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Serial ranks have long been used as the basis for nonparametric tests of independence in time series

analysis. We shall study the underlying graph structure of serial ranks. This will lead us to a basic

martingale which will allow us to construct a weighted approximation to a serial rank process. To

show the applicability of this approximation, we will use it to prove two very general central limit

theorems for Wald±Wolfowitz-type serial rank statistics.
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1. Introduction and statement of results

Let X 1, . . . , X n be independent random variables with a common continuous distribution

function. For any i � 1, . . . , n, let R(i) denote the rank of X i among X1, . . . , Xn. Then

Pf(R(1), . . . , R(n)) � (ð(1), . . . , ð(n))g � 1

n!

for any permutation (ð(1), . . . , ð(n)) 2 P , where P denotes the set of all permutations of

(1, . . . , n). Let A � (A1, . . . , An) denote the vector of anti-ranks of (R(1), . . . , R(n)) ± that

is, A is the inverse permutation of (R(1), . . . , R(n)) de®ned by

R(A j) � j, j � 1, . . . , n:

Clearly, for any permutation (ð(1), . . . , ð(n)) 2 P ,

Pf(A1, . . . , An) � (ð(1), . . . , ð(n))g � 1

n!
:

For n > 2, let cn(1), . . . , cn(n) be real constants such thatXn

i�1

cn(i) � 0: (1:1)

Denote, for n > 2,
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Sn( j) �
Xj

i�1

cn(R(i))=(nÿ j), j � 1, . . . , nÿ 1;

and de®ne, for each j � 1, . . . , nÿ 1, the ó-®eld

G n( j) � ó (R(1), . . . , R( j)):

Let G n(0) be the trivial ó-®eld. It is readily veri®ed that

f(Sn( j), G n( j)) : 1 < j < nÿ 1g (1:2)

is a martingale; consult, in particular, Shorack and Wellner (1986). Now, for n > 3, de®ne the

rank process

Cn(t) �
X
i<nt

cn(R(i)), 0 < t < 1: (1:3)

For the constants cn(1), . . . , cn(n), introduce the following two conditions: there exist ®nite

positive constants Y 1 and Y 2 such that, for all n > 2,

ó 2
n(c) �

Xn

i�1

c2
n(i) < Y 1 (1:4)

and

ìn �
Xn

i�1

c4
n(i) < nÿ1Y 2: (1:5)

(Of course, (1.4) follows from (1.5) by the Cauchy±Schwarz inequality.) Shorack (1991),

using the martingale property (1.2) in combination with the Skorohod embedding, established

the following weighted approximation for the rank process.

Theorem A. Assume that (1.1), (1.4) and (1.5) hold. Then on a rich enough probability

space there exist a sequence of versions ( ~Cn)n>1 of (Cn)n>1 (i.e. ~Cn�L Cn for every n) and a

standard Brownian bridge B such that, for all 0 < í, 1
4

and r. 0,

sup
r=n< t<1ÿr=n

j ~Cn(t)ÿ ó n(c)B(t)j
(t(1ÿ t))1=2ÿí � Op(nÿí): (1:6)

Einmahl and Mason (1992) generalized Shorack's result to a class of exchangeable

processes. Weighted approximations to exchangeable processes and the uniform empirical

and quantile processes, among other processes, have proved to be tremendously useful in

establishing the asymptotic distribution of complicated statistics for which traditional weak

convergence methods are dif®cult to apply. See, for example, Part II of the proceedings

volume edited by Hahn et al. (1991) and the monograph by CsoÈrgoÍ and HorvaÂth (1993),

and the many references therein. For weighted approximations to certain sequences of

continuous-time martingales, refer to Haeusler and Mason (1999).

One of our intentions here is to obtain the analogue of Shorack's result for a serial rank

type process. To motivate our investigations, consider the nonparametric testing problem
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H0 : X1, . . . , Xn are independent versus H1 : X 1, . . . , X n are dependent,

where X1, . . . , Xn are considered to be observations of a time series at times i � 1, . . . , n.

