzj3 exp � º

z2

� �
, (4)

where º . 0.

Notice that the conditional distribution L(Z njUn ¼ u) ¼ Fu(dz) admits, for u 6¼ 0, the density

f u(z) ¼
1

u
f 1

z

u

� �
, (5)

while for u ¼ 0, F0(dz) ¼ �0(dz) is the Dirac mass at 0. Moreover, with statistical

applications in mind, we deduce from (4) that º1=2 is a scale parameter for �n, which, in view

of (3), implies that only �º1=2 can be identified from the observation of U1, . . . , Un.

Assumption 2.2. We choose U1 to belong to the class F of serial Gaussian distributions.

We now recall the definition of a serial Gaussian distribution.

Definition 2.1. The class F consists of all the distributions � ¼ �� ,Æ , where � > 0 and

Æ ¼ (Æi, i > 0) is a series of weight coefficients such that, for all i > 0, Æi > 0 andP
i>0Æi ¼ 1. The distributions are defined as follows:

(a) If � ¼ 0 , for any Æ, we set �0,Æ(du) ¼ �0(du).

(b) When � . 0 , �(du) ¼ �� ,Æ(du) ¼ g(u)du, with

g(u) ¼
X
i>0

Æi

1

�
gi

u

�

� �
, (6)

where

gi(u) ¼ (2�)�1=2 u2i

C2i

exp � u2

2

� �
, (7)

and C2i ¼ E(X 2i) , for X a standard Gaussian variable.
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The serial Gaussian distribution with parameters � and Æ ¼ (Æi, i > 0) will be denoted by

SG(� , Æ).
Thus, for positive � , an SG(� , Æ) distribution is a mixture distribution which is specified

by a scale parameter � and a mixture parameter Æ. Each SG distribution is symmetric and

F contains the centred Gaussian laws. By standard series expansion, it can also be seen to

contain the symmetric mixture of Gaussian distributions, 1
2
N (�m, � 2)þ 1

2
N (m, � 2).

As stated in the Introduction, we are interested, at stage n, in the prediction filter, that is,

the conditional distribution of Un given Z n�1, . . . , Z1, and in the optimal filter, that is, the

conditional distribution of Un given Z n, . . . , Z1. Let �1(du) denote the distribution of U1

and, for n > 1,

�njn : 1(du) ¼ L(UnjZ n, . . . , Z1), (8)

�nþ1jn : 1(du) ¼ L(Unþ1jZ n, . . . , Z1): (9)

Notice that the joint process (U n, Z n) is Markov with transition probability

p(u, u9) f u9(z9)du9 dz9, (10)

where p(u, u9) is the transition density of (2), that is, the Gaussian density with mean au and

variance �2, and f u9(z9) is given in (5).

The updating and prediction steps of the filtering algorithm can be described by

introducing the following operators. Let P(R) denote the set of probability measures on R.

For � 2 P(R), the probability measure jz(�) is defined, for any bounded Borel function h

on R, by

jz(�)h ¼ �( f :(z)h)

�( f :(z))
, (11)

with the convention that 0=0 ¼ 0. On the other hand, for � 2 P(R), the probability measure

ł(�) ¼ �P is defined by

ł(�)(h) ¼ �Ph ¼
ð
R3R

p(u, u9)h(u9)�(du)du9: (12)

For the updating step of the filtering algorithm we then have, for n > 1,

�njn : 1 ¼ jZ n
(�njn�1 : 1),

and for the prediction step,

�nþ1jn : 1 ¼ ł(�njn : 1):

Both steps can be expressed in terms of the parameters of the corresponding SG

distributions (see Propositions 2.2 and 3.2 in Genon-Catalot 2003). Let us denote by

�z ¼ ł � jz the resulting composition, which will be extensively used in what follows. We

shall use the same notation �z to denote the mapping

(� 2, Æ) ! �z(�
2, Æ) ¼ (��� 2(z), Æ(z)) (13)

which specifies the parameters. However, we introduce a special notation for the scale

parameter which is ruled by an autonomous algorithm and set
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� 2(z) ¼ Fz(�
2) ¼ �2 þ a2 � 2z2

z2 þ 2º� 2
: (14)

The evolution of the mixture parameters is given by somewhat more intricate relations that

we recall in Appendix A.

