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1. Introduction

Since the seminal papers by Engle (1982) and Bollerslev (1986), generalized autoregressive
conditional heteroscedastic (GARCH) processes have received considerable attention in the
literature devoted to the analysis of financial time series. These time series models capture
several important features of financial series, such as leptokurticity and volatility clustering
— see Mikosch (2001) for a recent paper on GARCH and stochastic volatility models.

The asymptotic properties of the quasi-maximum likelihood estimator (QMLE) were first
established by Weiss (1986) for ARCH models, under fourth-order moment conditions on
the ARCH process. Unfortunately, these conditions are typically violated when GARCH
models are estimated on financial data. The problem of finding weak assumptions for the
consistency and asymptotic normality of the QMLE in GARCH models has attracted much
attention in the statistical literature. To our knowledge, the most significant contributions on
the theoretical properties of the QMLE in GARCH models are those of Lee and Hansen
(1994) and Lumsdaine (1996), both for the GARCH(I, 1) case, Straumann and Mikosch
(2003) for a general heteroscedastic model including GARCH(1, 1), and Boussama (1998;
2000), Berkes and Horvath (2003a; 2003b) and Berkes et al. (2003) for general GARCH
(p, g). The latter reference gives rigorous proofs of the strong consistency and asymptotic
normality, under assumptions which we discuss in Section 2.

The first goal of the present paper is to establish, under weaker conditions than those in
the existing literature, the convergence and asymptotic normality of the QMLE for the
GARCH(p, q) process defined in (2.1) below. We will provide asymptotic results requiring
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strict stationarity but no moment assumption. An alternative method of proof allows us to
weaken some of the technical assumptions used in the above references.

Our second goal is to extend these asymptotic results to ARMA-GARCH processes. In
financial applications, it is common practice to fit return series by autoregressive moving-
average (ARMA) models with GARCH innovations. It is therefore of interest to analyse the
properties of QMLEs of ARMA-GARCH processes. As we will see, the extension leads to
non-trivial problems. Recent works on the estimation of ARMA-GARCH processes are Ling
and Li (1997; 1998) and Ling and McAleer (2003a). Comments on these papers are
provided in Section 3. See also Ling and Li (2003) and Ling and McAleer (2003b) for
related work.

The paper is organized as follows. Section 2 presents the assumptions for the GARCH
model and states our results on this class. Section 3 is devoted to the ARMA-GARCH
class. The proofs are postponed to Section 4.

The following notation will be used throughout. The norm of a matrix 4 = (a;) is
defined by ||4|| = >_|a;|. The spectral radius of a sqaure matrix 4 is denoted by p(A). The
Kronecker product is denoted by ®. The symbol = denotes convergence in distribution.

2. The pure GARCH(p, q) case
Consider the GARCH(p, ¢) model

€ = hm,,
q )4

h, = (1)0+Z(10[6%_i+2ﬂ0jh57j, VteZ, 2.1)
=1 =

where (77,) is a sequence of independent and identically distributed (i.i.d.) random variables
such that En? =1, w9 >0, ap; =0 (i=1,...,¢) and Bo; =0 (j=1,..., p).

Bougerol and Picard (1992) showed that a unique non-anticipative strictly stationary
solution (¢,) to model (2.1) exists if and only if the sequence of matrices Ay = (A4y,), where

a1’ e aog”;  Poin; e Boyn?
1 0 ... 0 0 0
0 1 ... 0 0 0
Ao — 0 1 0 0 - 0 0
o Aol Qog Boi T ﬁop ’
0 0 1 0o - 0
0 0 0 1 0
0 0 0 0 1 0
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has a strictly negative top Lyapunov exponent, y(Ag) < 0, where

Y(Ag) := tiean* ltE(logHAO,Ao,,,l o Anl) = zlinolo lt log||AoiAo -1 - . Ao a.s. (2.2)
The definition of y(Aj) does not depend on the choice of a norm on the space of the
(p+ q) X ( p+ q) matrices. The second equality in (2.2) is a consequence of the subadditive

ergodic theorem (Kingman, 1973). Note that the existence of y(Ay) is guaranteed by the
inequality E(log™||4o1 ) < E[[4o1]| < oo

Let z, = (&, - € yips bty ooy hepr))' €RPT and by = (@, 0, ..., 0)T € RP™4. Then
(2.1) is equivalently written as a vector stochastic recurrence equation
zr = b+ Aoizs-1, (2.3)

and if y(4p) < 0, the unique strictly stationary solution to (2.3) is

z;=b,+ ZAOtAO,t—l ce Ao,t—k+1bt—k- (2-4)

00
k=1

In view of (2.2), and using the Jensen inequality, it is clear that the conditions

E(log||doxAo.k—1 --- Aor]]) <O, for some k > 0,

and
q P
p(EAo) <1, ie. D> an+» Po<l, (2.5)
i=1 i=1

imply y(Ag) < 0. Note, however, that the sufficient condition (2.5) is much stronger than the
strict stationarity condition y(A¢) < 0 ((2.5) implies Ee2 < o).

Two well-known consequences of the strict stationarity condition are stated in the
following proposition. We refer to Bougerol and Picard (1992) for the proof of the first
result, and to Nelson (1990) and Berkes et al. (2003, Lemma 2.3) for the second.

Proposition 1. If y(Ag) < 0, then the following equivalent conditions hold:
(a) Z]P:lﬁoj < 1.

(b) The roots of the polynomial 1 — By1z — ... — PopzP are outside the unit disc.
(¢) p(By) <1, where

Bor Por --- Bop
Bo=| 0 1 - 0

Moreover, if y(Ag) <0, then there exists s > 0 such that

Ehi <oo and Eé < oco.
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We now turn to the QML estimation of model (2.1). The vector of parameters is

0=, ..., 0pg11) = (@, a1, ..., ap By s Bp)'
and belongs to a parameter space © C 10, + oo[X[0, co[?*7. The true parameter value is
unknown and is denoted by 0y = (w0, aot, - - - Aogs Pots - - - Bop) -
Let (€, ...,€,) be a realization of length n of the unique non-anticipative strictly
stationary solution (¢;) to model (2.1). Conditionally on initial values ¢, ..., €1_g,
63, ...,0% ,» the Gaussian quasi-likelihood is given by

- 1 2
L) = LG5 i) = 3o exp(~ 5L ).
t=1 ZJIZO% Zal

where the 62 are defined recursively, for 7 = 1, by
q P
G2 =36%0)=w+ Z a2+ Zﬂjdij.
i=1 J=1

For instance, the initial values can be chosen as

1, =0i=...=67 =o (2.6)

2 __ —
€ = ... =€

—-q
or

2 _ 2 _s2_ _ 2 _ 2
Q= =€_4=05=...=01_,=¢€. (2.7)

A QMLE of 6 is defined as any measurable solution 6, of

6, = arg max L,(0) = argminl,(6). (2.8)
0cO 0cO

where

n_ N ~ 2
L@ =n"> 4 and e[:et(e):%ﬂog&i.
t

t=1

Remark 1.1. It will be shown that the choice of initial values does not matter for the
asymptotic properties of the QMLE. However, it may be important from a practical point of
view. Other ways of generating the sequence 62 have been considered in the literature; for
instance by taking 62 = co(6) + Zf;ll c,~(9)effi,~where the ¢;(0) are computed recursively (see

Berkes et al. 2003). Note that, to compute 1,(6), their procedure requires a number of
operations of order n?. The number of operations required by our procedure is of order n.

Let Ap(z) = 3 1 a;z" and By(z) =1 —3°7 f;z/. By convention, Ag(z) =0 if ¢ =0
and By(z) =1 if p = 0. To show the strong consistency, the following assumptions will be
made.

(Al) 6y € ©® and O is compact.
(A2) y(Ap) <0 and VO € O, Zj’.’:lﬁj <1.
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(A3) #? has a non-degenerate distribution with Ey? = 1.
(A4) If p>0, Ag(z) and By(z) have no common root, Ay (l)+#0, and
Qog + ﬁO p 7é 0.