Introduce the notion of the pairs of ranks/serial ranks at lag r, r > 1, based upon the sample

X 1, . . . , X n taken in the given time order:

(R(1), R((1ÿ r)modn)), . . . , (R(n), R((nÿ r)modn)), (1:7)

where for any ÿn� 1 < M < nÿ 1,

Mmodn �
M � n, M < 0

M , M . 0:

�
The classical test statistics for H0 versus H1 are often based on these pairs of ranks/

serial ranks at some lag r, r > 1. For instance, Spearman's rho is formed by choosing

r � 1 in (1.7) and taking the sample correlation of these pairs. Consult Hallin and Puri

(1988; 1991; 1992a; 1992b; 1994; 1995) and the references therein to see how to construct

optimal tests based on serial ranks against various time series parametric alternatives.

Towards de®ning a serial rank process analogous to the rank process given in (1.3), for

any n > 3 and 1 < r < nÿ 1, we set

( f r(1), . . . , f r(n)) � (R((A1 ÿ r)modn), . . . , R((An ÿ r)modn)): (1:8)

Notice that ( f r(1), . . . , f r(n)), for 1 < r < nÿ 1, is a random permutation of (1, . . . , n),

and observe, for instance, that

Tn(r) :�
Xn

i�1

an(i)an( f r(i)) �
Xn

i�1

an(R(i))an(R(iÿ r)modn),

where an(i), i � 1, . . . , n, is any triangular array of constants. The statistic Tn(r) is the

classic serial rank test of Wald and Wolfowitz (1943) for testing H0 : X 1, . . . , X n are

independent versus H1 : X 1, . . . , X n are dependent.

For n > 3, let cn(1), . . . , cn(n) be real constants such that (1.1) holds, and for

1 < r < nÿ 1, de®ne the serial rank process at lag r

C(r)
n (t) �

X
i<nt

cn( f r(i)), 0 < t < 1:

One of our aims in this paper is to establish the following weighted approximation for the

serial rank process.

Theorem 1.1. Let r be ®xed and assume that (1.1), (1.4) and (1.5) hold along the

subsequence fnigi>1 of fng of all integers n > 3 such that ni and r are relatively prime.

Then on a rich enough probability space there exist a sequence of versions ( ~C(r)
ni

)i>1 of

(C(r)
ni

)i>1 (i.e. ~C(r)
ni
�L C(r)

ni
for every i) and a standard Brownian bridge B such that, for all

0 < í, 1=4 and r. 0,

sup
r=ni< t<1ÿr=ni

j ~C(r)
ni

(t)ÿ ó ni
(c)B(t)j

(t(1ÿ t))1=2ÿí � Op(nÿíi ): (1:9)
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We remark that a straightforward modi®cation and simpli®cation of the proof of Theorem

1.1 yields the following weak convergence result for C(r)
n .

Theorem 1.2. Let r be ®xed and assume (1.1) and (1.4), and replace (1.5) by the assumption

that

max
1< j<ni

c2
ni

( j)! 0

holds along the subsequence fnigi>1 of fng of all integers n > 3 such that ni and r are

relatively prime. Then on a rich enough probability space there exist a sequence of versions

( ~C(r)
ni

)i>1 of (C(r)
ni

)i>1 (i.e. ~C(r)
ni
�L C(r)

ni
for every i) and a standard Brownian bridge B such

that

sup
0< t<1

j ~C(r)
ni

(t)ÿ ó ni
(c)B(t)j � op(1): (1:10)

We will not give the routine details of the proof here. However, refer to Remark 3.2

below.

To show the applicability of our weighted approximation for C(r)
n we shall establish two

general results on the asymptotic normality of the following class of Wald±Wolfowitz

statistics. For n > 3, let an(1), . . . , an(n) and bn(1), . . . , bn(n) be constants, and choose

1 < r < nÿ 1. Consider the statistic

Wn(r) :�
���
n
p Pn

i�1(an(i)ÿ an)bn( f r(i))

ó n(a)ó n(b)
,

where ó 2
n(a) �Pn

i�1(an(i)ÿ an)2, an � nÿ1
Pn

i�1an(i) and ó 2
n(b) �Pn

i�1b2
n(i).