Let us stress that if � ¼ SG(� , Æ) has a finite-length mixture parameter (Æi ¼ 0 for i

greater than some integer l ), then jz(�), ł(�) and �z(�) all have a finite-length mixture

parameter, as can be seen from formulae (A.2)–(A.5).

3. Stability properties

In this section we assume that a2 , 1. We denote by � 2
s the stationary variance of (U n)n>1,

� 2
s ¼

�2

1� a2
: (15)

Henceforth we assume that U1 has distribution

�s ¼ N (0, � 2
s ), (16)

so that the process (Un) is strictly stationary and ergodic. The joint process (Un, Z n) inherits

the stationarity and ergodicity of the hidden chain. This property may easily be checked

directly in this model. For the study of stability, we shall consider the strictly stationary and

ergodic process (Un, Z n), n 2 Z, which is the extension indexed by Z of the stationary

process (Un, Z n), n > 1, with the same finite-dimensional distributions. Let us denote by P

the distribution of (Un, Z n), n 2 Z, on the canonical space � ¼ RZ 3 RZ endowed with its

usual Borel � -field A, and denote also by (Un, Z n), n 2 Z, the canonical process.

3.1. Stability for the scale parameter

In this subsection, to study the scale parameter, we use the approach presented in Bougerol

(1993) to obtain the stability by a general theorem on iterations of Lipschitz random

functions on a complete separable metric space. We first study some elementary properties

of the function (see (14))

Fz(v) ¼ �2 þ a2 vz2

z2 þ 2ºv
(17)

defined on [0, þ1). Then, we will look for strictly stationary solution processes (Vn, n 2 Z),

defined on (�, A, P), of the recursive equation

Vn ¼ FZ n
(Vn�1), (18)

which is based on the strictly stationary and ergodic process (Z n, n 2 Z). Define the closed

interval

I ¼ [�2, � 2
s ]: (19)
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Lemma 3.1. For z 6¼ 0, the function Fz is increasing from I onto I and is Lipschitz with

0 < dFz=dv < a2. For z ¼ 0, F0(v) ¼ �2 for all v.

Proof. We have

dFz

dv
(v) ¼ a2z4

(z2 þ 2ºv)2
:

For all v 2 I ,

�2 < Fz(v) < Fz

�2

1� a2

� �
<

�2

1� a2
:

The proof is thus complete. h

Remark. From this lemma, we see that, for all v 2 I , and in particular for v ¼ �2=(1� a2),

�2

Fz(v)
2 [1� a2, 1] and 1� �2

Fz(v)
2 [0, a2]: (20)

The above values are precisely the mixture parameter after one iteration of the prediction

filter starting from the stationary distribution for U1. We can see that they both belong to very

small length intervals when a is close to 0, which is a situation close to independence.

For z ¼ (zn, n 2 Z) 2 RZ and n 2 Z, let us denote by zn ¼ (zn, zn�1, . . .) the element of

RN which is the infinite past of z starting from n.

Proposition 3.1. There exists, on (�, A, P) , a measurable function V (Z n) , such that the

process (Vn ¼ V (Z n), n 2 Z) is the unique strictly stationary solution process of (18). This

process takes values in I , is ergodic and has the following properties:

(i) For all v 2 I , n 2 Z ,

Vn : n� p(v) ¼ FZ n
� FZ n�1

� . . . � FZ n� p
(v) ! V (Z n),

almost surely under P as p tends to infinity.

(ii) Moreover, Vn : 1(v) ¼ FZ n
� FZ n�1

� . . . � FZ1
(v) satisfies

Vn : 1(v)� V (Z n) ! 0,

almost surely under P as n tends to þ 1.

(iii) Let �(du, dz, dv9) denote the distribution of (U1, Z1, V (Z0)). Then (U n, Z n,

Vn�1 : 1(v)) converges in distribution to �(du, dz, dv9) as n tends to þ 1.

Proof. We apply Bougerol’s (1993) Theorem 3.1 and Corollaries 3.2–3.3. By our Lemma 3.1,

(FZ n
) is an ergodic sequence of Lipschitz maps on the separable complete metric space I ,

and the Lipschitz coefficient of (FZ n
) is r(FZ n

) ¼ a2. To obtain our result, we only need to

check that, for some v0 2 I , E logþjFZ1
(v0)� v0j is finite. This follows from the fact that the

interval I is bounded from below by �2 . 0. Moreover,
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jVn : 1(v)� V (Z n)j < a2njv� V (Z0)j < a2n 2�2

1� a2
(21)

since V (Z n) ¼ FZ n
� FZ n�1

� . . . � FZ1
(V (Z0)). The stated results follow. h

Remark. By (iii), we have obtained the stability for the Markov process (U n, Z n, Vn�1:1(v))

with respect to the initial condition v of its third component.