It will be convenient to approximate the sequence ([,(9)) by an ergodic stationary
sequence. In the first part of Proposition 1, equivalence evidently holds for any 6 € ©. Thus
(A2) implies that the roots of By(z) are outside the unit disc. Therefore, denote by
(0%) = {0%(0)} the strictly stationary, ergodic and non-anticipative solution of

q )4
ol=w+ Z ac + Zﬁjaf_j, \73 (2.9)
P =1
Note that 0%(6p) = h,. Let
n 2
€
1(O) = 1(0; € cur ) =7 Dl L =E(0) = L+ loga.

=1 t

We are now in a position to state our first result.

Theorem 2.1. Let (é,,) be a sequence of QML estimators satisfying (2.8), with the initial
conditions (2.6) or (2.7). Then, under (A1)—(A4), almost surely 0, — 6y, as n — oc.

Remark 2.1. Unlike Berkes et al. (2003), our assumptions on the i.i.d. process 7, do not
impose the existence of E(52™¢), for some ¢ > 0, or any other technical assumption on 7,
such as those requiring that the cdf around zero is well behaved. In fact, their proof requires
Eg, supgeo|l/(0)] < oo (see their Lemma 5.1). Using an ergodic theorem for stationary
processes (X;) such that EX; € RU {400}, our proof only requires Eg,|¢,(6)| < cc.
Moreover, in Berkes et al. (2003), the parameter space is very constrained, ruling out zero
coefficients in 6.

Remark 2.2. Straumann and Mikosch (2003) established asymptotic results for a general
heteroscedastic time series model. When applied to the GARCH(1,1) model, their
consistency result coincides with ours. A slight difference is that they assume that the
distribution of 7, is not concentrated at two points, whereas we assume that 7, is not
concentrated at +1.

Remark 2.3. Lee and Hansen (1994) and Lumsdaine (1996) established asymptotic results for
the GARCH(1, 1) model. In Lee and Hansen (1994) the #, are required to form a strictly
stationary martingale difference sequence. However, their QMLE is local, that is, L,(0) is
maximized in a neighbourhood of 6. Moreover, the existence of E(7>™) is assumed for
some ¢ > 0.

Remark 2.4. The first part of the identifiability assumption (A4) concerning the common
roots of the polynomials was also made by Berkes e al. (2003). It is worth noting that (A4)
implies that 6, need not belong to the interior of ®. This is essential, in particular, to handle
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situations of overidentification. For instance, our result shows that an ARCH(g) model
(Bo; = 0, for all j) is consistently estimated when a GARCH(p, ¢) is fitted. More generally,
one of the two orders p and g can be overidentified, but not both of them. Evidently, it is
required that ay; > 0 for some i when p > 0. Without this assumption, the model solution
would be an i.i.d. white noise, which could be represented as any GARCH(1, 0) process of
the form 02 = 02(1 — ) + 0 X €2_, + Bo?_,. Note also that the first part of (A4) is always
satisfied when p > 1 and ¢ > 1. If ¢ = 1, the unique root of Ay, (z) is 0 and By, (0) # 0. If
p =1 and Sy # 0, the unique root of By,(z) is 1/Fo1 > 0 (if fo1 = 0, the polynomial does
not have any zero), and, because the ay; are positive, Ag,(1/f01) # 0.

Remark 2.5. Following the suggestion made by a referee, we have not imposed E»n, = 0. The
conditional variance of ¢, given {¢;;, i > 0} is only proportional to A, in this case. The
assumption that Ex? = 1 is made for identifiability reasons and is not restrictive provided
E7? < oco. Berkes and Horvath (2003b) showed that this moment condition is necessary for
the asymptotic normality of the Gaussian QMLE, and Berkes and Horvath (2003a) showed
that the moment condition can be weakened when criteria different from the Gaussian quasi-
likelihood are used.

To show the asymptotic normality, the following additional assumptions are made.

(AS5) 6, € (09, where © denotes the interior of ©.
(A6) Ky :=En? < oo.

The second main result of this section is the following.

Theorem 2.2. Under assumptions (Al)—(A6), \/ﬁ(én — 6o) is asymptotically distributed as
N, (r, — 1)J 1Y), where

S (PO _p (1 0076 00300
% a0ooT ) " \o¥0n) 00 06T )

(2.10)

Remark 2.6. We show in Section 4 the existence and positive definiteness of J.

Remark 2.7. Assumption (AS5) is clearly necessary to obtain asymptotic normality. For
instance, when ag; = 0, the distribution of \/n(&; — ag) is concentrated on [0, cof, so the
asymptotic distribution cannot be normal. Andrews (1999) studied such boundary problems in
the GARCH(1, g) case.

Remark 2.8. As in Theorem 2.1, no technical assumption on the distribution of 7, is
required, apart from the existence of a fourth-order moment. This assumption is clearly
necessary for the existence of the variance of the score vector 9¢,(6y)/06. Note also that this
assumption does not imply the existence of a second-order moment for the observed process
(¢;). This is particularly interesting for financial applications, because such existence of the
second-order moments is often found to be inappropriate.
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Remark 2.9. In Berkes et al. (2003) it is assumed that E|y,[*"® < oo for some 6 > 0, and
t7" P> < f) — 0 when t — 0, for some u > 0. These assumptions are used to treat the
right-hand terms of the inequality Y ;P c;2 (1 + > 0 a2 )" < M + 3" y<iiPcie?_,, for
some absolutely summable positive sequence (¢;) and any M =1 (see their Lemma 5.2).
Instead, we use Proposition 1 and the inequality Y o Pcic? (1+Y 2,2 )<
SoX,icie? for all s € 10, 1[. The idea of exploiting the inequality x/(1 + x) < x* for all
x > 0 is due to Boussama (2000).

Remark 2.10. In Boussama (2000) it is assumed that Ey® < co. The parameter space is
supposed to be a hypercube of the form [w, @] X []L [a;, @] X Hle[éﬁj, B_,-] with
Z;’.:l B; < 1, which seems very restrictive. Moreover, it is not clear whether his results allow
pure ARCH models to be treated, because an implicit assumption in his paper is that both ay,
and fy, are non-zero.

3. Estimation of ARMA-GARCH models

In this section our aim is to extend the previous results to the case where the GARCH
process is not directly observed. The process (¢;), the solution to (2.1), is a martingale
difference and can therefore be used as the innovation of an ARMA process. Even for
financial series, it seems very restrictive to assume that the observed process is a pure
GARCH. Allowing for an ARMA part considerably extends the range of applications, but it
also entails serious technical difficulties.

The observations are now denoted X7, ..., X, and are obtained from an ARMA(P, Q)-
GARCH(p, g) process (X;) satisfying

P Y
X —co= Z agi(X i — co) + e — Z bOjet—ja
j=1

i=1

e =\ hm, 3.1

q p
P
hy = wo + E agi€y_; + E Bojhi—j,
P =

where (17,) and the coefficients wq, ao; and By, are defined as in (2.1). The parameter vector

is denoted ¢ = &, 0N =(c, ay, ... ap, by, ..., bo, 0N, the true value is ¢ =
(3> 09)" = (co, aot, - .. aop, bot, - .., bog, 0,)", and the parameter space is @ C
REHOTIX10, + co[ X[0, co[ 2.

If ¢ = O, the initial values X ..., Xi—(4—0)—P> €—g+0> - - €E1—g> 5%, e 6%_,, allow us

to compute €,(39), for t=—g+ Q+1,..., n, and 3(¢), for t =1, ..., n, from
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P Q
G=e@=X—c=Y aXri=)+) bé,
i=1 j=1

q P
=2 =20 N 2 ~2
o, =05(@)=0+ Za,«et_i + Zﬁjat_j.
=1 =1

When ¢ < Q, the required initial values are X, ..., Xi_4—0-r, €0, ..., €1—0, 6(2),
0% - For simplicity, these initial values will be taken to be fixed (neither random nor
functions of the parameters).

A QMLE of ¢ is any measurable solution of

$n = arg minin((/))a (3.2)
ped

where 1,(p) = n= ' 4, and £ =0(p) = EX9) G7(¢) +1og 57(¢).

Let Ag(z)=1— Zlea,—z’ and By(z)=1->_ i-1b;7. We make standard assumptions on
these autoregressive and moving-average polynomials, and we adapt assumption (Al) as
follows:

(A7) @o € @ and P is compact.
(A8) For all ¢ € @, Ay(z)By(z) = 0 implies |z| > 1.
(A9) Agy,(2) and By,(z) have no common root, agp # 0 or bgp # 0.

