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On local estimates and the Stein method
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We show that recursive application of the Stein equation reduces uniform and non-uniform local
estimates to estimates of the difference operator in total variation. We illustrate our approach by an
example of an sth-order signed compound Poisson approximation to the sum of integer-valued random
variables.
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1. Introduction

The elegant adaptation of the Stein method by Chen (1975) to the case of integer-valued
random variables is one of the most powerful techniques in the theory of approximations.
The method employs properties of the solution of a special difference equation. Usually, the
Stein—Chen method is used for estimates in total variation; see, for example, Barbour et al.
(1992a; 1992b), Barbour and Chryssaphinou (2001), Brown and Xia (2001), Barbour and
Cekanavicius (2002), and references therein. The slightly modified Stein—Chen method can
be used for moderately large deviations; see Chen and Choi (1992). As shown by Barbour
and Jensen (1989), the method is also suitable for uniform local estimates.

Only a few papers are devoted to discrete non-uniform estimates; see Barbour (1987),
Barbour et al. (1995), Chen and Roos (1995) and Chen (2000). Direct application of the
Stein—Chen method requires solving the Stein equation for unbounded functions, which is a
serious technical problem. So far, the most accurate estimates strongly depend on the
properties of the approximating Poisson distribution and on the independence of random
variables. Note that, for estimates in total variation, the Stein method is extended to cases
more general than that of the Poisson approximation.

In this paper, we show how recursive application of the Stein equation can reduce non-
uniform local estimates to estimates of a difference operator in total variation. Our approach
has the following advantages: there is no need to solve the Stein equation for unbounded
functions; for the numerous cases with already established estimates in total variation, local
non-uniform estimates can be obtained without much additional effort; and, in principle, the
proposed approach can be extended to the sums of dependent random variables. On the
other hand, the non-uniform functions in this paper are growing no faster than polynomials.
For a Poisson approximation, a similar recursive approach was used by Barbour (1987).
Note that Barbour (1987) and Barbour er al. (1995) used more general unbounded
functions.

The method of our paper is best suited to approximations depending on more than one
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parameter. That is, it is suited to compound Poisson approximations or asymptotic
expansions, rather than to the standard Poisson approximation. We consider cases where a
perturbation argument can be applied. Introduced by Barbour and Xia (1999), the
perturbation argument simplifies the matter of solving the Stein equation for compound
Poisson approximations. We illustrate our approach by constructing an s-parametric signed
compound Poisson (SCP) approximation. SCP measures can be viewed as a special kind of
compounding asymptotic expansion. Their main advantages are their infinite divisibility and
compound Poisson structure. In its simplest form, an SCP measure can be expressed as the
convolution of Poisson-like measures with possibly negative parameters. An SCP
approximation is not a distribution but rather a signed measure. In this sense, SCP
measures do not differ from other asymptotic expansions. On SCP approximations, see
Kruopis (1986), Barbour and Xia (1999), Barbour and Cekanaviius (2002), and Roos
(2002).

We need the following notation. Let E, denote the distribution concentrated at a point a,
E = E,. For a (signed) measure G, its total variation norm is denoted by ||G|. If G is
concentrated on Z, then we write ||G|| = >_,[|G(/)||. The convolution of measures G and F
is denoted by G * F. If F and G are concentrated on the integers, then

F s G{m}= > F{m—k}G{k}.
k=—00

Throughout the paper, f denotes a function f: Z, — R. We denote the supremum norm and
¢y norm by ||| = sup;=o| £(J)| and || f]li = > ¢ | f()) |, respectively. The difference operator
A is defined by Af() =S+~ () AF(G) =AM+~ Af(), and
AF(j) = f()-

Let Z;, i=1,2,...,n, be independent non-negative integer-valued random variables,
and let

qij = P(Z; = J), ui=EZ, = qu,«j, o? = var Z;,
=1

w=> 7. wh=w -z, wih =w—2z,- 2,
i=1
n n
,u:EW:Zu,-, azzvarW:ZU?,
i=1 i=1
E(Z)uy =EZ{Zi = 1) - (Zi—k+ 1),  dp=|LOV) = (Ey — E)**|,
dy = sup|| L(WD) « (E; — E)*F, d} = sup||L(W D) x (E; — E)*¥.
i i,j