3.2. Stability of the mixture parameter

Because of the intricate expression for the mapping �z that describes the action of the

algorithm on the mixture parameter (see Appendix A), we cannot use the same reasoning as

for the scale parameter. This implies that the study of stability for the mixture parameter is

significantly harder. Actually we only prove a weak form of stability. More precisely, we

consider the recursive equation

�n ¼ �Z n
(�n�1),

defined on F , and prove the existence of a strictly stationary and ergodic process solution

(~��n, n 2 Z). For each n, ~��n has scale parameter V (Z n) obtained in Section 3.1 and mixture

parameter Æ(Z n) which we obtain in this subsection.

We first prove two properties of �z as a function on F , which we will need later.

Lemma 3.2. (i) For all � 2 F and all z , �z(�) 2 F and has a positive scale parameter,

hence this distribution has density.

(ii) The mapping �z is continuous with respect to the topology of weak convergence.

Proof. (i) For all � 2 F and all z, the scale parameter of �z(�) is greater than or equal to �2.
(ii) Since, for all z, the function u ! f u(z) is continuous and bounded, if �n weakly

converges to � 6¼ �0, then jz(�n) (see (11)) weakly converges to jz(�). We have

jz(�0) ¼ �0, and from direct computations it is easily seen that if �n weakly converges to

�0, then jz(�n) weakly converges to �0. Hence, jz is continuous. Moreover, the transition

operator P of (2) is Feller. Therefore, if h is continuous and bounded, so is Ph. This

implies the continuity of ł with respect to the topology of weak convergence of probability

measures. The result follows for the composition �z ¼ ł � jz. h

Remark. Let us denote by F I the subset of SG distributions with scale parameter belonging

to I . The mapping �z maps F I onto itself.

Due to the strict stationarity of (U n, Z n), n 2 Zð Þ, the conditional distribution of U1

given Z0, Z�1, . . . , Z�nþ2 is

�1j0 : �nþ2 ¼ �Z0
� � Z�1

� . . . ��Z� nþ2
(�s): (22)

We consider the asymptotic behaviour of these distributions as random variables defined on

(�, A, P) with values in the subset F � P(R) of SG distributions endowed with the
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(induced) Borel � -field associated with the topology of weak convergence. We will show that,

almost surely, this sequence converges weakly to an SG distribution which we will denote by

�1j0:�1. We first characterize this distribution and then prove the weak convergence property.

Proposition 3.2. There exists a regular version of the conditional distribution of U1, given

the infinite past Z0, of the form

~��1j0:�1(du) ¼ ~gg(u; Z0) du

where (see (10)):

(i) for all u 2 R, E( p(U0, u)jZ0) ¼ ~gg(u; Z0), P-a:s::;
(ii) (u, Z0(ø)) ! ~gg(u; Z0(ø)) is measurable;

(iii) P-a.s., ~gg(:; Z0) is continuous on R.

Proof. Let �̂�(du0; Z0(ø)) be a regular version of the conditional distribution under of U0

given Z0. Set

~gg(u; Z0(ø)) ¼
ð
R

p(u0, u)�̂�(du0; Z0(ø)) (23)

so that (i) holds. The above function is a probability density. It is easily seen that (ii)–(iii)

also hold.

Now we must prove that, for all j : R ! [0, 1] Borel,

E(j(U1)jZ0) ¼
ð
j(u) ~gg(u; Z0)du: (24)

By the Markov property of (Un, Z n) and the special form of its transition probability (see

(10)), we have

E(j(U1)jU0, Z0) ¼ E(j(U1)jU0, Z0) ¼ E(j(U1)jU0): (25)

Hence,

E(j(U1)jZ0) ¼
ð
�̂�(du0; Z0(ø))

ð
j(u)p(u0, u)du, (26)

which gives (24). h

We now turn to the weak convergence of (22).

Proposition 3.3. The sequence of probability measures (�1j0:�nþ2(du)) weakly converges, as n

tends to +1 , P-almost surely, to �1j0:�1 given in Proposition 3.2.