Under assumptions (A2) and (AS8), (X;) is assumed to be the unique non-anticipative
strictly stationary solution to (3.1). Let ¢, = ¢,(9) = Ay(L)By ' (L)(X, — c), where L denotes
the lag operator, and let £, = ¢,(¢p) = 2/0% + loga?, where 02 =0%(¢p) is the strictly
stationary, ergodic and non-anticipative solution of (2.9). Note that e, = ¢,(%) and
h; = 0%(¢y). The following result extends Theorem 2.1.

Theorem 3.1. Let (¢,) be a sequence of OMLESs satisfying (3.2). Assume that En, = 0. Then,
under (A2)—(A4) and (A7)—(A9), ¢, — @y, almost surely, as n — oo.

Remark 3.1. Ling and Li (1997; 1998) announced theoretical results for the MLE and QMLE
of unstable and fractionally integrated ARMA models with GARCH innovations. However,
they only obtained results for local estimators, that is, for sequences of solutions to the
likelihood equation.

Remark 3.2. Ling and MacAleer (2003a) considered QMLEs for vector ARMA-GARCH
models. Their consistency result requires the existence of a second-order moment.

Remark 3.3. (A9) is an identifiability assumption. In the literature on ARMA estimation, the
assumption that app 7# 0 and bop # 0 is often made. This excludes interesting situations
where, for instance, and AR(1) model is fitted to a white noise.

Remark 3.4. As in the pure GARCH case, the process ¢, (and hence X;) need not have finite
variance. In the pure ARMA case, where ¢, = 7, has finite variance, our theorem reduces to a
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classical result on ARMA models based on i.i.d. innovations (see Brockwell and Davis, 1991,
p. 384). For ARMA processes with i.i.d. infinite-variance innovations, the asymptotic
distribution of the QMLE is not standard — see Mikosch et al. (1995) and Kokoszka and
Taqqu (1996).

Remark 3.5. Apart from the condition Ex, = 0, the assumptions required for the strong
consistency are not strengthened when an ARMA part is added. One might wonder whether
the normality Theorem 2.2 also extends without cost in terms of assumptions. Unfortunately,
the answer is negative, as the following example reveals.

Consider the AR(1)-ARCH(1) model
Xi=anX,-1 + e, e =/ iy, hy = wo + ame?_l (3.3)

where |ag;| < 1, wg >0, ag; =0, and (3,) is an i.i.d. sequence such that, for some a > 1,

1 1
222 P(n,:O):le.

It can easily be seen that for an ARCH(1) process, the strict stationarity condition is
ag < exp{—E(logn?)}. For any aq, the process (X,) is therefore strictly stationary, since
exp{—E(logn?)} = +0o. However, X, does not have a second-order moment, whence
ao; = 1. The first component of the (normalized) score vector is

9L,(6o) e\ (1 903(6)\ | 2e dci(By) 2
- = = —2a (1 —
801 ( l’lt h, 6611 + hr Bal (1()1( 77[)

We have

X, X, 1
E{aol(l —n?)(e’ o 2) 4+ I = 1}
t t
e—1Xi2 7: X -1 2
=E 1—n?
[{““( B (52) 4

2
ag, 1 By
=2y - ) Ex
< a2> (Xi-2)

Py, =a)=P(n,=—a)=

ethzz) _ 277tXt71
hy Vi

Ni—1 = 0] P(,-1 =0)

wo

because 7,_; = 0 implies e,_; =0 and X, | = a¢ X, and because #;, ;- and X, , are
independent. Therefore, if EX % =00 and ag; # 0 the variance of the score vector is not
defined. In Theorem 2.2, the asymptotic variance of the estimator of the pure GARCH
parameter is proportional to the (finite) variance of the score vector (see Remark 2.8). This
example shows that Theorem 2.2 does not extend to the ARMA-GARCH class. This is not
very surprising since the asymptotic normality of the estimators of pure ARMA models with
i.i.d. innovations (which belong to our general class) are obtained under second-order
moment assumptions (see Brockwell and Davis 1991). For ARMA models with infinite-
variance noise, the rate of convergence is faster than in the standard case and asymptotic
stable laws are obtained (see Davis et al. 1992; Mikosch et al. 1995).
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We establish asymptotic normality under a fourth-order moment assumption. Chen and
An (1998) showed that there exists a non-anticipative and strictly stationary solution of (2.1)
with finite fourth-order moment if and only if p{E(4o; ® Ao;)} > 1. We assume that

(A10) p{E(4o; @ 4p;)} < 1, and VO € O, Zf:lﬂj < 1.

This assumption implies that x, = E(5}) < co. Also, (A2) becomes redundant. Analogously
to the pure GARCH case, we assume that

(Al1l) ¢ € &D, where @ denotes the interior of ®.

For identifiability reasons we also make the following assumption, which is slightly stronger
than the first part of (A3) when #, has a non-symmetric distribution.

(A12) There exists no set A of cardinality 2 such that P(n, € A) = 1.

Theorem 3.2. Assume that En, = 0. Under assumptions (A3)—(A4) and (A8)—(Al2),
V(@ — @o) is asymptotically distributed as N (0, X), where £ = J~'ZJ~!, with

9l (¢o) (o) @th((po)
7 =E =E — .
(Po( 9o 9ot )’ J Po 90T

If, in addition, the distribution of n, is symmetric, we have
(L O (10
r=(5 o) 7=(3 n)

1 do? do? 1 9¢, O¢,
I = () — DE@o = 2199 4Eqy (— 20 %
1 = (ky — DE@o (0? 59 9T 900)) +4Eq (0% 59 99T (q)o)),

1 do%do?
I = (k;, — DEg@o (0_‘,‘8—56#0%«00))’

1 do2do? 2 O¢, O¢,
J1 = Ep <— L (/)0)> +Eo (———(90)>,
o7 99 09T o2 09 991

1 do? 002
J» =E¢q <Fa—0taf‘ﬂt((/70)>-
t

with

Remark 3.6. When applied to the ARMA-GARCH case, the asymptotic normality result
given by Ling and MacAleer (2003a) requires the existence of sixth-order moments.
Moreover, the stationarity conditions are imposed over the whole parameter space.

Remark 3.7. In the proof of the theorem, we show the existence and positive definiteness of
the matrices 7 and J. Notice that when 7, has a symmetric distribution, X is block-diagonal,
which is important in the testing of joint assumptions on ARMA and GARCH coefficients. In
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addition, the bottom right-hand block J,'7,J5' of = depends on the GARCH coefficients
only. In other words, the asymptotic accuracy of the GARCH estimators is not affected by the
presence of an ARMA part.

Remark 3.8. 1t can easily be seen that assumption (All) constrains only the GARCH
coefficients. For any value of 9, the restriction of ® to its first P+ Q + 1 components can

be chosen sufficiently large that its interior contains 3y and assumption (AS8) is not violated.
Assumption (A11), however, requires the GARCH coefficients to be strictly positive.

4. Proofs

Let K and p be generic constants taking many different values K >0 and 0 <p <1
throughout the proofs. For instance, we will allow ourselves to write, for 0 < p; <1 and
0<p<1,i1 =0, i,=0,

0< szi 4 KZ ipé < Kpmin(il,iz).

=i =i

4.1. Proof of Theorem 2.1

Rewrite (2.9) in vector form as

o) =c + Boi_|, .1
where
‘i% o+ 371 0, Br B By
) 051 1 0 -+ 0
gt = : b gt = : > B = : . (42)
a%ﬁpﬂ 0 0 1 0

We will establish the following intermediate results:

(i) lim, .o supgeoll,(0) —1,(0)] = 0 as.
(ii) (3¢ € Z such that 02(0) = 02(6y) Py, a.s.) = 0 =0,.
(iii) Eg,|€:(00)| < oo, and if 0 # 6o, Eqg,¢i(0) > Eq,l,(60).
(iv) Any 6#6, has a neighbourhood V(6) such that liminf, .
inf g g 1n(0™) > Eg 01(6o) as.