For our ®rst central limit theorem, introduce the condition on the constants an(1), . . . ,

an(n), n > 3: for i � 1, . . . , n,

an(i) � J1

i

n� 1

� �
ÿ J2

i

n� 1

� �
, (1:11)

where J1 and J2 are non-increasing functions on (0, 1) satisfyingXn

i�1

J2
1(i=(n� 1))� J2

2(i=(n� 1))

ó 2
n(a)

� O(1) (1:12)

and

max
1<i<n

J2
1(i=(n� 1))� J2

2(i=(n� 1))

ó 2
n(a)

� o(1): (1:13)

For our second central limit theorem we need the following condition on the constants

an(1), . . . , an(n), n > 3. For some measurable function j on (0, 1) satisfying 0 ,
varj(U ) ,1, where U is Uniform(0, 1), assume

lim
n!1

�1

0

(an(1� [un])ÿ j(u))2 du � 0: (1:14)
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Furthermore, impose on the constants bn(1), . . . , bn(n), n > 3, the condition

lim
ô!1 lim sup

n!1

Xn

i�1

1fb2
n(i)=ó 2

n(b) . ô=ngb2
n(i)=ó 2

n(b) � 0: (1:15)

For instance, it is readily checked that (1.15) is satis®ed if (1.14) holds with bn(i) replacing

an(i).

We will establish the following central limit theorem for Wn(r). In the course of its proof

we will see how to adapt the approximation in Theorem 1.1 to determine the limiting

distribution of functionals of the serial rank process when n and r are not necessarily

relatively prime.

Corollary 1.1. Let an(1), . . . , an(n), n > 3, be a triangular array of constants satisfying

ó 2
n(a) . 0,

Pn
i�1an(i) � 0 and (1.11), (1.12) and (1.13). Further, let bn(1), . . . , bn(n), n > 3,

be a triangular array of constants such that ó 2
n(b) . 0,

Pn
i�1bn(i) � 0 and (1.15) hold. Then

for any r > 1, we have

Wn(r)!L Z as n!1, (1:16)

where Z is a standard normal random variable.

Remark 1.1 Notice that the functions J1 and J2 need not be square-integrable to satisfy

(1.12) and (1.13). For instance, the functions J1(u) � J2(u) � uÿ1=2 ful®l (1.12) and (1.13).

Corollary 1.2. Replace (1.11), (1.12) and (1.13) by (1.14), and keep the rest of the

assumptions of Corollary 1.1. Then the conclusion (1.16) remains true.

Corollaries 1.1 and 1.2 are related to the central limit theorem of HaÂjek and SÏidaÂk (1967)

for simple linear rank statistics (see their Theorem V.1.6). As a special case of Corollary

1.1 we get the central limit theorem for the Wald±Wolfowitz statistic recently established

by Hallin and Vermandele (1996) (refer, in particular, to their Proposition 11).

Surprisingly, proofs of central limit theorems for Wald±Wolfowitz statistics of the form

Wn(r) under minimal conditions turn out to be quite intricate and involved. The proof that

Hallin and Vermandele (1996) provided for their central limit theorem is based on a simple

technique developed by Lombard (1986). However, their proof is long and highly technical.

The proof of our central limit theorem, though signi®cantly shorter than theirs, remains very

technical. This is largely due to the problem of moving from the case when r and n are

relatively prime to the case when they are not. This problem was recognized by Wald and

Wolfowitz (1943), who in their paper only established a central limit theorem along the

subsequence fnigi>1 of fng for all integers n > 3 such that ni and r are relatively prime.

In practical situations when the sample size n is large and r and n are not relatively prime,

they suggested reducing to the relatively prime case by tossing out a small number r9 less

than r observations to make r and n9 � nÿ r9 relatively prime and then basing the

statistical test on the slightly smaller set of n9 observations.