Proof. For x 2 R, consider the random distribution functions

Fn(x) ¼
ðx

�1
�1j0:�nþ2(du) (27)
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and

F(x) ¼
ðx

�1
�1j0:�1(du): (28)

From (22), Lemma 3.2, and Proposition 3.2, these distribution functions are continuous in x

almost surely, since their corresponding distributions have densities. For all x 2 R, P-almost

surely, we have

Fn(x) ¼ E 1(�1,x](U1)jZ0, . . . , Z�nþ2

� �
(29)

and

F(x) ¼ E 1(�1,x](U1)jZ0

� �
: (30)

By the martingale convergence theorem, we obtain

8x 2 R, P-a:s:, Fn(x) ! F(x),

as n tends to infinity. Therefore, there exists a null set N in A (P(N ) ¼ 0) such that

8ø 2 N c, 8r 2 Q, Fn(r, ø) ! F(r, ø):

Now, fix ø 2 N c and x 2 R. For all � . 0, there exist r9, r 0 2 Q such that

r9 < x < r 0 and F(x, ø)� � < F(r9, ø) < F(r 0, ø) < F(x, ø)þ �

because of the continuity of F(:, ø). The inequality

Fn(r9, ø) < Fn(x, ø) < Fn(r 0, ø)

implies

F(r9, ø) < lim inf
n

Fn(x, ø) < lim sup
n

Fn(x, ø) < F(r 0, ø):

Hence Fn(x, ø) ! F(x, ø), and we have shown that, for all ø 2 N c, the weak convergence

of �1j0:�nþ2(du, ø) to �1j0:�1(du, ø) holds, which completes the proof. h

We are now in a position to prove:

Proposition 3.4. There exists, P-almost surely, a unique random mixture parameter Æ(Z0)

which is a measurable function of Z0 such that �1j0:�1(du) is the SG distribution with

parameters V (Z0) and Æ(Z0).

Proof. By Proposition 3.3, the distribution �1j0:�1 is the limit of the sequence of SG

distributions �1j0:�nþ2 which have V0j0:�nþ2(�
2
s ) as scale parameters. By Proposition 3.1, the

sequence V0j0:�nþ2(�
2
s ) converges almost surely to V (Z0) . 0. We are finished if we prove

the following technical lemma. h

Lemma 3.3. Let (Un)n>1 be a sequence of random variables with, for all n , L(Un)

¼ SG(� n, Æ(n)) , such that
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(i) � n �!
n!1

� . 0 ,

(ii) U n �!
n!1

U in distribution.

Then, for all i > 0 , Æ(n)
i ! Æi , where Æi > 0 and

P
i>0Æi ¼ 1; moreover, L(U ) ¼ SG(� , Æ).

The proof of Lemma 3.3 is postponed to Appendix B.

Let us now set

~��n ¼ �njn�1:�1: (31)

We have the following result.

Proposition 3.5. For all n 2 Z ,

~��nþ1 ¼ �Z n
( ~��n), (32)

P-almost surely.

Proof. First note that, by the strict stationarity of (Un, Z n), the conditional distribution of U2

given Z1 is �2j1:�1. Moreover, by the same proof as for Proposition 3.3, the weak

convergence of �2j1:�nþ2 to �2j1:�1 holds P-almost surely. We also have

�2j1:�nþ2 ¼ �Z1
(�1j0:�nþ2):

Hence, by Lemma 3.2 and Proposition 3.3, the weak convergence of �2j1:�nþ2 to �Z1
(�1j0:�1)

holds P-almost surely. Thus, we obtain

�2j1:�1 ¼ �Z1
(�1j0:�1):

The proposition follows h

Remark. For each n, ~��n is the conditional distribution of U n given Z n�1. On (�, A, P), the

process (U n, Z n, ~��n(du))n2Z with state space R3 R3 F is strictly stationary and ergodic.

So, by Proposition 3.5, we have obtained a stationary regime for the Markov process

(U n, Z n, �Z n
� �Z n�1

� . . . ��Z1
(�s), n > 1).