To prove (i) first note that, using Proposition 1 and the compactness of O,

sup p(B) < 1. (4.3)
0cO
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Hence, iterating (4.1), we obtain
o
o} =ci+Bei+Beia+...+ B e+ Blag =) B (4.4)
k=0

Let g7 be the vector obtained by replacing 02 ; by 62 , in g2 . Let ¢ be the vector obtained
by replacing ¢, ..., ¢, by the initial values (2.6) or (2.7). We have
07 =c,+Bcri+...+ B T cp1 + BTy + ...+ BT'e + B}, (4.5)
In view of (4.3)—(4.5), almost surely,

q
{Z B ex — &) + B'(aj - éé} H

k=1

suplla? — a7l = sup
0cO 0cO

<Kp', V. (4.6)

0'2—6'2
log<1+ L ’)‘}
o

< {sup wZ}Kn ! Zp {sup }Kn1 Zp’. 4.7)
=1

6cO

Thus, using logx < x — 1, almost surely,

ef-i—

2
sup|l,(6) — 1,(0)| < ‘Zsup{‘ 5202
0cO

0cO

To deduce (i) is suffices to use the Cesaro lemma and the fact p’e? — 0 almost surely. This
convergence is obtained by the Borel-Cantelli lemma, the Markov inequality and the
existence of a moment of order s > 0 for ¢ (Proposition 1):

00 o0 E(p t€2)s
Pp'é>e=<) 1<

We now will prove (ii). Suppose that U?(@) = 0?(00) Pg,-a.s. Note that By(B) is
invertible under assumption (A2), by Proposition 1. If Ag(1) # 0, it follows from (2.9) that

Ao(B) [ , w } AgO(B){ o }
59(3){€’+A9(1) CRCARAPTI0)

implying

{A(}(B) _ Aeo(B)}€2 - (ON) w V1.

By(B) Ba(B)S ' By(l) Be()

It can easily be seen that this equality also holds when Ay(1) =0. Hence, if
Ag(B)/Bo(B) # Ag,(B)/Bg,(B), there exists a constant linear combination of the cij,
j = 0. This is impossible since, by assumption (A3),

& —Eg (|3, ..) =0%00)> — 1) #0,  with positive probability.
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Therefore

AH(Z):AGO(Z) Vlzl <1, and @ ___“
By(z)  Bg,(2)’ ’ Bo(1)  Bg,(1)

Under assumption (A4), this implies Ap(z) = Ag,(2), Bo(z) = Bg,(z) and o = w,y, which
proves (ii).

Turning now to (iii), first note that Eg1,(0) = Eq,¢,(0) is well defined and belongs
to RU{+oc} because Eg ¢, (6) < Eg, log” 02 < max{0, —logw} < co. Remark that
Eg,¢/(0) = co when, for instance, 6 = (w, 0, ..., 0)T and Egoc% = oo. However, we will
show that Eg,|¢,(6p)| < co. It remains to show that Eg ¢;(6y) < oo. By Proposition 1,

(4.8)

1 o1 ;
Eg, log 07(60) = Eg, _ log{07(60)}" < - log g {07(60)}" < oc.

Therefore

a2(6o)n?

Egl:(60) = E
6o t( 0) 60{ 0‘%(90)

+ log af(eo)} =1+ Eg, logo?(6y) < .

Since logx < x — 1 for all x >0, and logx = x — 1 if and only if x = 1, we have

0'2 0 02 6
Eg,¢(0) — Eg,£:(60) = Eg, log Ozt((go)) % 012((90)) !
t t
o2(6) 07(60)
" P | ' _ 4.
B "°{ €2 ok0) } ’ Y

with equality if and only if 02(6y)/0%(0) = 1 Py,-ass.
It remains to show (iv). For any 6§ € ® and any positive integer k, let V;(6) be the open
ball with centre 0 and radius 1/k. In view of (i),

liminf  inf  1,(60%) =liminf inf  1,(6™) — limsup sup|l1,(6) — 1,,(6)]
n—00  *cr(H)NO n—=00  9*cy(9)NO n—oo He®

= liminfn! inf  £,(67).
n—00 ; 0*cV(O)NO (0%
Now we use the following ergodic theorem: if (X;) is a stationary and ergodic process such
that EX, € RU {+o0}, then n~'Y_"_ X, converges almost surely to EX; when n — oo (see
Billingsley 1995, pp. 284 and 495). Applying this theorem to {inf(,*er(e)m@ Et(e*)} , and
using Eg,¢; () < oo, we obtain
liminf n~'> " inf  £(0%)=Eq, _inf £,(6%).
n—00 =7 0" V(0)NO 0 cVi(O)NO
By the Beppo-Levi theorem, when k increases to oo, Eg, infp«cp g0 £,(6™) increases to
Eg,21(0). In view of (4.9), (iv) is proved. By a standard compactness argument we complete
the proof of Theorem 2.1.
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4.2. Proof of Theorem 2.2

The proof rests classically on a Taylor series expansion of the score vector around 6. We
have

n a o
0=n""23Y"_—10,6,)
;39

"9 - 1< 82 ~ ~
=1 12N 27 (6y) + <_ —Z,(ij)> Vn(0, — 6)
;ae ’ n;aeiaej 7

where the 9;; are between é,, and 0,. We will show that

n a ~
n—1/2 Z%E,(QO) = N(O, (K,7 - 1J) (4.10)
t=1
and
- Z * (0%) — J(i,j)  in probability @.11)
—1 8elaej ! v ’ : .

The theorem will straightforwardly follow. Again, we will split the proof into several
intermediate results:

(i) Ee, [(00,(60)/06) (90,(60)/067)|| < 00, Eg,[|0*£(60)/0600" || < oc.
(i) J is non-singular and varg,{0¢,(0,)/00} = {x, — 1}J.
(iii)) There exists a neighbourhood V(6y) of 6, such that, for all i, j, ke
{1,...,p+q+1},

0,(0)

Eo, sup | 56,00,00,

up
96V(90)

(iv) (223271 {0€A(60)/ 00 — DL,(60)/06}|| — 0 and  supgeviay|ln' Y21 {07€A6)/
0000" — 52£,(6)/00060"}|| — 0 in probability when n — oo.

V) n7 V2 00,(60)/06 = N(O, (15, — DJ).

(vi) n 'YL 0%(67)/00,00; — J(, j) as.

The derivatives of ¢, = ¢ /02 + logo? are given by

v, { é }{ 1 802}
Ly SRR S A (4.12)
00 o?f |o? 06

o[y Gl fl Poil [ha V[ 1oon[10oi) s
0006 02] 0206007 0?2 02 00 | | 02007
For 6 = 6y, €2/0% = n? is independent of the terms involving o2 and its derivatives. To prove
(1) it will therefore be sufficient to show that
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1 do; 1 9%0? 1 902 do?
9 0 Bl Radls
02 06 ) 026980T( 0) o4 00 007 r (60)
(4.14)
By (4.4) we have
Jdo? &
P :;Bkl, ZBk e, (4.15)

aQ% - - i—1 p(j) pk—i
B SR> BTBYB Y ey, (4.16)
J

k=1  i=1

where 1 =(1,0,...,0)7, € =(,0,...,0), and BY is a p X p matrix with (1,/)th
element 1 and all other elements 0. Notice that, by the positivity of the coefficients in (4.15)—
(4.16), the derivatives of 02 are non-negative. From (4.15), it is clear that do?/0w is
bounded. Since 02 = >0, this is also the case for {d0%/0w}/0? which therefore
possesses moments of any order. By (4.15) we have

do? & >
i = Bl <) Bler=o0],
i =0 k=0
from which we deduce
1 80 1
o e < Pt (4.17)

Hence 0,2(00?%/0a;) has moments of all orders at 6 = 6. In view of (4.16) and 8;B) < B,
we have

i=

2 00 k 00
ﬁjg%{s Z{Z Bi_lBB"_i}g,_k:ZkBkg,k. (4.18)
J k=1

Using (4.3), we have ||Bk | < Kp* for all k. Invoking Proposition 1 and the elementary
inequality (a + b)* < a* + b* for all a, b = 0, we deduce that c,(1) = o + Y7 ;e _; has a
moment of order s, for some s €]0, 1[. Using (4.18), the inequalities 02 > w +
B¥(1, 1)c,_x(1) and x/(1 +x) < x* for all x = 0, we obtain

L%< ii kBX(1, 1)c,— (1)
Moiop; Bt o+ BN Dei(D)