In the process of establishing Theorem 1.1 we will uncover the random graph structure
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that lies behind the ranks/serial ranks in (1.8). This will guide us to the construction of the

basic martingale which will lead through the Skorohod embedding to Theorem 1.1. As far

as we know, Hallin et al. (1992) were the ®rst to analyse serial rank tests using notions

from graph theory. We should also mention the survey article on combinatorics and

statistics by Kolchin and Chistyakov (1974). The random graph structure will be derived in

Section 2. In Section 3 we will construct the basic martingale and prove Theorem 1.1. The

proofs of Corollaries 1.1 and 1.2 will be detailed in Section 4.

2. The graph structure of serial ranks

We shall make use of notions from graph theory. Let us introduce directed graphs on the set

f1, . . . , ng. Any directed graph consists of the set of vertices V � f1, . . . , ng, and the set of

ordered pairs f(ik , jk) : k � 1, . . . , Ng, N > 1, where ik , jk 2 V and ik 6� jk for each

k � 1, . . . , N . The pair (ik , jk) represents the arc from the vertex ik to the vertex jk . Thus

the positive integer N denotes the number of arcs in the directed graph. We say that the

vertex i is connected to the vertex j if there is a path of arcs from i to j. Let W be the set of

all directed graphs for which N � n and

fi1, . . . , ing � f j1, . . . , jng � f1, . . . , ng: (2:1)

Hence a directed graph Ã 2 W is de®ned uniquely by the set of its arcs, which enables us to

use the following notation for the elements of W :

Ã � f(ik , jk) : k � 1, . . . , ng: (2:2)

It follows from (2.1) that any directed graph Ã 2 W has the property that for any vertex i

there exist exactly one incoming arc ( j, i) for some j 6� i and exactly one outcoming arc

(i, l ) for some l 6� i.

For any 2 < k < n, we call a k-cycle any subset of the arcs of the form

f(i1, i2), (i2, i3), . . . , (ik , i1)g, (2:3)

where i1, i2, . . . , ik are distinct.

For any m . 1 and a 2 N such that n � am, de®ne W (a, m) � W to be the set of the

directed graphs on f1, . . . , ng, which consist of exactly a different m-cycles.

The following result is crucial for our work since it reveals the structure of the

permutations ( f r(1), . . . , f r(n)) de®ned in (1.8).

Proposition 2.1. For any n > 3 and 1 < r < nÿ 1, such that r � ab, n � am, where a is

the greatest common divisor of r and n,

Ùr,n :� ff(1, f r(1)), . . . , (n, f r(n))g : A 2 P g � W (a, m): (2:4)

Proof. First we will show that

Ùr,n � W (a, m): (2:5)

Let us arbitrarily ®x A 2 P and 1 < r < nÿ 1. Consider
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f r(1) � R((A1 ÿ r)modn), . . . , f r(n) � R((An ÿ r)modn): (2:6)

We will show that

Ã :� f(1, f r(1)), . . . , (n, f r(n))g 2 W (a, m): (2:7)

Let i1,k be such that Ai1, k
� k, for k � 1, . . . , a, and set

Ais, k
� (Ai1, k

ÿ (sÿ 1)r)modn, for s � 2, . . . , m: (2:8)

Assume that, for some 1 < i < j < a and 0 < k1, k2 < mÿ 1, we have

( jÿ k1 r)modn � (iÿ k2 r)modn: (2:9)

This implies that for some l 2 Z

0 < jÿ i � a(lm� (k2 ÿ k1)b) , a: (2:10)

Obviously, the inequalities in (2.10) can be true only if j � i, which in turn forces k1 � k2

since b and m are relatively prime. Hence (2.9) holds only if both j � i and k1 � k2. This

shows that the

Ais, k
� (Ai1, k

ÿ (sÿ 1)r)modn, for s � 1, . . . , m, k � 1, . . . , a,

are n distinct values f1, . . . , ng, as are

is,k � R(Ais, k
), for s � 1, . . . , m, k � 1, . . . , a: (2:11)

Now according to formulae (1.8) and (2.8) for s � 1, . . . , mÿ 1, k � 1, . . . , a,

f r(is,k) � R((Ais, k
ÿ r)modn) � R((Ai1, k

ÿ sr)modn) � R(Ais�1, k
) � is�1,k

and

f r(im,k) � R((Ai1, k
ÿ mr)modn) � R(Ai1, k

) � i1,k :