4. Behaviour of the filter on numerical simulations

4.1. Behaviour of the algorithm

Let us first notice that in the nonlinear filtering literature, one is interested in finding finite-

dimensional filters, that is, filters that evolve in a family of distributions that can be

parametrized by a finite number of parameters as for the Kalman filter. However, finite-

dimensional filters are difficult to obtain (see Sawitzki 1981), and generally they induce a

time-inhomogeneous signal (see Runggaldier and Spizzichino 2001), which excludes the

stationary processes. Our filter is not finite-dimensional because of the mixture parameters;
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Table 1. Behaviour of the SG parameters of the update filter �iji:1 ¼ L(Ui j Zi, . . . , Z1) and prediction filter �iþ1ji:1 ¼ L(Uiþ1 j Zi, . . . , Z1)

for a ¼ 0:3, � ¼ 1 and º ¼ 1

i Step zi � Æ0 Æ1 Æ2 Æ3 Æ4 Æ5 Æ6 Æ7

1 Update �2.84 0.91 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

Prediction 1.04 0.61 0.32 0.06 0.01 0.00 0.00 0.00 0.00

2 Update �1.68 0.78 0.00 0.48 0.42 0.09 0.01 0.00 0.00 0.00

Prediction 1.03 0.92 0.08 0.00 0.00 0.00 0.00 0.00 0.00

3 Update 1.62 0.76 0.00 0.87 0.13 0.00 0.00 0.00 0.00 0.00

Prediction 1.03 0.94 0.06 0.00 0.00 0.00 0.00 0.00 0.00

4 Update �2.65 0.90 0.00 0.88 0.12 0.00 0.00 0.00 0.00 0.00

Prediction 1.04 0.92 0.08 0.00 0.00 0.00 0.00 0.00 0.00

5 Update 0.71 0.45 0.00 0.96 0.04 0.00 0.00 0.00 0.00 0.00

Prediction 1.01 0.98 0.02 0.00 0.00 0.00 0.00 0.00 0.00

6 Update �0.17 0.12 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

Prediction 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

7 Update �0.27 0.19 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

Prediction 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

8 Update �0.45 0.30 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

Prediction 1.00 0.99 0.01 0.00 0.00 0.00 0.00 0.00 0.00

9 Update �1.72 0.77 0.00 0.99 0.01 0.00 0.00 0.00 0.00 0.00

Prediction 1.03 0.95 0.05 0.00 0.00 0.00 0.00 0.00 0.00

10 Update �0.28 0.20 0.00 0.99 0.01 0.00 0.00 0.00 0.00 0.00

Prediction 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

11 Update 0.05 0.03 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

Prediction 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

12 Update 0.50 0.33 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

Prediction 1.00 0.99 0.01 0.00 0.00 0.00 0.00 0.00 0.00

13 Update �4.94 0.97 0.00 0.97 0.03 0.00 0.00 0.00 0.00 0.00

Prediction 1.04 0.92 0.08 0.00 0.00 0.00 0.00 0.00 0.00

14 Update �1.67 0.78 0.00 0.87 0.13 0.00 0.00 0.00 0.00 0.00
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however, the simulation study we now present, shows that the number of significant

components of the mixture is of the order of 2 or 3, which is remarkably small.

We begin by illustrating the evolution of the parameters of the prediction filter �nþ1jn : 1

and of the optimal filter �njn : 1 as SG distributions for several non-negative values of a.

Recall that if we start the algorithm with a finite-length mixture parameter then all steps

yield a finite-length mixture parameter. To avoid unnecessary computations we have set the

mixture components to zero if they turn out smaller than 10�9.

The numerical results presented in Tables 1–3 illustrate the relations between � , �̂� , Æ, Æ̂Æ
and zi described in equations (A.2)–(A.5). In particular, they confirm that when zi is close

to zero, �̂� is close to zero as well, and Æ̂Æ is essentially equal to (0, 1, . . . , ); see relations

(A.3)–(A.5). As a consequence, we deduce from relations (14) and (A.2) that, if zi is close

to zero, � is close to � and Æ is approximately (1, 0, 0, . . .), which means that �iþ1ji : 1 is

almost a centred Gaussian distribution.

Thus, if a , 1, which corresponds to the stationary case for (Un), even if we begin with

a long mixture parameter, after a few iterations, only the first components of the mixture

parameter of the prediction filter �iþ1ji:1 are significant. In particular, the distributions

�iþ1ji : 1 are unimodal and are similar to Gaussian distributions.

On the other hand, if a . 1, which corresponds to the explosive case, the scale parameter

as well as the length of the mixture parameter seem to explode. Notice, however, that in

Table 3 the number of significant components of the mixture parameter is small.