Note that E(Z;)) is the kth factorial moment of Z;. The quantities d, d}, and d} are
used for approximating L£(W) in total variation; see Barbour and Xia (1999) and Barbour
and Cekanavicius (2002). Moreover, as proved by Barbour and Xia (1999),

dy = ||[LW) * (Ey — E)| = ||[L(W + 1) — LOW)|| <2772, (1.1)
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where
V=> v,  v;=min{l/21—[|L(Z+ 1) - L(Z)|/2}.
=1
The properties of total variation and (1.1) allow one to obtain similar estimates for other ds.
For example, let us assume that /' > 4. Then we can write
i 0 i i

wO=w+w+w,

where
wP=3"z.
‘ i€S;

Moreover, the sets of indices S; can be chosen so that

SoiE(r-vh3- vt = (/- 4)E ot =maxo,

i€S;
Taking into account (1.1) and the properties of the total variation norm, we obtain

dy = sup||[LOWY)) = LOVSY) « LOVS)  (BEy — E)™3||

3
<sup [JIcOP)) = (B — B)|| < 24V3(V — 40%)3/2, (1.2)
=1

Similarly, dj < 8(V — v*)~!; see Barbour and Cekanavicius (2002). In general, dy, d}, and
d} are of order O(V~%?) as V — oo.

The structure of the paper is as follows. In Section 2, we establish properties of the
solution of the Stein equation for SCP approximation and outline the basic idea of the
recursive algorithm. Section 3 is devoted to auxiliary estimates of the difference operator. In
Section 4, we formulate the main result. In Section 5, we discuss a possible extension to the
case of dependent random indicators.

2. The Stein equation for SCP approximations

Let m denote the (possibly signed) measure with generating function

i(z) = in(j)zf = exp {il;(zl - 1)}, L eR. 2.1)
=0 =1

If all A; = 0, then 7t is a compound Poisson distribution, otherwise s is an SCP measure. Let
us assume that
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0 -1
A=) . (U(j)=)_ldry Ag(j+ k), 2.2)
=1 =2 k=1
(AR = hig(j+ D = jg(j) = Ag(j+1) = jg() + (UR))). 2.3)
=1

A is called the Stein operator for . It is defined on g : Z, — R and, for all bounded g,
satisfies the equation

o0

m{Ag} = (Ag)n(j) = 0. 24)
j=0
If
A>0, 0=21"> K- <1/2 (2.5)
=2

then, for any bounded f, the solution of the Stein equation
(Ag)() = f() —={f} (2.6)
satisfies the inequalities

2)i71l

2|71 -
< VL 2 Ag|l < =L
lell < =51 AL, 1Agll <1754

(ALY (2.7)

see Barbour and Xia (1999).
We first note that, for ||f]|; < oo, the solution of (2.6) has even better properties than
those given by (2.7).

Lemma 2.1. Let ||f||1 < cc. If (2.5) is satisfied, then the solution of (2.6) has the following
properties:
g() =0, i<0;
1Agl = 2|/l (1 —26)""27";
el <2[l/1 (1 —26)""'a7"
[Uglli <200/ (1 —20)"'a7".

Expression (2.1) is related to expansions of generating functions in cumulants. An
alternative approach involves using factorial cumulants. It is applied to the sum of random
variables W defined in Section 1.