_1 EOC: {B (1, Der k(l)}

Jk:

E

K - )
=2 Byl )P kpt = (4.19)
wﬂ/ =1

K
B
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Under assumption (AS5), we have f; > 0 for all j. This allows us to conclude that the first
expectation in (4.14) exists.
Let us now turn to the higher derivatives of ¢2. It follows from (4.15) that

2 2 2 2 2 2 00 k
oa ¥a =0, ra; _ Z{Z B"‘B<f>3k'}l. (4.20)
i=1

8w2 8(1)80: dwdf;

Thus

62 2 s
kB*
8 8ﬁj ;

whose components are finite, proving that 9*02(6)/0wd6; is bounded and admits moments
of any order. The same conclusion holds for {9?°02(6y)/0wd0;}/03(6y). By the second
equality in (4.15) we find

820-% 820-2 00
——=0 =t = B~ B gk—i 421
aa,ﬁaj ’ aaiaﬂj ; ; —k—i> ( )

and the arguments used to show (4.19) give
I do; _K*
"2 9a0p; B,

This proves that {0*0%(6y)/9a;00}/0%(6y) is integrable. Differentiating (4.16) with respect
to B gives

ﬁjﬁj 8ﬁ 8ﬁ = ﬂjﬂj lek:{ (i Bl_]B(‘i,)Bi_l_l> B(J’)Bk_i}

k=2 2 I=1

k-1 k—i
+ {BilB(j) (Z BIIB(j’)Bkil> }]Qt—k
i=1 =1

i [Z(z —1)BF + Z(k —i)B

k=2

cr k_Zk(k— V)Bfe,_,  (4.22)

since 8;BY) < B. Using the same arguments as for (4.19), we can conclude that
1 902 K*
0 _2 = s
o aﬁjaﬁj BiB

so the existence of the second expectation in (4.14) is proved. Now, since {d0?/dw}/0? is
bounded, and, by (4.17), the variables {80? /oa;}/ 0% are bounded at 6, it is clear that

1 ({90'%(00) 60’%(00)

<
"\ o%00) 00; 96 o

b




Maximum likelihood estimation of GARCH processes 621

fori=1, ..., ¢+ 1. With the notation and arguments already used to prove (4.19), and the
elementary inequality x/(1 4 x) < x*/? for all x = 0, the Minkowski inequality gives

1 902(60)\° & B(1, e, i(1)
{E”"(a%(eo) 0B >} FZ {E"< o >} -

Finally, the Cauchy—Schwarz inequality allows us to conclude that the third expectation in
(4.14) exists.

We now prove (ii). By (4.12) and (i), we have

A(00)\ ) 1L 9060
wa{ %5 | =5 -y -

Now using (4.13) and (i), J exists and (2.10) holds. We also have
areo{ﬁft(ﬁo)} _ Eoo{aﬂt(eo) 3&(90)}

00 00 00’ (4.23)

—B(0 - ) g ‘9"?@0)60%(90)}

o4(6y) 00 00’
= (k;, — 1)J.

Ty 1 TaG%(QO) ? o
iji_Elo?(00)</l 50 )]—0

for some vector 4 € RP*4*1. Then, almost surely, AT{d0%(6y)/96} = 0. In view of (2.9) and
the stationarity of {002(6,)/00},, we have

Now suppose

1 1
e €
20 : :
0=1" % =T Ay |+ ZMT °) S
o7 1(60) 03_1(6p)
o7 ,(60) o7 ,(60)
Write A = (Ao, A1, ..., A1 ,).T It is clear that A; = 0, otherwise ¢2_; would be measurable
with respect to the o-field generated by {#,, u < t— 1}. For the same reason, it can be
shown that Ay =...=4; =0 if A,y =... =444;=0. Therefore A1 #0 entails a

GARCH(p — 1, g — 1) representation. This is impossible in view of (A4) using the
arguments given to establish (4.8). Therefore ATJA = 0 implies 4 = 0, which completes the
proof of (ii).

To prove (iii) we differentiate (4.13), which gives
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3 2 3g2
FLO) [, G\l o (4.24)
00,00;00 02 02 00;00 80k
REm
o2 02 06 | \ 02 06,00,
R RNV AN
o2 0296, [ \ 02 06,00,
N Zi—l 1907\ [ 1 &0}
o? 0200, ) |02 00,00,

N 2—6i 1 062\ (1 902\ [ 1 do?
02 o2 96 02 (‘39 a,aek '

We first prove that {1 — ¢?/02} is integrable. This term is difficult to handle because €2 /o2 is
not uniformly integrable over ©: in 6 = (w, 0, ..., 0)T, the ratio €2/0? is not integrable
when Ee2 = co. However, we will show that {1 —62 2/02} is umformly integrable in a
nelghbourhood of 6. Let ©* be a compact set containing 6 and included in ©. Denote by
By the matrix B (defined in (4.2)) evaluated at 6 = 6y. For all 6 > 0, there exists a
neighbourhood V(6y) of 6, with V(6y) C ©, such that By < (1 + 0)B for all 8 € V(6,).
From (4.4), we obtain

0 q 0
=0 B+ Zl)a{kZ B, l)e%_k_,}-
=0 i= =0

Since V(6y) C ©F, we have supgev,) 1/a; < co. Using also x/(1+x) < x* for all x=0
and any s €]0, 1[, we obtain

swp T1O0 _ (o Jeodi oBéa D zq: yo_ B0 Dy,
0V, O3 0cV(60) o+ a; B, e,

q 00 k k 2 $
aoi = By(1, 1) (o; B*(1, D)eg_,;_;
=<K - E ,
+ Z Sup { a; =0 Bk(la 1)

—1 0€V(6y) w
q

K>S a+o)fpher, .. (4.25)
i=1 k=0

Choosing s such that Ee2* < oo and, for instance, 0 = (1 — p*)/(2p®), we obtain

2 2

€; o4(6

Eg, sup —5 =Eg, sup (o) <
0eV(0) 0% 0V(0)) 97

for some neighbourhood V(6y). For the same choice of d, with s such that Ee‘f” < oo, and
using (4.25), we find
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2 (6
sup i = kl/? sup @
0V(60) O oeveny 97 ||,
< K’ K +1°Kq > (1 +6)!pP[eF’]|2 < oo. (4.26)

Let us now turn to the second term in brackets in (4.24). By differentiating (4.20) and (4.21),
arguments already used to show (4.17) yield

1 83 2
4<K
. G200,,00,00;,

when at least one index iy, i, or i3 does not belong to {¢+1, ¢g+2,...,9+ 1+ p}.
Following the lines of the proofs of (4.18) and (4.19), we obtain

832 >

< N k(k — 1)(k — 2)BA(1, e, x(1),
9808, 0P k;( )(k = 2)BX(1, De,—i(1)

1 P02 ;
A0 a0 oo k k k ks ¢
Hseué)* 02 0B, 8ﬂjaﬁk K{Oseué)* w® ﬁﬁjﬁk} Z (k= 1)(k=2)p {Oseué) c k(l)}

for all s €]0, 1[. Since Eg, {supycg+cr—k(1)}* < oo for some s > 0, we then have

Bib P

2

3 2
L_00, "o (4.27)

Eg, sup | 5"+
0 o? 00,00;00

HcO*

More generally, it can similarly be shown that, for any d,

d

3 .2
Toi | (4.28)

E St S
% P |02 96,00,00,

0cO*

By the Cauchy—Schwarz inequality, (4.26) and (4.27), we obtain

e 1 do?
_—— < .
{1 02}{028080 aek}‘ >

To deal with the other terms of the sum in (4.24) we show that, similarly to (4.28),

Eg, sup
0eV(6y)

d
< 00, Eg, sup
0cO*

d
< 00, (4.29)

d*a?