Clearly each set

Ck :� f(is,k , f r(is,k)) : s � 1, . . . , mg � f(i1,k , i2,k), (i2,k , i3,k), . . . , (im,k , i1,k)g
is an m-cycle with set of vertices V k � fi1,k , . . . , im,kg, k � 1, . . . , a. Thus

Ã � f(is,k , f r(is,k)) : s � 1, . . . , m, k � 1, . . . , ag � [a
k�1Ck 2 W (a, m),

which con®rms (2.5).

Next we will show that

W (a, m) � Ùr,n: (2:12)

Suppose that Ã 2 W (a, m). Then clearly

Ã � [a
k�1Ck ,

where

Ck � f(i1,k , i2,k), (i2,k , i3,k), . . . , (im,k , i1,k)g, for k � 1, . . . , a:

It is easy to show that, for an appropriate permutation A 2 P ,
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Ã � f(1, f r(1), . . . , (n, f r(n))g: (2:13)

To see how this works, set

Ai1, k
� k, for k � 1, . . . , a,

and de®ne

Ais, k
� (Ai1, k

ÿ (sÿ 1)r)modn, for s � 2, . . . , m,

and

Ai m�1, k
� Ai1, k

� k:

Now set

f r(is,k) � R((Ai1, k
ÿ sr)modn) � R(Ais�1, k

) � is�1,k , for s � 1, . . . , mÿ 1,

and

f r(im,k) � R(Ai m�1,k) � R(Ai1,k) � i1,k :

Thus

f(i1,k , f r(i1,k)), . . . , (im,k , f r(im,k))g � Ck , for k � 1, . . . , a,

which yields (2.13) and therefore (2.12). Clearly, (2.5) and (2.12) imply the assertion of our

proposition. h

Next we derive some useful corollaries from this proposition.

For any permutation ( f r(1), . . . , f r(n)) of the set (1, . . . , n), de®ne its inverse

( f ÿ1
r ( f r(1)), . . . , f ÿ1

r ( f r(n))) � (1, . . . , n):

Then it follows that

f ÿ1
r ( j) � i if and only if (i, j) 2 Ã, (2:14)

where Ã is de®ned as in (2.7). Set also f ÿk
r ( j) � f ÿ1

r ( f ÿk�1
r ( j)) for all k . 1 and

j 2 f1, . . . , ng. For any l 2 f1, . . . , ng, M � f1, . . . , ng and Ã(M) � f( j, f r( j)), j 2 Mg
� Ã 2 W (a, m), de®ne the length of the longest connected path of the arcs of the graph

Ã(M) to the vertex l as follows:

k(l, Ã(M)) :�
0, if l =2 V (Ã(M)),

maxf0 < K , m : ( f ÿk
r (l ), f ÿk�1

r (l )) 2 Ã(M) otherwise,

for all 0 < k < Kg,

8<: (2:15)

where V (Ã(M)) is the set of vertices of the graph Ã(M), that is, V (Ã(M)) �
f j, f r( j) : j 2 Mg. We shall introduce the following notation. Assuming

Ã � [a
k�1Ck � f(is,k , �f r(is,k)) : s � 1, . . . , m, k � 1, . . . , ag 2 W (a, m),

write

V k � fi1,k , . . . , im,kg � fs1,k , . . . , sm,kg, for k � 1, . . . , a, (2:16)
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to denote the set of the vertices of the cycle Ck , where

1 < s1,k , . . . , sm,k < n

for k � 1, . . . , a. In this notation we have, for each k � 1, . . . , a,

Ck � f(s1,k , �f r(s1,k)), . . . , (sm,k , �f r(sm,k))g:

Further, for each 1 < j < m and i � 1, . . . , a, set

ni( j) � #ft > 1 : st,i < jg

and

Ãij :� f(s1,i, �f r(s1,i)), . . . , (sni( j),i, �f r(sni( j),i))g:

Corollary 2.1. Assume that ( f r(1), . . . , f r(n)), n > 3, is a random permutation as in (1.8).

