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On roughness indices for fractional fields
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The class of moving-average fractional Lévy motions (MAFLMSs), which are fields parameterized by a
d-dimensional space, is introduced. MAFLMs are defined by a moving-average fractional integration
of order H of a random Lévy measure with finite moments. MAFLMs are centred d-dimensional
motions with stationary increments, and have the same covariance function as fractional Brownian
motions. They have H — d/2 Holder-continuous sample paths. When the Lévy measure is the
truncated random stable measure of index a, MAFLMs are locally self-similar with index
H=H —d/2+d/a. This shows that in a non-Gaussian setting these indices (local self-similarity,
variance of the increments, Holder continuity) may be different. Moreover, we can establish a
multiscale behaviour of some of these fields. All the indices of such MAFLMs are identified for the
truncated random stable measure.
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1. Introduction

The concept of self-similarity is often used to give a mathematical meaning to the heuristic
concept of roughness. In this domain the fractional Brownian motion (FBM) Bp(f) of
fractional index 0 < H < 1, introduced by Kolmogorov (1940), is certainly the most
famous model. Recall that the FBM is the only centred d-dimensional Gaussian process
such that

E(Bu(f) — Bu(s))* = || — s||*", f,seRY
B(0) = 0 (almost surely).

The FBM has stationary increments, is self-similar of index H, is almost surely H-Holderian,
and H may be identified in an efficient way using generalized quadratic variations (Istas and
Lang 1997; Coeurjolly and Istas 2001). In summary, H describes without ambiguity the
roughness of the FBM, and this roughness is identifiable. Classical representations
(Mandelbrot and Van Ness 1968) of the FBM are the harmonizable representation,

eit.l —1

M||H+d/2

dw (),
Re |

By (1) = J
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and the moving-average representation,
B = | (= 5|42 5] -y
Rd

where the W are the d-dimensional random Brownian measures. In outline, the construction
is as follows: one performs a fractional integration, either harmonizable or moving-average,
of the random Brownian measure. The stochastic integrals with respect to random Brownian
measures are isometries that map deterministic functions in L*(R) to Gaussian random
variables in L*(Q, P), where (Q, P) is the underlying probability space (see Neveu 1968).
The following question arises: what happens when the ‘Gaussian’ condition is replaced by a
more general condition? The stable case has been widely studied (Samorodnitsky and Taqqu
1994), and we will consider the case where the ‘Gaussian’ condition is replaced by the
existence of all moments. Let us be more precise. Let M be a random Lévy measure all of
whose moments are finite: typically, M will be a truncated stable random measure of index
a. We consider the following two processes:

eitj{ -1
Xna(t) = JW A7 dM(4),

and
Xona) = | (=l = 1)),
Because of the isometry property of such random Lévy measure, the second-order structures
of Xpy4, Xyy and FBM are the same:
E(X 14 (1) — X 114(9))* = E(Xpa () — Xpsa(s))’ (1
= o= 5|,

The process Xy, called real harmonizable fractional Lévy motion (RHFLM), was studied in
Benassi et al. (2002). Xy still has stationary increments but is no longer self-similar. Xy is
locally self-similar with an FBM as tangent field:

i (XHA(t+eu) —XHA(t)) @
m
ueR9

Pt eH - (BH(M))ltER‘ia

where 2 stands for the limit in distribution. RHFLMs are almost surely H-Holderian. The
index H may be identified with the same tools as for FBM (Benassi ef al. 2002). Once again,
H describes without ambiguity the roughness of the process and this roughness is
identifiable. One therefore should wonder whether the index H of the second-order structure
(cf. (1)) always describes the roughness of a process. The study of processes Xy, called
moving-average fractional Lévy motion (MAFLM), the subject of this paper, clearly indicates
that the answer is no.

It is known (Falconer 2002; 2003) that the tangent field, if it exists, of a process is
almost everywhere a self-similar field with stationary increments. We show in this paper
that the tangent field of some MAFLMs is not an FBM, but is a moving-average stable
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motion (defined in Samorodnitsky and Taqqu 1994). To our knowledge, these MAFLMs are
the first known second-order processes having non-Gaussian tangent fields. Moreover, the
index of local self-similarity of these MAFLMs is not H, but another index, H, which we
give in the paper. It follows that the roughness is no longer described by a single index. We
then prove that MAFLMs have continous sample paths if and only if d =1 and H > 1/2.
Thus, MAFLMs are almost surely (H — 1/2)-Holderian.