O'% 30,301

1 do}

0 801

Eg, sup
0cO*

for any integer d. This allows us to obtain, using the Holder inequality,
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€ 1 do? 1 do? 1 do?
E 2-6-% ——Lrd =t
o 2 (2o o Han ae,}{o% i)
2 1 do?
< | sup |2 — 66—’2 max|| sup il < o0
0eV(0y) o7 2 i 06@* 80

The other terms of the sum in (4.24) can also be treated in this way, and we thus obtain (iii).
To show (iv), we use (4.5) to obtain the following results, analogous to (4.15)—(4.16):

A~ a o¢ 062
B1 Bi-kEEk L g0 430
= 2 Bl BTGB, (4.30)
967 KT, 08 | 005
= ; B gtfkf,-+;B 90 B g (4.31)

d5* 2 .
i~1 p()) gk— i—1 p(j) pt—k—i
%~ & ,ZB BB pe k+Z ZB BB, (432)
where 800/8w =(0,...,0)" when the initial conditions are given by (2.7), and
600/8w =(,..., DT when the initial conditions are given in (2.6). The second-order
derivatives have snnilar expressions. In view of (4.3), (4.15)—(4.16) and (4.30)—(4.32), we
have, almost surely,

do?  057? 0*0* &*a?
< Kp', L ! Kp', V. 4.33
bc0|| 00 06 Pe ibllaooeT ~ agaet| T F (4.33)
In view of (4.6), we have
1 1 G2 —o? Kp' o?
— — = | = = , —+ =<1 +Kpt. (434)
02 ¢? 0252 o? 0?7

Since

o60) [ E\[106 oe®) [ EN[ 1002
90 _{1 a}{azae} and =g _{1 202 00

we have, using (4.34) and the first inequality in (4.33),

o0 L@0)| _|f& alf1do) [ g\[1 1][d0]
86,‘ 80, 6'% 0'2 0'2 80 O'2 0% (5'% 80,

2 2 52

g\ J 1\ JOor Oo;

{-sHae sl

by 1 80%(00)
”{o%(eo) 00, J|
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It follows that

ot (90) 04,(60)
~1/2 t
ERET
The Markov inequality, (i), and the independence between 7, and 0%(00) entail that, for all
c>0,
d 1 002(6y)
P 71/2 t l 2 l t >
(n ;p( +1; +—0§(00) 20 €
1 80'2(90)

2 “1)2
<=
c (1 | 520,) ) Zp -0

which, in view of (4.35), shows the first part of (iv).
We now turn to the second-order derivatives. By (4.13) and the inequalities in (4.33) and
sup

(4.34), we find
nl | 0% t(‘9) >l ,(9) < n! - i E% 1 o}
pay] 80 8 —1 0V(60) 6'% (72 02 80 80
__% 1 d*o? +L 8o 2 0*a?
0?2 00; 80 02\ 90, 80 80,»6(9j

90,00,
g %}{1 }{1&’}
o] o 96; ?591
2
t

e 1 0026
< K*n szpf(wnf){waz(%) afé‘))}. (4.35)
t i

t=1

sup
0€V(6))

at
e
{
{

L + 1 (90} 957 1 903
0?2 ~§ 02\ 00; 06; 02 00,
N zi L 1 do? N 1 (907 957
0?2 0?2 02 a2 00, 02\ 00; 80
= Kn_l pt’rta

where
e 1 0% 100%1 do
T, = 1 l+———~Lt+—=—"~——1L%.
t eesllfl&){ " 02}{ "0296,00, " 03 90, o7 39]‘}
From (4.26), (4.29) and the Hoélder inequality, it follows that Y, is integrable for some
neighbourhood V(6)). Using the Markov inequality again, the second convergence of (iv)
follows.

To prove (v) we will apply a central limit theorem for margingale differences. Let F,
be the o-algebra generated by the random variables ¢, ;, i=0. Notice that
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Eg,(00,(6y)/00|F,—1) =0 and that in view of (4.23), varg,(0¢,(09)/00) exists. By as-
sumptions (A3) and (AS5), implying 0 <k, — 1 < oo, and since J is non-singular, the matrix
varg,(00,(0p)/00) is mnon-degenerate. Hence for any A€ RPT4FL the sequence
{A1(0/06)¢(6y), F,}, is a square-integrable stationary margingale difference. The central
limit theorem of Billingsley (1961) and the Wold—Cramér device allow us to derive the
asymptotic normality result (v).

We now consider a Taylor series expansion of the second-order derivatives of the
criterion about 6y, in order to prove (vi). For all i and j, we have

n n 82 n 3 az
,1 Xy -1 o 1 K * B
Z ae 0, bly) =n ; 90,00, £i6o) +n ; 907 { 96,06, t(9u)}(0,, 6o),

(4.36)

where 0~,~j is between 0; and 6. The almost sure convergence of é,-j to 6y, the ergodic
theorem and (iii) imply that, almost surely,

~ 0 0? ~ . 0 0
. -1 7 . < i -1 N
h?l_ilclp n ;8«?{60,@9;&(%)} hin_ilpn ;Hesll)l(%o) 90T {6080 £1(0) H
0 o
=E —— <00
" i aeT{ae,-aej f )}

Therefore, since ||0:'; — 6]| — 0 as., the second term on the right-hand side of (4.36)
converges to 0 with probability 1. The convergence in (vi) follows from an application of the
ergodic theorem to the first term on the right-hand side of (4.36).

To complete the proof of Theorem 2.2 it suffices to apply the Slutsky lemma. In view of
(iv), (v) and (vi), we obtain (4.10) and (4.11).

4.3. Proof of Theorem 3.1

Following the scheme of proof of Theorem 2.1 we make the following statements.

(i) lim,, o supyea |l (@) —Lu(@)| = 0 as.

(ii) (3¢ € Z such that ¢,(9) = ¢/(%) and 02(p) = 0%(po) Pp,-as.) = @ = Q.
(iii) If @ # o, then E, €,(p) > Ey (o).
(iv) Any ¢ # ¢o has a neighbourhood V(¢) such that

liminf 1nf l,,((p ) > Eg li(go) a.s.

n—oo (/] S V(

We shall only prove (i)—(iii) since the proof of (iv) is similar to that given for Theorem 2.1.
We first prove (i). Equations (4.1)—(4.4) remain valid under the convention that ¢, =
€/(3). Equation (4.5) has to be replaced by

o7 =¢+Bei + ...+ B + Blag, (4.37)



Maximum likelihood estimation of GARCH processes 627

where ¢, = (w + Z?:laiéﬁ_i, 0,...,0)7, the variables with ‘tilde’ being initialized as
indicated in Section 3. By assumptions (A7)—(A8) we have,
forall k=1land 1 si<gq, suples; — €| < Kp* as. (4.38)
ped

It follows that, almost surely,

q q
lex— 2l = Sl — & = Kot (z ol + 1)
i=1 i=1

and thus, by (4.4), (4.37) and Proposition 1,

1

> B Kew — 21 + B'ay — 83)
k=1

lo? —aill =

t q
=3 (St 1) o ko
k=1 i=1

t—1
<Kp' D (el + D). (4.39)
k=1—q

Therefore we have

n = 2 2 52 222
1 - 0y —0%l2» 0y — 0% e — €7l

sup|L,(¢) — L()| < n! sup{ Ll + log(l +—= )’ +—=

= el 7o)

n !

< {sup max (iz l) }Kn_l STOE+1 Y (el + 1),
ped w- W P =g

The latter equation is analogous to (4.7), €+ 1 being replaced by & =

(€ + D4 (el +1). Tt therefore suffices to show that 7% E(p’&,)" < oo, for some

r>0. For all positive random variables X and Y, and all r»€]0, 1], we have

E(X + Y)" < E(X)" + E(Y)". Hence, in view of Proposition 1,

t
E(p'&)*? < p*? Y E(Elex| + € + leal + D
k=—q

t
= p"? > HEEE|'}? + Ele/| + Ele [ + 1]
k=—q

= O(1p""?),

which completes the proof of (i).
If 9 # 9, the first equality in (ii) and assumptions (A8)—(A9) imply the existence of a
constant linear combination of the X,_;, j = 0. Note that the linear innovation of (X,) is
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X, — E(X,|F,—1) = n,0(po) # 0 with positive probability, because of(goo) = wo >0 and
E(7?) = 1. This implies 9 = 9, and finally 6 = 6, by arguments given in the proof of
Theorem 2.1. Thus (ii) holds.