Choose any 1 < r < nÿ 1, and set r � ab and n � am, where a is the greatest common

divisor of r and n. Suppose

Ãj :� f(1, �f r(1)), . . . , ( j, �f r( j))g � Ã, for some Ã 2 W (a, m), (2:17)

where 1 < j , n is arbitrary but ®xed and j� 1 2 V i, for some 1 < i < a. Then

Pf f r( j� 1) � �f r( j� 1)j f r(1) � �f r(1), . . . , f r( j) � �f r( j), V 1, . . . , V ag

�

1

mÿ ni( j� 1)
, if 1 < ni( j� 1) , m, �f r( j� 1) 2 V i and

�f r( j� 1) =2 f�f ÿk( j�1,Ãij)
r ( j� 1), �f r(s1,i), . . . , �f r(sni( j),i)g,

1, if ni( j� 1) � m and �f r( j� 1) � �f ÿm�1
r ( j� 1),

0, otherwise:

8>>>>>>>><>>>>>>>>:
(2:18)

Before we proceed with a proof, we point out the important special case of Corollary 2

when r and n are relatively prime.

Corollary 2.2. Assume that ( f r(1), . . . , f r(n)), n > 3, is a random permutation as in (1.8).

Choose any 1 < r < nÿ 1 to be relatively prime to n. Suppose

Ãj :� f(1, �f r(1)), . . . , ( j, �f r( j))g � Ã, for some Ã 2 W (1, n), (2:19)

where 1 < j , n is arbitrary but ®xed. Then
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Pf f r( j� 1) � �f r( j� 1)j f r(1) � �f r(1), . . . , f r( j) � �f r( j)g

�

1

nÿ jÿ 1
, if j� 1 , n and

�f r( j� 1) =2 f�f ÿk( j�1,Ãj)
r ( j� 1), �f r(1), . . . , �f r( j)g,

1, if j� 1 � n and �f r(n) � �f ÿn�1
r (n),

0, otherwise:

8>>>>>>>>><>>>>>>>>>:
(2:20)

Proof of Corollary 2.1. Note that condition (2.17) entails

Pf f r(1) � �f r(1), . . . , f r( j) � �f r( j)g. 0:

Further, according to Proposition 2.1, the probability on the left-hand side of (2.18) equals

zero unless

Ãj�1 � Ãj [ f( j� 1, �f r( j� 1))g (2:21)

� f(1, �f r(1)), . . . , ( j, �f r( j)), ( j� 1, �f r( j� 1))g � Ã,

for some Ã 2 W (a, m).

Consider four cases.

(i) Suppose ni( j� 1) � 1. Then condition (2.21) holds if and only if �f r( j� 1) 6�
j� 1.

(ii) Suppose j� 1 =2 f�f r(s1,i), . . . , �f r(sni( j),i)g and 2 < ni( j� 1) , m. Then, clearly,

condition (2.21) is satis®ed if and only if

�f r( j� 1) =2 f j� 1, �f r(s1,i), . . . , �f r(sni( j),i)g: (2:22)

(iii) Suppose j� 1 2 f�f r(s1,i), . . . , �f r(sni( j),i)g and 2 < ni( j� 1) , m. Then, clearly

condition (2.21) is ful®lled if

�f r( j� 1) =2 f�f ÿk( j�1,Ãij)
r ( j� 1), �f r(s1,i), . . . , �f r(sni( j),i)g: (2:23)

Now assume that (2.23) does not hold, that is,

�f r( j� 1) 2 f�f ÿk( j�1,Ãij)
r ( j� 1), �f r(s1,i), . . . , �f r(sni( j),i)g:

Then the set of the arcs

f(s1,i, �f r(s1,i)), . . . , (sni( j),i, �f r(sni( j),i)), ( j� 1, �f r( j� 1))g
makes one k-cycle where obviously k < j� 1 , m, which contradicts (2.21). Hence, in case

(iii) condition (2.21) is equivalent to (2.23).