The indices H and H of MAFLMs are then identified thanks to the observation of a
single sample path on a bounded interval. The local self-similarity suggests the use of log-
variations to identify H, as was done in Abry et al. (2000) and Dury (2001) for stable
processes in a wavelet setting and generalized by Cohen and Istas (2003). S-variations are
used for the identification of H. Actually it is shown that (-variations behave differently
according to whether f < a or f§ > a. This fact is reminiscent of the multiscale behaviour
of MAFLMs that we will describe in this paper.

The paper is organized as follows. In Section 2 the MAFLMs are constructed by means
of a Poisson representation. The properties of general MAFLMs (asymptotic self-similarity,
smoothness of the sample paths) are given in Section 3. The property of local self-
similarity, where we need to restrict the class of MAFLMs, is studied in Section 4. The
identification is carried out in Section 5.

2. Construction of moving-average fractional Lévy motions

In this section MAFLMs are obtained by means of a Poisson representation of the random
Lévy measure M(ds) that integrates the classical moving-average kernel:

G(t, 5) = ||t = s 1792 — ||s|| =72, 2

As in Benassi et al. (2002), a real-valued field is obtained that has moments of second order
E(X?,(f)) < +oo for all +€ RY. Since the kernel is itself real-valued, the construction of
MAFLMs is even easier than that of RHFLMs since the random measure M(ds) can be
chosen real-valued.

Let us consider a random Poisson measure N(ds, du) in the sense of Section 3.12 of
Samorodnitsky and Taqqu (1994) but with a control measure that has moments of every
order (see also Benassi et al. 2002). More precisely, let N(ds, du) be a random Poisson
measure on R? X R for which the mean measure n(ds, du) = EN(ds, du) = dsv(du)
satisfies,

Vp =2, J |u|Pv(du) < 4o0. 3)
R
A control measure is said to be finite if
J v(du) < 4o0.
R

Denoting by N=N—n the compensated random Poisson measure, the characteristic
function of the stochastic integral is, for all ¢ € L?, for all v € R,
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Eexp (iqu; dﬁ)) = exp U [exp (ivp) — 1 — ivp]ldsv(du)|, 4)
RIXR
where the integral on the right-hand side is convergent since
lexp(ix) — 1 —ix| < C|x|? Vx € R. %)
Let us now define the random Lévy measure M(ds) by

J F(s)M(ds) & J F(s)uN(ds, du) (©6)
R4 RIXR

for every function f : RY — R where f € L?>(RY). Moreover, an isometry property for the
random Lévy measure M (ds) holds:

: 2
= 2(d & d 7
1 e >JR” ¥(du) ™

Since G(t, -) is in L*(RY) for every ¢ € R, the MAFLM can now be defined.

EU F(s)M(ds)
Rd

Definition 2.1. Let us call a real-valued field (Xy(t));cge Which admits a well-balanced
moving-average representation

Xt = | (Il =512 = 5] 1) b,

where M(ds) is a random Lévy measure defined by (6) that satisfies the finite-moment
assumption (3), a moving-average fractional Lévy motion with parameter H.

In this paper, for the sake of simplicity, we omit the case d =1, H =1/2: X;;5(¢) is
equal in distribution to Jﬂo[ M (ds), which is a Lévy process, and this case is of no interest in
this paper.

Since n(ds, du) is translation-invariant with respect to the variable s, it is straightforward
to show that MAFLMs have stationary increments.

Let us illustrate this construction with a simple example: d =1 and v(du) =
%((3_1(du)+(3](du)), where the ds are Dirac masses. In this case M(ds) is a compound
random Poisson measure and can be written as an infinite sum of random Dirac masses,

M(ds) =)~ b5, (ds)en,

neZ

where S, — S, are identically independent random variables with an exponential law, and
e, are identically distributed independent Bernoulli random variables such that
P(e, =1)=P(e, = —1) = 1/2. The ¢, are independent of the S,. Since the measure v is
finite and [, uv(du) = 0, the corresponding MAFLM is, in this special case,

+00

X(0)y=>_ eallt =S, T2 =[5, (®)

n=—00

Even if this equality is in the L? sense, it suggests that the regularity of the sample path can
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be governed by H — 1/2. In the following section we need other tools to prove this fact, but
it turns out to be true.