Let mr; be the SCP measure with the moment generating function

74(z) = exp {iﬁj(z - 1)/}, BieR, s=1. (2.8)
j=1
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In (2.8), we assume that ; = >"" | ﬂy). Note that the jth factorial cumulant of Z; equals
ﬁ;’) j!. We choose 3; for L(W) and m,, ensuring the matching of s moments. Moreover,

Br=u=>Y u.
=1

Note that sr; corresponds to the standard Poisson approximation. Obviously, 7s(z) is the
partial case of (2.1) where A = 3| = u,

N

lﬁZ(f)(—””ﬁk’ J=L .. 2.9)

k=

and 4; =0 for j > s.
The Stein operator corresponding to sr, can be written in the form

(As2)() = Brg(i+ 1) — jg() + D kA" g(j+1). (2.10)
k=2
Indeed, by (2.9) we have

[e%¢} S S k
Mg+ D+ > ig(j+D=hglj+ D+ 1( l)(—l)"-’g<j+ DB«
-2 1=2 k=I

s k=1 [k —1
—ﬁlg(]+1)+2kﬂkz< l )(_l)kllg(j+l+l)
k=2

=0

= kBN T g(j+ 1),
k=1

Moreover,

S

(U)(j) = > kBeA " g(j+1). 2.11)

k=2

Now an analogue of Lemma 2 can be formulated.

Lemma 2.2. Let 51 >0, ||f]|1 < oo, and
O =pu ") kB2 < 1)2. (2.12)
k=2

Then the solution of the Stein equation
AN =S —a{f} j=0,1,..., (2.13)
has the following properties:
gH)=0, i=Q0 (2.14)
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Aglh < 2[/h(1 =26 u s (2.15)
el <2/ =200 u™; (2.16)
gl <2011 =260 w2 2.17)

[Ugllr < 264 f1h(1 —260,) " (2.18)

Possible applications of Lemma 2.2 are given in Section 4.

We first discuss how to replace recursively non-uniform estimates by uniform ones.

If || ]| < oo, then from (2.13) it follows that in order to obtain a uniform local estimate,
it suffices to estimate

| E(As)(W) | =

> FOPG) = ()|
j=0

Very slight changes are required for non-uniform estimates. Let k& < s, and let

()= G=wreth), o) = (AN — )" = (Ash)())- (2.19)
Multiplying (2.13) by (j — u)*m,(j) and summing over all non-negative j, we obtain

S AN~ whm() =S FDO — () — 2l YEW — . (2.20)
J J

Note that, due to the choice of S, ..., 85, we have
m Ashi} = (Ah)()7s(j) = 0. 221)
=0

Thus, multiplying (2.13) by (j — u)*P(j), summing over all j, and subtracting the result
obtained from (2.20) leads us to the inequality

> FDG = w (PG) — ns(j))‘ < |E(AAO) + | > P GNPG) — ()| (2:22)
J=0 Jj=0

The maximum power of (j — u) in (p(,f)( ) is k — 1. Therefore, the second summand in (2.22)

can be estimated recursively, the first estimate being the estimate in total variation. Note that
the non-uniform estimates in (2.22) are of the pseudo-moment type and correspond to the
estimates considered by Barbour (1987).

In principle, the proofs of Lemmas 2.1 and 2.2 repeat that of Lemma 2.1 of Barbour and
Xia (1999). Therefore, we prove Lemma 2.2 only.

Proof of Lemma 2.2. Let || f||; < co. If go solves
Bigo(j+1) = jgo() = f(j) —m{f} go(j) =0,/ <0, (2.23)
then
1Aagoll < 21l 1187 (2.24)
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see Barbour and Jensen (1989). For bounded g : Z, — R, let Tg denote the solution g to the
equation

Br&(j+1) —jg(h) = f() — (Ug)()) — m{f} +m{Ug}. (2.25)

Note that ||Ugoll; < oo by (2.11), and we can recursively define g, = Tg,—1, n =0,
g1 =0. Set

%n(J) = gn(J) — gn1()), Jj=0.
Then
Bixn(j+ 1) = jxu(j) = —(Uu—1)(j) + W {Usty1 }. (2.26)
Applying (2.24), we obtain
1Asenlly < 287 Uil < 287> k[ B | 252 | Ast i 1
k=2
=20, Al < 260" [[Agoll < 2||f 118 (200)". (2.27)
Since O, < 1/2, the limit g, = lim, .., g, exists and satisfies Tg, = g,. Furthermore,
IAgsll =D 1Al <D @007 207 118" =201/ 1hB (1 =200 (2.28)
n=0 n=0
Now Tg, = gy is equivalent to
(Asg)() = f(j) —mi{f — Ugs}. (2.29)
But
a{Asgrt =0=na{f} —m{f — Ugs}. (2.30)