We now have

B o2(@)  0(epo) {ei() — €30}
E@oli(¢) — Epol (po) = Esoo{IOg 72(00) + o2p) 1} + E%W

277t0t((/)0){5t(9) - Er(lgo)}
o4(9) '

+ Eg@o

In this equality, the last expectation is null and the first expectation is positive by arguments
already given. Hence E@ol, (@) — E@ol (o) = 0, with equality if and only if ¢,(3) = ¢,(30)
and 02(¢g)/02(p) = 1 Py,-a.s. which, by (ii), implies ¢ = ¢y, thus establishing (iii).

4.4. Proof of Theorem 3.2

The proof utilizes the following lemma.

Lemma 4.1. If the distribution of v, is symmetric, then,

vj? E(po{g(eia 6%715 .. ')elfjf(etfjfls Et—j—z, .. )((,00)} = 05

for all functions f and g such that the expectation exists.

Proof. The result is obvious when j < 0. For j =0, note that e, = ¢>(39) is a measur-

able function of >, ..., 17%7].-+1, e el ... Consequently, E{g(e, &, ..)|er;
ej-1,...; is an even function of each conditioning variable, and can therefore be
denoted by h(e%_ i ef_ PR .) for some measurable function /. Therefore the expectation in

the lemma reads

E[E{h(7,_;07 ;. €l 1o MO if(€rjrs € jas - i jors Nimjoas - 1]

=E Uh(xzafj, € i s X0 jf (€1 jo1s € ja, .. )APy(x)| = 0.
O

We now turn to the proof of Theorem 3.2. Following the scheme of proof of Theorem
2.2, it will be sufficient to establish the following properties:

(i) Eqoll(9:(¢0)/00)(0Li(00)/ ") < 00, Epo|0*Li(0)/ DD’ || < oo
(i1) Z and J are not singular and, when 7, is symmetrically distributed, they have the
block-diagonal forms stated in the theorem.
(iii) [|n= /2321 {00(90)/ 09 — OLi(@0)/Dp}|| — 0 and  suppevipoln~' 21— {0 (9)/
Dpdp™ — 0*L,(9)/0pIpT}|| — 0 in probability when n — oco.
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(iv) n='2300 9Ei(po)/Dp = N(O, T).
(v) n Y0 02(9*))0pi0p; — T (i, j) as., for any ¢* between @, and ¢o.
We begin with the expressions for the derivatives of ¢,. Formulae (4.12)—(4.13) providing

the derivatives with respect to 6 remain valid, with e? = 63(9). The other derivatives are
given by

o) &\ 1 902 2¢0¢,
99 —\! 02) 0209 0209’ (4.40)
RAC)) =(1- i 1 o] + Zi 1 L@i%iaaﬁ
09097 02) 0209097 o? 0?2 9% 02097
20000 20 O 20 (00 100y 100y ey (4.41)
020809T * ¢20909T 02\ 0902997 o2 93 99T
826[((’))_ 1 _i i 6203 2i_ 1 L%L%_é%iﬁ (4.42)
09007 02) 0293067 o? 02 9% 62007 0% 0902007 ’
Next we turn to the derivatives of ¢,. Let
v(9) = =45 (B)ei(9),  u($) = By (B)ei(9), (4.43)

let Hy ;(f) denote the k X [/ Hankel matrix with generic term ¢,_;_;, and let 0y ; denote the
k X I null matrix. Then we have

Oe
o5 = (CAsB; (D), 0 1(9), - v p(B), e a (B), s ()]
and
010
%, _ Opyipi (4.44)
9909 — 45" (B)Bg ' (B)Hpo(1) '
001 —Ay'(B)By(B)Hg p(1) 2B3%(B)Hg,o(1)
In view of (4.4), we also have
60% - Ve 4 athkfi
7~ kZ:OB a1, 1);2aie,,k,i87‘9j, (4.45)

where 9; denotes the jth component of 3, and
820% = k E O€r_j—i O ki 82€r—k—i
= B (1, 1 20 i |- 4.4
99,09, ; (’ ); a’( o8, 09, 39,09,) (140

We now prove (i). First, note that the existence of the expectations in (4.14) still holds. In
view of (4.40)—(4.42), from the independence among (¢,/0,)(po) =1, and 02(¢y), the
derivatives of the latter, and the derivatives of ¢,(39), together with E(n%) < oo and
0%(go) > wo > 0, it is plain that proving
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86[ 861 82
o0l < E < 44
99 89T( 0)|| < o0, ®o 8969T(00) 00, (4.47)
1 902 do? 252 22
Rl Sy & E — E i
o 57 a9 a9t ®o)|| < oo, ®o 3939T(‘/’0) 00, ®o 898&”(%)
(4.48)

will suffice to establish (i), as well as the existence of Z and J. From the expressions for the
derivatives of ¢,, (4.43)—(4.44), and using Ee3(99) < oo, (4.47) holds. Now the Cauchy—

Schwarz inequality implies
1/2
4 d O¢,_j_i(9
{Z aol‘éiki(go)} {Z ( t—k— ( 0)) } )
= = 3

and thus, by (4.45) and the positivity of wo,

90 o ‘ I N
g (@) <2 Bi(l, Dy @0+ Dol (%) ZaOi(T> :
J k=0 i=1 J

i=1

Oc (3
Zaolét ki(90) == k ( )

Therefore, it follows from the triangular inequality and the elementary inequalities
D% < SJx|'/? and x/(1 + x?) < 1, that

L9050 2ZBk/2(1 De B, DS, ;|0 ii/08)]
07 09, " > w + BK(1, De,—i(1) 7 .
2 & B2(1, 1) 2 (1 g Ot ii
_ZBk/Z(l, ( ) l/g )/\/* Zal/z 2 k' ((p())
= T @R, e var £ 09 )
W23 12 M
p < o0. (4.49)
Z 213 2

The first inequality in (4.48) follows.

The existence of the second expectation in (4.48) is a straightforward consequence of
(4.46), the Cauchy—Schwarz inequality, and the fact that ¢, and its derivatives are square
integrable.

To deal with the second-order cross derivatives of o2, first note that (8°02/
090w)(¢po) = 0 by (4.15). Next, in view of (4.45),

2 2

09; 8

Epo| 2575 (90)| = Epo

- O¢, i
o t—k—i
2 kE: B(1, 1)6t7k7i8l—9j(§00) <00 (4.50)



Maximum likelihood estimation of GARCH processes 631

and, arguing as in the proof of (4.18),
%02

A (Po)| <
89,08, "°

BocFpo Eqo

ZkB (1, 1)22%& - 59" — L (p)| < o0, (45D)

from which the existence of the third expectation in (4.48) follows. Hence the proofs of (i) is
complete.

Assume that Z is singular. Then there exists a vector A # 0 such that AT9¢,(pg)/dp" =
a.s. From (4.12) and (4.40), we deduce that

1 lTaa%(QDO)—F 21, }'Taez(lgo)

) (o) ¢ oZ 1) L)

Taking (a representation of) the variance of the left-hand side conditional on the o-field
generated by {7,, u < t}, we obtain almost surely, at ¢ = @,

B 80 80 2 T@e, 86,

= (KW — l)a% — 2V7]a[b[ + b%,

(1-

=0as. (4.52)

where v, = E(173). Since the right-hand side can be written as (1, — 1 — vf,)a + (b — vya,)?,
we find that r, — 1 — vf] must be negative, and b, = a,{v, + (V +1-1x,)"?}as. By

statlonarlty, we have either b, = a,{v, — (v +1-— )1/ 2} as. for all ¢, or b, =
adv, + (V +1—-xk )1/ 2} a.s. for all t. C0n51der1ng for instance the latter case, and turning
to (4.52), we find that a[l —n;+ {v, +(v; +1- k;)'/2}7,] = 0as. But the term in

brackets cannot cancel almost surely because, 0therw15e 1, would take at most two different
values, thus contradicting assumption (A12). Hence a, = 0 a.s. and thus b; = 0 a.s. We have
proved that, almost surely,

9¢,(¢o) 0¢(99) d02(o)
T t T T t
A 90 =1 59— =0 and A 4&0

=0, (4.53)
where A, denotes the vector of the first P+ Q + 1 components of A. By stationarity of
(0¢;/ D), the first equality implies

_A90(1) _Ago(l)