3. Properties of general moving-average fractional Lévy
motions

3.1. Asymptotic self-similarity

Proposition 3.1. MAFLMs are asymptotically self-similar with parameter H,

lim <XH(’”)) D vt * (B0 s ©)
teRd R

R—+00 RH

where the convergence is that of the finite-dimensional margins and By is a standard FBM of

index H.

Proof. Let us consider the multivariate function

[ Rt — s|| =972 — |s]| "~/
RH ’

o (R, s, u) =iuy vy (10)
k=1

where t = (t1, ..., t,) and v = (vy, ..., U,) are in R”. Then

~~ . Xu(Rt
Eexp( > o 00 ) —exp( | fexplennR s )~ 1~ g s wldsu(en) ).
k=1 R RIXR
(In
The change of variable s = Ro is applied to the integral on the right-hand side to give:

JW PR gl 0, w) =1 = R Pl 0, wIR dovidw.  (12)
X

Then, as R — +o00, a dominated convergence argument yields that
. .~ Xu(Rty) 1
(Jim Eexp <1 ; Ok | =exp ELWRgiU,H(l, o, wydov(du) ). (13)

Therefore the logarithm of this limit is

2

1 +00 n 3 :
5] wwan| (Zuk(llrk—on’f "2 || d”)) do, (14)
0 RY\ =1

the second integral of which is the variance of ZzzlukBH(tk), which concludes the proof of
the convergence of finite-dimensional margins. U
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3.2. Regularity of the sample paths

In this subsection general MAFLMs are considered again. To investigate the regularity of
the sample paths of MAFLMs one can use the Kolmogorov theorem to show that the
sample paths are locally Holder-continuous for every exponent H' < H —d/2 when
H > d/2. This is a direct application of the isometry property. The question is then what
happens when H < d/2 or if H—d/2>0. Can we show that the ‘true’ exponent is
strictly larger than H —d/2? If we consider the integrand G(t, s) = ||t — s|///~9/?—
||s||7/=4/% it is clear that, when H —d/2 <0, G(-, s) is not locally bounded, and when
H >d/2, it is not H'-Holderian if H' > H — d/2 in a neighbourhood of s. Following
Rosinski’s rule of the thumb (Rosinski 1989), it is known that the simple paths of the
integral defining Xy (7) cannot be ‘smoother’ than the integrand G.
Let us now make some precise statements.

Proposition 3.2. If H > d/2, for every H' < H — d /2 there exists a continuous modification
of the MAFLM Xy such that

Plw; sup (M) < 6] =1, (15)

o<lis—dl<c@ lsi=t=i \ s = £ll#

where ¢(w) is an almost surely positive random variable and 6 > 0. Moreover, for every
H' > H—d/2, P(Xy ¢ CH) >0, where C!'' is the space of Holder-continous functions on
[0, 119. Furthermore, if the control measure v of the random measure M is not finite,
P(Xy¢Cly=1.

Proof. Since
E(Xu(s) — Xu()* = C||t — s>,

property (15) is a direct consequence of the Kolmogorov theorem. To prove the second part
of the proposition, Theorem 4 in Rosinski (1989) will be applied to X . First, we take a
separable modification of Xy with a separable representation. The next step is to use the
symmetrization argument of Rosinski (1989, Section 5) if v is not already symmetric. Then
we can remark that the kernel ¢ — || — s||7=9/2 — ||s||""~9/? ¢ C!' for every H' > H — d/2,
and the conclusion of Theorem 4 is applied to the measurable linear subspace C”" to give
P(Xy ¢ C"") > 0. To show that this probability is actually one, we rely on a zero—one law.
The process Xy can be viewed as an infinitely divisible law on the Banach space C[0, 1] of
the continous functions endowed with the supremum norm. Let us consider the map

¢ RXRY— [0, 1]
(ut, 8) = u(||- — 8[| 792 — ||| 92

the random Lévy measure F(df) of the infinitely divisible law defined by Xy is now given
by @(v¥™(du) X ds) = F(df), where v*™ is the control measure of the symmetrized process.
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Hence F(C[0, I\C"") = 400 if ¥™(R)= +oo. Corollary 11 in Janssen (1982) and
P(Xy ¢ C"") > 0 yield the last result of the proposition. O

Now let us return to the case H < d/2.