The proof of (2.15) follows from (2.25)—(2.30). The proof of (2.18) follows from (2.15)
and the definition of U. The proof of (2.16) is evident from the inequality

j—=1
120)| = ZAgm\ < lIAglh.
=0
Finally, (2.17) can be proved exactly as in Lemma 2.1 of Barbour and Xia (1999). O

3. Local estimates of the difference operator

In this section, we consider the local analogues of d;. For W defined as in Section 1, let
P(j):=P(W =),  P(j)=POW" =)
It is evident that

dp = ||[AP| =D |A*P()|. 3.1)
j=0
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Therefore, | A¥P(j)| is a local analogue of dy. Obviously, any local estimate is majorized by
the estimate in total variation

sup| A*P(j) | < dy. (3.2)
J

Usually application of (3.2) reduces the accuracy of estimation. We shall show that
sup;| A¥P(j)| = O(V=¥/271/2) as ¥ — oo, that is, it vanishes faster than d, which is of
order O(V~*/2). Moreover, we shall show that non-uniform estimates can be obtained as
well as uniform ones. The estimates are formulated in terms of d; and factorial moments of
Z;.

Set
ag=2u"" {sd.y_l +din Y (1 +E(Z)) } (33)
i=1
n -
by =2d,+3 {sas_l + > al), (4] + E(Zo)e) } (34
i=1

n
¢y = buay +2dy + 3s(asr + be) + 15D {26 s + 600 + E(Z))
i=1

+ ) (WE(Z + Dy + EZX(Z; — 1)} (3.5)

The quantities a(? and b\ are defined by (3.3) and (3.4) with W replaced by W(. For
example,

n
a =2(u — )™ {sdé_l +dla Y (ﬂf + E(Z./)a)) }
i

Theorem 3.1. Let || f||1 < oco. The following estimates hold:

6] IfEle. <oo,i=1,2,...,n and s =1, then
> FOAPG =) =< || flhas. (3.6)
=0

(i1) IfEle. <oo,i=1,2,...,n and s =2, then

< /15, (3.7

D FUNG— WA P(j =)
Jj=0

> DG = WA P =) < | f]lds. (3.8)
j=0

(iii) If EZ? <oo, i=1,2,...,n and s =3, then
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> FDNG = PN P = s)| =< || flles. (3.9)
j=0

In particular, when f(j) is the indicator of a point, we obtain the following corollary.

Corollary 3.1. IfEZf <oo,i=1,...,n and s =2, then

s_u13| N P(j)| < ay, (3.10)

=

?_il(ﬂ)ﬂ (J=mWAP(j—s)| < by. (3.11)
Remark 3.1. Suppose that Z; do not depend on n, EZ? <oo,and v; >0 (=1,2,...,n).
Then
ag = O~ V2 po= 0P, o= 0T,

Remark 3.2. In principle, applying the proof of Theorem 3.1 recursively, we can obtain
estimates for all

S IDG—wrAP(i—s)|, ks
J

However, with the growth of £, the estimates become more and more complicated and, as can
be seen from Corollary 3.1, the order of accuracy decreases.

Proof of Theorem 3.1. All estimates are obtained similarly. Therefore, we prove only (3.9).
We begin with the Stein equation for the Poisson approximation

(Ai1g)()) = ug(j+1) —jg(j) = f()) —m{f}- (3.12)

Let us multiply (3.12) by (j — u)*A°P(j — s) and sum over j. Note that P(j — m) =0
for j < m. Consequently,

SG=wP—mw=> (j—uP(j—u
j=0 j=m

i(k — w? P(k) +2m (i kP(k) — ,u) +m? =0+ m’
k=0

k=0

and
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00 00 S S
> = uPANP(j—s) = Z(j—u>22< )(—1)mP(J— m)
j=0 Jj=0 m=0 \ M
N S o0
= Z( )(—n’" > =’ P(j—m)
m=0 \ M Jj=0
N m
— Z( )(—1)"’(02 + m?) = 0.