Table 2. Behaviour of the SG parameters of the update filter �iji:1 ¼ L(Ui j Zi, . . . , Z1) and prediction

filter �iþ1ji:1 ¼ L(Uiþ1 j Zi, . . . , Z1) for a ¼ 0:8, � ¼ 1 and º ¼ 1

i Step zi � Æ0 Æ1 Æ2 Æ3 Æ4 Æ5

1 Update 3.12 1.24 0.00 0.00 0.00 0.00 1.00

Prediction 1.41 0.06 0.25 0.37 0.25 0.06

2 Update �1.57 0.87 0.00 0.09 0.39 0.37 0.13 0.02

Prediction 1.22 0.38 0.42 0.17 0.03 0.00 0.00

3 Update �1.12 0.66 0.00 0.45 0.45 0.09 0.01 0.00

Prediction 1.13 0.67 0.29 0.03 0.00 0.00 0.00

4 Update �2.58 0.96 0.00 0.48 0.45 0.06 0.00 0.00

Prediction 1.26 0.50 0.42 0.08 0.00 0.00 0.00

5 Update �1.14 0.68 0.00 0.55 0.41 0.04 0.00 0.00

Prediction 1.14 0.69 0.29 0.03 0.00 0.00 0.00

6 Update �0.22 0.15 0.00 0.98 0.02 0.00 0.00 0.00

Prediction 1.01 0.99 0.01 0.00 0.00 0.00 0.00

7 Update �0.08 0.06 0.00 1.00 0.00 0.00 0.00 0.00

Prediction 1.00 1.00 0.00 0.00 0.00 0.00 0.00

8 Update 18.92 1.00 0.00 0.99 0.01 0.00 0.00 0.00

Prediction 1.28 0.61 0.39 0.00 0.00 0.00 0.00

9 Update �4.32 1.18 0.00 0.38 0.62 0.00 0.00 0.00

Prediction 1.38 0.37 0.49 0.14 0.00 0.00 0.00
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Table 3. Behaviour of the SG parameters of the update filter �iji:1 ¼ L(Ui j Zi, . . . , Z1) and prediction filter �iþ1ji:1 ¼ L(Uiþ1 j Zi, . . . , Z1)

for a ¼ 1:5, � ¼ 1 and º ¼ 1

i Step zi � Æ0 Æ1 Æ2 Æ3 Æ4 Æ5 Æ6 Æ7 Æ8 Æ9

1 Update �1.84 1.19 0.00 1.00

Prediction 2.05 0.24 0.76

2 Update �1.69 1.03 0.00 0.29 0.71

Prediction 1.84 0.15 0.50 0.35

3 Update �4.70 1.61 0.00 0.06 0.49 0.44

Prediction 2.62 0.02 0.20 0.50 0.28

4 Update 6.12 2.24 0.00 0.01 0.17 0.52 0.30

Prediction 3.50 0.00 0.04 0.26 0.48 0.21

5 Update �22.85 3.42 0.00 0.00 0.02 0.21 0.50 0.27

Prediction 5.23 0.00 0.00 0.04 0.26 0.48 0.22

6 Update 33.40 5.11 0.00 0.00 0.00 0.03 0.21 0.49 0.27

Prediction 7.73 0.00 0.00 0.00 0.04 0.24 0.48 0.24

7 Update �20.12 6.79 0.00 0.00 0.00 0.00 0.04 0.25 0.48 0.22

Prediction 10.23 0.00 0.00 0.00 0.00 0.06 0.27 0.46 0.21

8 Update �19.50 8.22 0.00 0.00 0.00 0.00 0.01 0.09 0.33 0.43 0.14

Prediction 12.37 0.00 0.00 0.00 0.00 0.01 0.10 0.33 0.42 0.14

9 Update �101.75 12.19 0.00 0.00 0.00 0.00 0.00 0.01 0.08 0.31 0.44 0.16

Prediction 18.31 0.00 0.00 0.00 0.00 0.00 0.01 0.08 0.32 0.44 0.15
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4.2. Empirical distribution of the parameters of �nþ1jn : 1

In this subsection, as a support to the theoretical results on the stability of the filtering

algorithm proved in Section 3, we have performed, in the stationary case (a ¼ 0:3), 200

simulations of the algorithm and present the histograms of the relevant parameters of the

SG distribution �nþ1jn:1 ¼ L(Unþ1 j Z n, . . . , Z1) for n ¼ 1000. The initial random variable

U1 was chosen to have the stationary law �s defined in (16).