Proposition 3.3. If H < d/2, for every compact interval K C R,
P(Xy ¢ B(K)) > 0,
where B(K) is the space of bounded functions on K.

Proof. In this case, we remark that ¢ — ||z — s||#=9/2 — ||5]| "=/ ¢ B(K) for every s € K.
The proposition is then proved by applying Theorem 4 in Rosinski (1989) to B(K).

4. Local self-similarity of MAFLMs

We now investigate local self-similarity for MAFLMs. It should be noted that MAFLMs
generally do not have a tangent field. In this section we focus on the truncated stable case.
In view of Propositions 3.1 and 4.1, the truncated stable case can be viewed as a bridge
between FBM and moving-average stable motion. Let

Lju<1y du
‘u|l+a :

v(du) =
Denote the corresponding MAFLM by
Xuao(t) = J G(t, s)dM(s).
R4

The behaviour of MAFLMs at small scales ¢ — 0" is similar to the behaviour of
RHFLMs at large scales R — +oo. For instance, the limit field is a moving-average stable
motion (cf. Samorodnitsky and Taqqu 1994) with parameter H. However, the relationship
between H and H is slightly different in the setting of moving averages, as shown in the
following proposition.

Proposition 4.1. Let us assume that H, defined by H — d/a=H—d/2 is such that
0< H <1 The MAFLM Xy, with control measure

L=y du

is locally self-similar with parameter H. For every fixed t € RY,

i (XD ZED) D (1,00 (16)
€ xeR4

c—0t

where the limit is in distribution for all finite-dimensional margins of the field and the limit is
a moving-average fractional stable motion that has a representation
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Ya(x) = J (Ix = a4 — ||o||#~ ") My(do), (17)
Rd

where M, (d&) is a stable a-symmetric random measure.

Proof. Since the MAFLM has stationary increments we need only prove the convergence for
t = 0. As in the previous proposition, we consider a multivariate function

et — s|| 72 — |s||

Grun(e s, )= iu> vy - , (1)
k=1

where ¢ and v are in R”. Then

[Eexp( Zv H“““) = exp (JR [ep(guone s, 1) = 1= gou(cs s, u)]dsv(du)).

(19)

Then the change of variable ¢ = s/¢ is applied, and H has been chosen such that the integral
in (19) is now

- (o3 — (o3 d
[, FexpCeint o) 1 = (1. 0. VeIl < Defdo T 20)
RIXR
Let us set w = ¢ %/y. The integral becomes
—d/a dw
I(e) = i [eXp(gtuH(l o, w) —1—grnl, o, w(jw| < )d0| T 2

Recall that

, d
—C(a)|x|* = J [ — 1 —ixrl(jr| < e ¥ |,,‘1r+a (22)
R
for every ¢ > 0, where C(a) =2 f0+°°(1 — cos(r))dr/r'**. Let us write
- . _ dr
Jc = J[R[elxr —-1- 1xr]l(|’”| ¢ d/a) ‘r|l+a
Then
lim (J, + C(a)|x|*) = lim | [1 —e™"1(|r| > ¥/ r__,
0t = 7|
Hence,
lim 7(0) = —C(a>J |g0on(1, 0, )| do. (23)
e—0F R4

Since this last expression is the logarithm of
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[Eexp(izukyf,(zk)),
=1

the proof is complete.

5. Identification of the fractional indices

We now carry out our identification for MAFLMs with truncated stable control measures.
M is therefore a random Lévy measure associated with v(du) = 1j,<1y du/|ul"**. Recall
that the corresponding MAFLM is denoted by

Xpalt) = JW G(1, s)dM(s).

For k = (ky, ..., k;) € N? and n € N*, define

k_ (kb Kk
Zn_ 2n""’2n ?

k ki ka
XH,a <2n> = XH,(Z (2}7, cees 2n> .

The aim of this section is to perform the identification of the fractional indices H and H,
or equivalently the indices H and «, with discrete observations of the field Xy, on [0, 1]¢.
Xpq is observed at times (k1/2", ..., kqs/2"), 0<k; <2",i=1,...,d.