CO—XI‘,1 CO_thl

: o 9 :
02/1—11- co— Xip —|—Zbo]iT S j( o) /1”11' co— Xip

€11 €11

6t—Q 6I—Q

In view of the minimality assumption (A9) on the ARMA representation, we concluded that
A1 = 0. The second equality in (4.53) then reads /1580%((/)0)/ 00 = 0, with obvious notation.
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We have shown in the proof of Theorem 2.2 that this entails A, = 0. Hence we have found a
contradiction, which proves that Z is non-singular.
From (4.13) and (4.41)—(4.42) we have

1 902 do? 1 O¢, O¢,
2E,
ot 9p 0 (0)>+ /10<28 6(/)(0)
We have just proved that the first matrix on the right-hand side is positive definite, whereas
the second one is positive semi-definite. Hence the non-singularity of .
We now prove that 7 and J have the form given by the theorem when the distribution of
1, 1s symmetric. The expression for /; is a trivial consequence of (4.40) and

cov(l — 52, ,) = 0. Similarly, the form of I, follows directly from (4.12). We now turn
to the non-diagonal blocks. From (4.12) and (4.40) we obtain

6‘6, 86, - yo s 802 6‘0t

In view of (4.15), (4.16), (4.45) and Lemma 4.1, we have

J = E(/)o(

1 30‘2 o2 > i k> Oe €t—kr—i
Egq {048 3,9t( O)} kl; By'(1, 1)By*(1, l)lzl:ZaoEwo{ ; et fy—i (9w9j ((po)}:O

1 do? do;
Efﬂo{o4a 29, (¢ 0)}

00 a b
= > B{'(1, DB, 1)Zza0EwO{ i€k ;9"? ((Po)}zo
J

k1,ka=0 i=1
and
1 907 do3 o (—1 p(
BBV BET (1, DB, 1) 2ay,
{04 5. 75 (4 0)} k;(){; (1, DB(L, )Z ao;
4 d 2 af ko—i
X Ep,§ 0, wo+;ao,-fc,,k1,,- Cr—lky—i a (@o)
Therefore
o 1 do? do?
Vl, .]’ Elﬁo{0,4 80 agt( 0)} (454)

and 7 is a block-diagonal matrix.

It is now straightforward to show that 7 has the form given by the theorem. The
expressions for J; and J, are trivial consequences of (4.13) and (4.41). The block-
diagonality results from (4.42) and (4.54). Hence (ii) is proved.

To show (iii), we differentiate (4.37). Recalling that the initial values are fixed, we obtain
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862 t—1 6~ —1 86,2 t—1 k ) . |
S S, S el
J

k=0 ai k= k=1 \_i=1

in the notation introduced in (4.15)—(4.16) and (4.30)—(4.31). Analogously to (4.45),

862 k 66[71{71'
55 ZB(I 1)Zzae, ST

k=0

By a trivial extension (4.38) we have

86k agk } e
sup max{|e — —— | < Kp" as. (4.55)
pED 09, 09;
Hence
do? 95?2 >~ i ! 01— j—i
‘ 89 ag o B (19 1);2&[61‘7](7,‘ algj

(¢ _z yZeikei €t kz - ) 6€t—k—i_6€t—k—i
t—k—i t—k—i €r—k—i 89j 8-91

+KZp Zp {\5 i +m,-|}

+ |€t—k|}

+ Z B (1, 1)22051

ekl

€ -1

(o @]
Y
k=0

1
L+ kp? ti pk/2 pli=h/2 ¢k
09,

=500

= o ol/2 N k)2

< Kp ZP €k
k=0

It is clear that the last sum converges almost surely because its expectation is finite. Thus we
have proved that

€k1

Oe_j—1
1

89] + |Ek+1q|}'

aékJrlfq
29,

do? 962

< Kp' as.
a9, a9, P

sup
ped

The other derivatives of o2 are handled in the same way, and we obtain

do? 86% — Kp'as
petd 8</> 2 -
In view of (4.39) we have
11 62—-0%| K |, o?
S < 'S, —L<1+Kp'S1,
A B BT Lt

where S, = Zk 1—g(€x] +1). Tt is also straightforward to verify that, for ¢ = ¢y,
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<1+92+Kp'(L+ ] Si—1 + 728-1).

~2

- €
& — &l < Kp'(1+0m), '1 —=
t

i o S 1 1 do? (1 1 1 do?
“|@ -zt or e+ Ao s e 50y
1 o2 : & 1 do? 062
U A EE e ER (R AR

¢, _[1 1 0¢;

o) (-2 )

a, (9,
2255} e~ 0@
1 80

< Kp'{1+ 87 (Ind| +uD)} {1 +57 30s

Hence, using (4.55),

9L po) o)
9p; Ipi

0¢;
0o;

}(@0)-

We have, invoking the independence between 7, and S,_;, (4.14), (4.49), the Cauchy—
Schwarz inequality, and E(¢?) < oo,
. )

_ (o) Bgt(qo )
< 1/22{ 8(P10 8(Pi0 }

-

K 1 80% 8Cf ~1/2 ! ¢ 2 2
= . 1 +0_%8—(p,-((p0) + ‘3_% (@o)|| n ZP {04+l + lmellDIS7 12}
2 t=1
K 1 Bat 412
. 1+pa— (%)Jr‘ Zpt — 0,

which shows the first convergence in (iii). The same arguments can be used to establish the
second convergence in (iii).

The proof of (iv) readily follows from the arguments given to establish (v) in the proof of
Theorem 2.2.

Now let us consider (v). For pure GARCH models, we used a Taylor expansion of the
second-order derivatives of the criterion, and we showed its uniform integrability in a
neighbourhood of 6,. Without additional moment assumptions, the method fails in the
ARMA-GARCH framework because variables of the form o,%(002/99) do not always
admit moments of any order (see (3.3)).

First, notice that, since we have shown that J exists, the ergodic theorem entails

. 4 (o)
nanolc p, Z Gt = J as.
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In view of the already established consistency of ¢,, it will therefore be sufficient to show
that, for any € > 0, there exists a neighbourhood V(@) of ¢ such that, almost surely

lim L Pllp) _ PLi(po) ws6)
=00 N = pevigy|| 09Ot dpdpT
We begin by proving that there exists V(¢() such that
2
E su Et(qDT) 4.57)
0V(p0)|| 09O

In view of the Holder inequality, (4.13), (4.41) and (4.42), it suffices to prove that, for any
neighbourhood V(¢¢) C ® whose elements have their components «; and f; bounded away
from zero, the norms

De D% ‘
2 t t
Sup &\, sup (4.58)
PEV(90) ' 2 (PV(V)O) 09 (pEV((po) 08091
1 Bo?‘ 1 907
sup — || , sup | — —— sup (4.59)
oMo 971 || peVon| 07 09 oo 07 g
00? 202 9202
sup |~k RAE (4.60)
PeV(9o) 0309 (/)EV((po) 6089 <P€V(l/70) O 0000

are finite. The norms in (4.58) are clearly finite, in view of ¢(9)=
Ag(B)Bgl(B)Agol(B)BQO(B)et(SO), similar ~ expressions for the derivatives, and
lle:(0)|]4 < oco. The finiteness of the first norm in (4.59) is an obvious consequence of
02 = infycqpw, the last term being positive by the compactness of .

It is clear that inequality (4.49) can be extended to obtain

= KZpk/zsup
4 k=0 (/7€<I)

2

1 do¥
0_§ 29, (@)

€k

<
09, o

sup
pcd

On the other hand, because (4.15)—(4.18) remain valid when ¢, is replaced by ¢,(93), it can be
seen that

sup < o0

PEV(p0)

e 89 (</))

for any d > 0 and any neighbourhood V(¢(y) whose elements have their components a; and
B, bounded away from zero. Hence the finiteness of the norms in (4.59).

The existence of the first norm in (4.60) is a consequence of (4.46) and (4.58). To deal
with the second norm we use (4.50), (4.51), (4.58), and the fact that sup(,,ey((/,o)ﬂ]fl < o0.
Finally, we show that the third norm is finite by (4.21), (4.22) and arguments already used.

Hence (4.57) is proved. Now the ergodic theorem shows that the left-hand term in (4.56)
converges almost surely to
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P llp)  PLdgo)

E
V|| 0000 g

@EV(po)

This expectation decreases to 0 when the neighbourhood V(@) decreases to the singleton
{@o}. Thus (4.56) holds and (v) is proved, which completes the proof of Theorem 3.2.
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