Figures 1 and 2 contain the histograms of the first two components Æ0 and Æ1 of the

mixture parameter Æ of �nþ1jn:1, while Figure 3 describes the contribution of the remaining

components
P

i>2Æi. These representations confirm the fact that in the stationary case the

prediction filter �nþ1jn:1 is essentially a finite-component mixture with two or three

components, it is generally close to a centred Gaussian law.

Figure 4 presents the histogram of the 200 realizations of the scale parameter � . Notice
that, since a ¼ 0:3, � ¼ 1 and º ¼ 1, the interval I , (see (19)), which turns out to be

relevant in the study of the stability of the scale parameter, is equal to [1,1.0989]. One may

verify that the support of the histogram is contained in I .

4.3. Prediction properties

To conclude the simulation study, we are interested in the prediction properties of the

algorithm. We simulate one trajectory of (Un, Z n)n and plot the density of

L(U 2
nþ1 j Z n, . . . , Z1) for n ¼ 49 together with the density of L(U 2

nþ1 j U n), which would

Figure 1. Two hundred realizations of Æ0 for �nþ1jn:1 ¼ L(Unþ1 j Z n, . . . , Z1) for n ¼ 1000, a ¼ 0:3,
� ¼ 1 and º ¼ 1
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Figure 2. Two hundred realizations of Æ0 for �nþ1jn:1 ¼ L(Unþ1 j Z n, . . . , Z1) for n ¼ 1000, a ¼ 0:3,
� ¼ 1 and º ¼ 1

Figure 3. Two hundred realizations of
P

i>2Æ0 for �nþ1jn:1 ¼ L(Unþ1 j Z n, . . . , Z1) for n ¼ 1000,

a ¼ 0:3, � ¼ 1 and º ¼ 1
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Figure 4. Two hundred realizations of � 2 for �nþ1jn:1 ¼ L(Unþ1 j Z n, . . . , Z1) for n ¼ 1000, a ¼ 0:3,
� ¼ 1 and º ¼ 1

Figure 5. The densities of one realization of L(U2
50 j Z49, . . . , Z1) and of L(U2

50 j U2
49) for a ¼ 0:3,

� ¼ 1 and º ¼ 1
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correspond to the optimal predictor for U2
nþ1 in the absence of noise. We have chosen to

consider the prediction of the square of U nþ1, because it is of course impossible from the

observation of Z to make any inference about the sign of U .

Figures 5 and 6 show these comparative plots for a ¼ 0:3 and a ¼ 0:8, respectively. In
both cases the prediction properties are similar, and for a ¼ 0:3 the two prediction densities

are even superimposed. In the classical linear Kalman filter model (where Z n ¼ Un þ �9n,
with (�9n) i.i.d. centred Gaussian and Un as here), the prediction and optimal filters are

Gaussian and it is traditional to consider as best predictors of the value U n the expectations

of the filters (the conditional expectations given the set of observations). These are the L2

predictors. In our model, the variables we want to predict are U 2
n and the conditional

expectations turn out to be inadequate because of the skewness of the filters. On the other

hand, if we consider L1 predictors, then we obtain the conditional medians. The simulation

results show that these medians are good predictors that can be used to infer the unobserved

values U 2
n, U2

nþ1 from Z n, . . . , Z1.

Appendix A. Formulae for the filtering algorithm

Recall that �z denotes the mapping

(� 2, Æ) ! �z(�
2, Æ) ¼ (� 2(z), Æ(z)), (A:1)

Figure 6. The densities of one realization of L(U2
50 j Z49, . . . , Z1) and of L(U2

50 j U2
49) for a ¼ 0:8,

� ¼ 1 and º ¼ 1
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where � 2(z) was given in (14). The mixture coefficients Æ(z) depend on both � 2 and Æ as

follows.

For k > 0,

Æk(z) ¼ 1� �2

� 2(z)

 !kX
i>k

i

k

� �
�

� (z)

� �2(i�k)

Æ̂Æi(z), (A:2)

where if � (z) 6¼ 0,

Æ̂Æ0(z) ¼ 0, Æ̂Æi(z) ¼ Æi�1

hi�1(z=º1=2� )

h(z=º1=2� )
, i > 1, (A:3)

in which

h(z) ¼
X
i>0

Æi hi(z), hi(z) ¼
(2i þ 1)z2i

(z2 þ 2)iþ3=2
: (A:4)

If � (z) ¼ 0, Æ0(z) ¼ 1.