Let (ay), =0, ..., K be a real-valued sequence such that
K K
Z ar =0, Z la; = 0. (24)
=0 (=0
From now on, multi-indices are written with bold letters. For k = (ky, ..., kg) € N9, define
ag = dfy - Ajy,-

Define the increments of Xy, associated with the sequence a:

K
k +
AXP,n = ZakXH,a< 2np)

k=0
def £ ki + p1 ka+ pa
= Z akl...akdXH,a< o g e o >,
kv kg=0
one can, for instance, take K =2, a9 =1, a; = -2, a, = 1.

For 8 > 0, define the f-variations by

1 2"-K p
Vig = ———— S |AX, P,
nf (2}1 . K)d p; | p. |
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Define the log-variations by:

1 2" K
Voo =———— log|AX ]
0= 2 Ky P; 0g|AXp.|

Variations of processes are classical tools for identifying parameters: quadratic variations
were introduced some time ago for Gaussian processes, and log-variations were introduced
in Abry et al. (2000) for stable processes in a wavelet setting. The main result of this
section concerns the asymptotic behaviour of the log- and S-variations:

Theorem 5.1. For the convergence of log-variations, we have

® 7
im —-—— = H
n—+oo  nlog2 0

For the convergence of fB-variations, there are two cases. For 0 < ff < a, there exists a
constant Cg > 0 such that

lim 2784y, cp.

n—+00

For o < B <2, there exists a constant Cg > 0 such that

lim 2"AH+d/B=d/ Dy, o (@s) Cp.

n—+00

Tl~1e fractional indices H and H can then be identified as follows. A consistent estimator
of H is given by

~ 1
i, = Vo (25)

B log2”
To estimate H, we have to assume weak a priori knowledge on a, for instance that a belongs
to the interval ]0, agp[, With agp < 2 known. For any ag, < 8 < 2, a consistent estimator of
H is then given by

1 V-1 p ﬁd
H,=-[1 t4——d. 26
ﬂ(ogz Vs +2 (26)
Using (25) and (26), a consistent estimator of a is of course
d
an = .
H,—H,+d/2

Note that we could have estimated a using the results on the convergence of S3-variations.
Actually, if we assume that we know (83, loga(V,—18/V . p)) for different values of B then a is
the point at which the slope is changing. Although this method does not theoretically require
any a priori knowledge for a, we believe it is not numerically feasable to determine a
sampling design for the s without this a priori knowledge.
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Proof of Theorem 5.1. The convergence of the log-variations is a particular case of a more
general result due to Cohen and Istas (2003) and will be omitted.

Integral representations of power functions are used extensively and are given in the
following. For all g € (0, 2), for all x € R,

; . -1, .
1 —iyl e —1 —ixyl
B _ e V<1 ) J 3% [
of = ([ o sy d
H (JR e V) e

Because of this integral representation the process

| K o
S.(y) = TRy 2 exp(lyz HAXp,,,>, yEeR,
p=

is introduced for the the study of the f(-variations and log-variations. Let

AGp,(s) = Za/GC’M >
where G is defined in (2) and
S(y) = exp{|y|aj |, [exp(0AG01(0)) 1 = AGy (o)1 =110 (lifia}
We first prove the following intermediate lemma on S,(»).

Lemma 5.2.

lim S ()2 5(y).

Proof. We first prove the convergence of ES,(y). By (4),
ES.(y) = exp{JRd R[exp(iuyZ”I:IAGo,n(s)) —1- iuy2"HAG0,,,(S)]dsv(du)}.
X
The change of variables s = 0 /2", v = uy2"¥/* leads to
ES)(y) = exp{|y|“deXR[exp(ivAG0,l(o)) 1= iAGy(0))do %Hmswzwa}-

and the convergence of ES,,(y) toward S(y) is proved by using the same arguments as in (23).
Let us now study the variance of S,(y). We have

K)zd Z Ipp >

p.p'=1

var S,(y) =

with

Loy = Eexp(iy2"#(AX,,, — AXy.)) — Eexp(iy2"#AX, ) Eexp(—iy2" AX, ).
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Because of (4), /,p' can also be written

Ipp = exp{J [exp(iuy2”H(AGp,n(s) — AGpr,,,(s))) —1
RIXR
—iuy2 " (AGyu(s) — AGpr,n(s))]dsv(du)}
_ exp{J [exp(iy2" 7 AG, ,(s)) + exp(—iuy2"H AGy (s))
R4 xR

— 2 — 2" AG,,,(s) — iuy2"? AGpr,n(s)]dsv(du)}.