m=0 j

J

For the proof of the last equality, note that s = 3 and, consequently,

Ky Ky N S
Z( )(nm 22( >(1)mm(m1)

m=0 \ M m=0 \ M

s s—2
= s(s — 1)2( )(—1)"12 =0.
m=2

m—2
Moreover,
(j —mweg()) =uAg()) = f() +m{f} (3.13)
A A () = (AN I)(j) = kA o+ 1),
Therefore,

S DG = uPAP(j - 5)
j=0

=D (A — WA P(j — s)
j=0

I

> (Aih)(DAP(j = 5)| +
j=0

> o (HATP(j - s)
j=0

=D P(HA(A hz)(j)' +
j=0

> o (HATP(j - s)
j=0

< |E(AIA hy) (W) | + s| EAS Yy (W + 1) |

+ . (3.14)

> o)A - )
Jj=0

Here
() = (= WA () — (Aih) () = —ug(j+ DR+ 1) = 2u — 1)

=2uf(j+1)—2um{f} —2u*Ag(j+2)— ug(j+1).
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Note that, for 7y, (2.15)—(2.16) hold with 6; = 0. Consequently,

> o DAP( - )
=0

< 2u(|l/1lr + ullAg[[1)sup| A*P(j — 5) |
J

[oe]
+ull gl Y IAPCG = s)| < [If]1(6a, + 2dy).
j=0

Similarly,
|EA (W + 1) = | > _(J— wg(DA' P(j—s)
j=0
< (If I + ullAgllsup| (j — A P(j = 9) |
J
< 3|/ lli(bs-1 + as-1).
Finally,
-1
ho(w+ 1) = ha(w+ 1)+ > Ahy(w + m)
m=1
and
En(W+1) =Y qiEh(W? +j+1)
=0
=Eh(W+ 1)+ g5 Y EA(W? +m),
j=0 m=1
. > ‘i_l .
EZih(W) = wEh(W® + 1)+ > q4j Y EAb(W? + m).
Jj=0 m=1
Therefore,

|E(AA )W) | < ) | iEAho)(W + 1) — EZi(A%h)(W) |
i=1

1

i=1 j=0

675

(3.15)

(3.16)

n oo J Jj—1
<> > 4 (ui S IBA P )|+ 3 |EAT (8 + m |>.

By (3.13) we have

(3.17)
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|EA " (WO - m)| = | Y (j— w0 (DA P(j— s — 1 —m)
j=0

Jj=

< (If I + ullAgllsup|(j — WA P(j— s =1 —m)|
J

<3|/, + m+ unally). (3.18)

Estimate (3.9) follows from (3.14)—(3.18). Ol

4. Approximation by

Let 7, be defined as in Section 2. Recall that 8, = Zf;lﬁ@, where the jth factorial
cumulant of Z; equals ,65-’) j!. The quantities a@ and bg’) are the same as in Theorem 3.1. Set

&) = E(Zi)ssn) /s + > kB E(Z) 5 k1) /(s — b+ D,
=

&) = EZ(Zi)srn/(s + D!+ D KBPIE(Z; + Dis-ren /(s — k +2)L
k=1

S
Ky =" k(k+ 1) B |25,
k=1

Ky =3 k(k+ 1| Be 25 +u' 2> Kk +3)|Bl .
k=1

= k=1

Now we can formulate the main result of this paper.

Theorem 4.1. Let ||f| < oo, s =3, u>0, 6, <1/2, and EZS"' < o0, i =1, ..., n. Then
the following estimates hold.:

2§ i aN G
Iy —a |l < =z 12> el (4.1
1—26
s i=1
- . . . dyg 1 E (i)
> _SOPG) =) < 2S5 Do (42)
j=0 s i=1

= N - . f d; — - i . i) (1
DS = 1XPO) = m(m‘ < 1”_ !lov Toag, K P2 +30_dlel ):
j= - ; i= i=

(4.3)
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[e%¢} d; - n i
zojf(jxj‘ — WXP() - ns(j))’ < I/l g g Kor Z el
J= i=

AR

T 26,2

{@0u+ 60060 + a0} @4

The accuracy of approximation is most evident in the case of independent Bernoulli
variables. In this case, f8; = (—1Y"'>°" pl/j.