Moreover, for the updating step jz(� 2, Æ) ¼ (�̂� 2(z), Æ̂Æ(z)) with Æ̂Æ(z) as given above and

�̂� 2(z) ¼ � 2 z2

z2 þ 2º� 2
: (A:5)

Appendix B. Proof of Lemma 3.3

Under assumptions (i) and (ii) of the lemma, we deduce that

U 9n ¼ Un

� n

ffiffiffi
2

p �!L
n!1

U 9 ¼ U

�
ffiffiffi
2

p ,

where !L denotes convergence in distribution. Let us introduce, for all n, Vn ¼ U 92
n . It is easy

to see that the law of Vn is a mixture of gamma laws and admits the density

f n(v) ¼
X
i>0

Æ(n)
i e�vvi�1=2 dv

ˆ(i þ 1=2)
, for v . 0:

Since the laws of U 9n and U 9 are symmetric around zero, we are done if we prove that, if Vn

is a sequence of random variables with, for all n, L(Vn) ¼ f n(v)dv that converges in

distribution to a random variable V with law �, then, for all i > 0, Æ �!
n!1

Æi, where Æi > 0

and
P

i>0Æi ¼ 1; moreover, �(dv) ¼ f (v)dv, with

f (v) ¼
X
i>0

Æie
�vvi�1=2 dv

ˆ(i þ 1=2)
, for v . 0:

Let � ¼ fz : Re(z) , 0g, where Re(z) denotes the real part of the complex number z. We

define, for z 2 �, jn(z) ¼ E[ezVn ] and j(z) ¼ E[ezV ]. Functions jn and j are continuous

on � and holomorphic on �. It is straightforward to check that
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jn(z) ¼
X
i>0

Æ(n)
i

1

(1� z)iþ1=2
, for z 2 �: (B:1)

Moreover since Vn �!L V , we have that

jn(z) �!
n!1

j(z), for z 2 �: (B:2)

Let introduce, for z in �, the function

	(z) ¼ 1

1� z
:

	 is continuous on �, holomorphic on � and one to one from � to D ¼
fz 2 C : jz � 1

2
j , 1

2
g. Its inverse is 	�1 : D ! �, 	�1(z) ¼ 1� 1=z. Define, moreover, for

z 2 D, the functions

łn(z) ¼ z�1=2jn(	
�1(z)) ¼

X
i>0

Æ(n)
i z i, (B:3)

ł(z) ¼ z�1=2j(	�1(z)): (B:4)

From (B.3) we deduce that, for all n, łn is holomorphic on U ¼ fz : jzj , 1g and

continuous on U . Moreover, jłnj < 1 on U . By Montel’s theorem (see, for example, Yger

2001), we deduce that we can extract a subsequence (łnk
) from (łn) that converges

uniformly on any compact of U to a function g holomorphic on U . Now from (B.2) and

(B.3) we know that łn(z) ! ł(z), for z in D. Thus g ¼ ł on D, and g is an extension of ł
to U . Moreover, any convergent subsequence (łm k

) converges to a function h which by

Montel’s theorem is holomorphic, and coincides with g on D, therefore h ¼ g on U . Thus

any convergent subsequence (łm k
) converges to g on U . Taking into account the fact that

jłnj < 1 on U , we deduce that the sequence (łn) converges uniformly to g on any compact

of U . Since (łn) and g are holomorphic on U , we also have the convergence on U of the

derivatives of any order of łn to the corresponding derivative of g. In particular, for any

i > 0,

Æ(n)
i ¼ 1

n!
ł(i)

n (0) �!
n!1

Æi :¼
1

n!
g(i)(0):

Moreover, since
P

i>0Æ
(n)
i ¼ 1, for all n, Fatou’s lemma implies that

P
i>0Æi < 1. Consider,

for x 2 [0, 1], g(x) ¼
P

i>0Æix
i, where g is continuous on [0, 1] and g(1) ¼

ł(1) ¼ j(0) ¼ 1, since j is the Laplace transform of a probability distribution. Hence we

have proved that, for all z 2 U , g(z) ¼
P

i>0Æi z
i, where Æi > 0 and

P
i>0Æi ¼ 1. In

particular, we deduce that, for all z 2 �, g(	(z)) ¼ (	(z))�1=2j(z), which implies that

j(z) ¼
X
i>0

Æi

1

(1� z)iþ1=2
, for z 2 �,

which ends the proof. h
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