Hence
Ipp = App X Bpp'
with
App = exp{JRl R[exp(iuyZ"H AG,(s)) + exp(—iuy2" T AGy . (s)) — 2
ax

— 2" AG,,(s) — iuy2"H AGpr,,,(s)]dsv(du)}

and
Bpp' = exp{J [exp(iy2" T AG, ,(s)) — 1]
R4 xR
[exp(—iuy2" 7 AGy,(s)) — l]dsv(du)} 1

Clearly,

|[dpp| < 1.

The change of variables s = 0 /2", v = uy2"¢/* leads to

Bpyp = CXP{|J’|aJRd R[eXP(iUAGp,l(U)) —1]
X

. dv
[exp(—lUApr,l(O)) — l]dO' Wlugznd/a} — 1.

Define

. . dv
Cop = J , [exp(iVAGp_p,1(0)) — 1][exp(—=ivAGy,1(0)) — 1]do ——.
RIXR

o[+
This leads to
Bpp = (exp(Cppr|¥|*) — 1)(1 + o(1)).
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We split Cpp into two parts,

. . dv
T = J [exp(iVAGp_p1(0)) — 1][exp(—ivAGy,1(0)) — 1]do T
RIx{|v|<4} |v]

. . dv
T, = J [exp(ivAGp_p.1(0)) — 1][exp(—ivAGy,1(0)) — 1]do e
RIX{|v|=4} |v]

with 4 to be chosen later.

K K
dov
7| < j al+p—p — oS gyt — o] 42|do
RYX|v|<4 22:0: gz:(; vf*!
K K
< CAz_aJ ZagHZ—i—p—p’ —OHH_‘Z/ZZagHé—GHH_d/Z do.
R =0 =0

This is identical to the term obtained in the Gaussian case (cf. Benassi et al. 1998).
Therefore, a Taylor expansion of order 2 around p — p’ is used:

1| < CA>*|[p —p|| 9272,

Moreover, for & > 0 arbitrarily small,

|T2| <

[exp(iVAGp_p,1(0)) — 1][exp(—ivAGy,1(0)) — 1]

2
do)

[exp(—ivAGy,1(0)) — 1]

¢ J do
Aaié RIXR |U|l+(3'

By the Cauchy—Schwarz inequality,

(.
[,

(1.

[exp(ivAGp_p 1(0)) — 1][exp(—ivAGy,1(0)) — 1]
daJ
Rd
) 2
do) s
C/

Aa—é :
We choose 4 such that 427 = ||p — p’[|*"¢/>~ . Therefore, as ||p — p’'|| — +oc:

2 2

do

[exp(VAGy p1(0)) — 1]

[exp(—ivAGo,i(0)) — 1]

so that

|T,| <

|Bp| < Cllp — p'|| 0722 I/@E0

We choose 0 small enough, so that >, varS,(y) is convergent. For every ¢ > 0,

+00
> P —ES(0)] > < 2 varS,(y).
n=1 n
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Hence, by the Borel—Cantelli lemma,

lim (S,() — ESu() 2 0

and

lim 5,00 " S()

and the convergence of ES,(y) concludes the proof of the lemma. O

We can now prove the convergence of the [-variations for 0 < < a. The integral
representation of power functions leads to

2K
2nﬁH » Sa) =1 = iyl (1/@" = K)D 2; 2"AXy,
p:
)d Z |AXP n| = J |y|1+ﬁ d)/

The sequence Z AXpn is a telescopic one: [E(ZZ,IKAX .)> converges to zero
and can be overestlmated by a constant. By the Borel-Cantelli lemma,
Q" /" - K)“’)E2 " XAX,, converges (almost surely) to 0.