Corollary 4.1. Let Z;=1;, P(l;=1)=p; <1/5(i=1, ..., n). Let s =3, and let f; =
Yol pi — o0 as n — oco. Then

HE(W) — .7'[S|| = 0<ﬁl(s+1)/2 Zp§+1> ’
i—1

suplP(J) = ()] = O (ﬁl“”)/ ? ; p?“) :
supl(/ = B(P() = ,(/)] = O (ﬁﬁ””/ Dy pf“) :
jZ

i=1

sup|(/ — B(P() = 7(j) | = O <ﬁlS/2 > P?”) :
J= i=1

Corollary 4.1 shows that the SCP approximation 57, is quite accurate even for p; = O(1),
that is, in the case where the standard Poisson approximation fails. Note that we do not
investigate the convergence to the Poisson law, that is, the case of small p;.

Finally, a few words should be said about the condition 6; < 1/2. In principle, this
condition is quite restrictive. For s = 2, it implies that u < 202 < 3u. On the other hand, if
the factorial cumulant of Z; (recall that this equals ﬂy) 1, for some sufficiently large 4,
satisfies the standard condition of large deviations

i Ui
|/3(])| < R (4.5)

then 6; < 1/2. Note that the Bernoulli variable I; satisfies (4.5) with 4 = 1/(max p;).
For the proof of Theorem 4.1 we need an auxiliary lemma.

Lemma 4.1. Let the assumptions of Theorem 4.1 be satisfied. Let h be either of the functions
hy or hy. Then
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n o0 s ) Jj—s+k j_ m A
[EADIN =D a59 > kBYT D ( k>|EAsh(W“) +m)|
m=1 S —

i=1 j=0 k=1

j=s (j—m—1 '
+ ]Z( 1 ) |EA° h(WD + m) |}. (4.6)
m=1

s —

Proof. As usual, we assume that ZZ =0, b < a. By (2.10) we have

n

|E(AN) [ <

i=1

i: KBYVEAS (W + 1) — EZih(W)‘. 4.7)
k=1

By Newton’s formula

I—t—1

h(w+ 1) = h(w + 1)+Z(lml>Amh(w+ D+ > (l 1; m)A’+1h(w+m),
m=1

m=1

we obtain
EAF R + 1) =Y qBA A + j 4+ 1)
Jj=0
s—1 )
= Y EARWD + DE(Z)a1-/(+ 1 = k)!
I=k—1
S Jostk [ j—m '
+ > Y. EA (WD + m) (4.8)
Jj=0 m=1 s—k
and

EZh(W) =" jggBh(W + )
Jj=0

s—1
=Y EA"h(WD 4+ DE(Z)(ms1)/ m!

m=1
j=s (j—m—1

m=1 S —

)EASh(W@ + m). (4.9)

Changing the order of summation, we obtain
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s—1

S TRBY Y T EA WD + DE(Z)1a1-n/(1+ 1 = k)
k=1 I=k—1

s—1 m+1 )
=D EA"RWD + 1) kBYE(Z)mi1-1/(m+ 1= kL. (4.10)
m=0 k=1
However, the identity
m+1 )
N KBPE(Z)ms1-n/(m + 1 = )L = E(Z)(niry/ml. @.11)
k=1

holds, and this can be proved as follows. Denote by 1 (z) the generating function of Z;.
Expanding 1(z) in factorial moments and In(z) in factorial cumulants, comparing the
coefficients to (z — 1), and applying the identity '(z) = ¥ (z)(In1(z))’, we obtain (4.11).
Estimate (4.6) follows from (4.8)—(4.11). ]

Proof of Theorem 4.1. We shall prove only (4.4). Set
M(j) = uAg(j+ 1)+ UQ) = () (4.12)
Then by (3.1) we have
1My < 3701 — 20,7 (4.13)