(iv) Finally, assume ni( j� 1) � m. To satisfy condition (2.21) in this case there is only

one possible value for �f r( j� 1), namely

�f r( j� 1) � �f ÿk( j�1,Ãij)
r ( j� 1), (2:24)
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where, clearly, k( j� 1, Ãij) � mÿ 1.

Combining (i), (ii), (iii) and (iv), and taking into account that any value satisfying (2.17) or

(2.21) is equally likely, we conclude (2.18). h

3. The basic martingale and proof of Theorem 1.1

3.1. The basic martingale

First we shall introduce a martingale that will be crucial for our approximation.

Assume that n > 3 and 1 < r < nÿ 1 are relatively prime. Let b(i), for i � 1, . . . , n,

denote a sequence of constants satisfyingXn

j�1

b( j) � 0:

We shall write, for j � 1, . . . , nÿ 2,

K n, j � K n, j( f r(1), . . . , f r( j)) :� f ÿk( j�1,Ãj)
r ( j� 1),

with k( j� 1, Ãj) de®ned as in (2.15). For 1 < j < nÿ 2, introduce the centring constants

b j �
1

nÿ j
(
P jÿ1

i�1 b( f r(i))� b(K n, jÿ1)), if 2 < j < nÿ 2,

0, if j � 1,

8<:
and the ó-®elds

F n( j) � ó ( f r(1), . . . , f r( j)),

with F n(0) being the trivial ó-®eld. Now let a(i), for i � 1, . . . , n, be constants and set, for

j � 1, . . . , nÿ 2,

Mn( j) �
Xj

i�1

a(i)fb( f r(i))� big:

Before we proceed we need the following lemma.

Lemma 3.1. For any choice of n > 3, constants c(i), 1 < i < n, and 1 < r < nÿ 1,

E(c( f r(i))jF n(iÿ 1)) �
Pn

l�1c(l )ÿPiÿ1
l�1c( f r(l ))ÿ c(K n,iÿ1)

nÿ i
(3:1)

and

Ec(K n,iÿ1) �
Piÿ1

k�1c(k)

nÿ 1
� (nÿ i)c(i)

nÿ 1
: (3:2)
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Proof. Notice that by Corollary 2.2 we have (3.1). Taking the expectation of both sides, we

obtain Pn
l�1c(l )ÿ c(i)

nÿ 1
�
Pn

l�1c(l )

nÿ 1
�

Piÿ1
l�1c(l )

(nÿ 1)(nÿ i)
ÿ Ec(K n,iÿ1)

nÿ i
:

The proof is ®nished by solving for Ec(K n,iÿ1) in this last equation. h

Lemma 3.1 immediately yields the following proposition.

Proposition 3.1. Let n > 3 and 1 < r < nÿ 1 be integers such that r and n are relatively

prime. Then

f(Mn( j), F n( j)) : 1 < j < nÿ 2g
is a martingale.

By choosing

a(i) � 1

nÿ iÿ 1
and b(i) � cn(i), for i � 1, . . . , nÿ 2,

we see after a little calculation that

Mn( j) �
P j

i�1cn( f r(i))

nÿ jÿ 1
�
Xj

i�2

cn(K n,iÿ1)

(nÿ iÿ 1)(nÿ i)
: (3:3)

This will be the basic martingale upon which we will base the proof of Theorem 1.1.

3.2. Proof of Theorem 1.1

For n > 3, we set

D(r)
n (t) �

X
i<nt

cn( f r(i))� (nÿ [nt]ÿ 1)
X

2<i<nt

cn(K n,iÿ1)

(nÿ iÿ 1)(nÿ i)
, 0 < t < 1ÿ 2

n
,

D(r)
n 1ÿ 2

n

� �
, 1ÿ 2

n
, t < 1:

8>>><>>>: (3:4)

Then, for j � 1, . . . , nÿ 2,

D(r)
n ( j=n)

nÿ jÿ 1
� Mn( j): (3:5)

For the proof of Theorem 1.1, let r be ®xed, and let fnigi>1 denote the subsequence of

fng of all integers n > 3 such that ni and r are relatively prime.