An application of the dominated convergence theorem leads to

RS ws) [ SO -1
li AX, P = dy. 27
o K (27 — K)? Z |AXpn| JR BEG y (27)

We now study the S-variations for o < 8 < 2. The integral on the right-hand side of (27)
is divergent, so of course the dominated convergence theorem can no longer be applied.
First, recall that

ex QJ E(v, 0)do do|v|" 91,2 on /a} -1
J ES.(y) — 1 dy = J p{lyl RIXR . 0) vl ol <[ y[27 »
R |Y[MP R |y|!+# ’

where

E@, 0) = exp(ivAGy1(0)) — 1 — ivAGy1(0).

The previous integral is split into three terms,

Jysznd/" 2-ndla<|y|<l/n [y|>1/n

For the sake of brevity, the integrand with respect to y has been suppressed in the following
when no confusion is possible. For the first term, the change of variables z = 1279/ leads to:

exp{|y|“J E(v, 0)do dUU|(1+a)lvgy|2nd/a} -1
J RIXR dy
|y‘§2—nd/a |y|1+ﬁ
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exp{z‘”d|z|“J E(v, O’)dO’ dU|U|_(l+a)1|U|gz} -
RIXR

217 dz.

— anﬁ/aj

|z|=<1

nd

Since 27" — 0 as n — 400, a Taylor expansion of order 1 is used:

exp z—"d|z\“J E(v, 0)do dolv| "1 < —1:2_"d|z|“J
RIXR

E(v, 0)do dolv| T < (1 + o(1)).

RIXR

Note that, because of the term 1<, the integral

dz dv
Jz<l WJRdXRE(U o)do |v]1+e L=

is convergent. It follows that:

exp {|y|aJ E(U, G)dG dU|U(1+a)1USyI2nd/a} —1
RIXR

J|yszw/a |y +#

dz dv
WJRfixRE(U’ O’)dO’ | |l+a 1|U\<\z\(1 + 0(1))

lz|=<1 |

dy

_ zn(fderﬂ/a)JA

|1+a

We now turn to the third term. Because of the symmetry of dv/|v|'™®, the integral

Jraxg E@, 0)dodv/[v['" 1< ypmae is negative.

We can bound exp{|y|* [puyg E(v, 0)do dv[v|" 91, p} by 1, so that
exp{| y\“JRdXRE(U, 0)do du|u|—“+‘”1lvlgywa} —1

J 1+p d

[y=1/m By

Finally, we consider the second term. Since 1/n — 0, a Taylor expansion of order 1 leads
to:

y$Cnﬁ.

exp{|y“J E(U, O)dU dU|U|(1+u)1|U|§y2nd/a} —1
RIXR d

szl/ugygl/n |y|1+ﬂ
_ J dy
2-ndja<|y|<1/n |y|1+ﬂ—a

The change of variable z = y2"4/* leads to:

dy J do
T4 8—a E(U’ O-)dO-—I <|y|2nd/a
Lnd/,,gﬂgl/n || Jpixm |v|1+e lvl=<|y]

y

dv
J E(U, U)dU T IIU‘<‘y‘2nd/u(1 —+ 0(1))
RIXR | |

dz dv
:2"(—d+dﬁ/“>J 7J E(, 0)do ——1
<l <2mdfajn 2|1+~ Jpavr |v|1+e ol=<lz|-
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Since f > «a, the integral

dz

dv
E(v, 0)do ——1},<-
Jlglstnd/a/n ‘Z|1+ﬁfa J[RL‘X[R |v|1+e vI=]]

converges to

dz J dv
Tl E(, 0)do —— 1<
Jlsz |Z|1+ﬁ7a RIXR | ‘l+a |vl=<lz]>

so that

exp{| y|“J E(v, 0)do du|u|<1+“>1lug|y2nd/,l} —1
RIXR d
ERG g

L"d/asysl/n

dz dv
= pn=d+dp/a)(q 1 J 7J E(v, 0)d 1
(1+ o(1)) ot T e (v, 0) o| jia Loi<lal

To summarize, the first term is equivalent to C2"(-4+4f/® the third is equivalent to
C27-d+dB/0) and the second is negligible as compared to the two others. We have proved
that:

2”<d—dﬂ/a)J 4[“'"({1; iy = e
R

From Lemma 5.2, §,(y)=ES,()(1+ 0@s)(1)). We have therefore proved that
2npHpnd=dfja)y, o converges, as n— +o0o to a constant. Since BH +d —df/a) =
B(H — d/2 + d/f), Theorem 5.1 is proved. O
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