We shall apply (2.3) and (2.6), with 4; defined by (2.9). As above, hy(j) = (j — w?g(j).
Set

P2()) = (AN — W)’ — (Ah)())-

Applying (4.13), we obtain

Phig(j+DQ2j—2u+1)
1

P2()) = —

S

I
= —22 PAM(j+ D+ m{fh+ Z Plig(j+ 1. (4.14)
=1 =1

Now we have

Zf(j)(j — w*(P(j) — ﬂs(j))‘ < [E(As )| +
=0

> (NP — 7| (4.15)
Jj=0

Taking into account (4.14) and (2.16), we see that the second summand in the right-hand side
of (4.15) is majorized by
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S

2 M1 > Plad supl P(j) — ()] + I IILOV) = ]| > Pl
=1 J 1=1

n
< |Iflhdip (1 =260 K> Y el (4.16)
i=1

In (4.16), we used the estimate

S

EIES IS WA AR SIS
=1 k=1 k=1

=1
and a similar estimate for the second summand.
Similarly, we have
EA (WD + m)| = | S PHAha(j+ m)‘
=0
=D G+ m—wlg(j+mAP(j—s)
=0

— Z(j+ m— wWM(j+ m)A*Pi(j—s)
J=0

< [[M[1sup| (j + m — WA P(j—s)|
J

< 3[If1h (1 = 2007 B + (m + pp)ald). 4.17)

To finish the proof, it suffices to use Lemma 4.1 and substitute the estimate obtained and

(4.16) into (4.15). O
5. Approximation of dependent indicators

We shall formulate one non-uniform result for a Poisson approximation of possibly

dependent indicators. Note that, in this case, the approach of Barbour er al. (1995) is

inapplicable. For the indicator variable, we use the notation /; as above. However,
emphasizing the possible dependence of indicators, we denote their sum by W, that is,

W= 1,  PU=D=1-PU=0=p <],
i—1

W= -1, =Y
i=1
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As before, 7 denotes the standard Poisson approximation with parameter u. Let V; be
constructed on the same probability space as (W) so that

P(V;=j)=P(WO|I, = j).

Proposition 5.1. For any j € Z,,
[ = wll POV = ) = (D] < 2[LF) =] +6 3 pf max| P(V; = )
i=1 ‘

—P(V;=j—=D|+2) pimax|P(W? = j) = P(V; = j). (5.1
i=1 J

Proposition (5.1) demonstrates which components are needed for a non-uniform estimate.
The estimate in total variation can be found in Barbour er al. (1992b, Theorem 1B).
However, for other summands, an analogue of Theorem 3.1 is required. In fact, obtaining an
analogue of Theorem 3.1 is the hardest part in the dependent case. Therefore, Proposition
5.1 gives an insight to the problem rather than its solution.

Proof. We apply (2.22). By (2.16) we have

> oGNP = j) - m(f))‘ =u| Y g+ DPW =)) - m(i))‘
J=0 j=0

< ullglll£om) — ml| < 2| L) — .

Furthermore, we have

[E(A 2y ()| =

Zn:pi(Ehl(W + 1) = B{m(WD + )|I;, = 1})’

i=1

PEE{A (WO + DI =1} + Y pigiE{l (W + D)|1; = 0}.
=1 i=1

I

n
—EmFO+ )L =1 <> P
i=1

Y A+ PV =j - 1)’
j=0

o0

> G+ D)PWD = j)— Py =j))‘ =J1+ 1.

J=0

+zn:Pi

i=1

Applying (3.13), we can estimate J; as follows:
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1= pihGYP(Vi=j—2) = P(Vi = j—3))
i=1

in:Pi

i=1

S UG = m{f} — uhg(M(PVi=j—2) = P(Vi=j—3))
j=0
<21+ pllAgl) Y pimax|P(Vi=j) = P(Vi = j = 1)

i=1

<6 pimax|P(Vi=)) = P(Vi=] =D
i=1

Similarly,

n
12 =2 prmax| POV = j) = P(Vi = j) |
i=1
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