We will use Proposition 3.1 and the Skorohod embedding for martingales to construct a

sequence of versions ( ~D(r)
ni

)i>1 of (D(r)
ni

)i>1 and a standard Brownian bridge B such that, for

all 0 < í, 1
4
,
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sup
t2J

j ~D(r)
ni

(t)ÿ ó ni
(c)B(t)j

(t(1ÿ t))1=2ÿí � Op(nÿíi ), (3:6)

where J is any of the following intervals: [2=ni, 1ÿ 2=ni], [r=ni, 2=ni], [1 ÿ 2=ni,

1ÿ r=ni] with 0 , r, 2, and thus (3.6) holds for any interval J of the form [r9=ni,

1ÿ r9=ni], with r9 . 0.

From (3.6) we can construct the ~C(r)
ni

of Theorem 1.1 using Lemma A1 of Berkes and

Philipp (1979), provided that we can show that, for all 0 , r, 1,

sup
r=ni< t<1ÿr=ni

jC(r)
ni

(t)ÿ D(r)
ni

(t)j
(t(1ÿ t))1=2ÿí � Op(nÿíi ): (3:7)

Throughout this proof ki, i > 1, will denote ®nite positive constants independent of n > 3,

Y 1 and Y 2. Also, to simplify notation, throughout the rest of the proof we will write n

instead of ni and ó n instead of ó n(c).

Step 1. First we prove (3.7). Note that C(r)
n (t) � D(r)

n (t) for 0 < t , 2=n. Thus, for all

0 , r, 1, we see that the supremum in (3.7) is bounded above by

sup
2=n< t , 1ÿ1=n

jC(r)
n (t)ÿ D(r)

n (t)j
(t(1ÿ t))1=2ÿí � sup

1ÿ1=n< t<1ÿr=n

jC(r)
n (t)ÿ D(r)

n (t)j
(t(1ÿ t))1=2ÿí �: I n � II n:

By de®nition of C(r)
n and D(r)

n and some easy computations, we obtain

EI n < E sup
2=n< t , 1ÿ1=n

nÿ [nt]ÿ 1

(t(1ÿ t))1=2ÿí
X[nt]

j�2

jcn(K n, jÿ1)j
(nÿ jÿ 1)(nÿ j)

0@ 1A

< k1E max
2<i<nÿ1

i

n
1ÿ i

n

� �� �ÿ1=2�í
(nÿ i)

Xi

j�2

jcn(K n, jÿ1)j
(nÿ j)2

0@ 1A,

which, by the elementary fact that, for any non-negative ai, i � 1, . . . , n, and 0 < bn

< . . . < b1, n > 1,

max
1<i<n

bi

Xi

j�1

a j <
Xn

i�1

aibi, (3:8)

and noting that iÿ1=2�í(nÿ i)1=2�í is non-increasing in i, in turn, gives

EI n < k1 n1ÿ2í
Xnÿ1

i�2

iÿ1=2�í(nÿ i)ÿ3=2�íEjcn(K n,iÿ1)j:

Now by Lemma 3.1,
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Ejcn(K n,iÿ1)j < 2

Pnÿ1
k�1jcn(k)j

n
� 2

(nÿ i)jcn(i)j
n

,

< 2nÿ1=2ó n � 2
(nÿ i)jcn(i)j

n

by the Cauchy±Schwarz inequality. Thus

EI n < 2k1 n1=2ÿ2í
Xnÿ1

i�2

iÿ1=2�í(nÿ i)ÿ3=2�íó n � 2k1 nÿ2í
Xnÿ1

i�2

iÿ1=2�í(nÿ i)ÿ1=2�íjcn(i)j:

Using assumption (1.4), it is readily shown that this last bound is O(nÿí), which implies that

I n � Op(nÿí).
Now, for any 1ÿ 1=n < t , 1, we have

jC(r)
n (t)ÿ D(r)

n (t)j < jcn( f r(nÿ 1))j �
Xnÿ2

i�2

jcn(K n,iÿ1)j
(nÿ iÿ 1)(nÿ i)

:

Therefore, by a similar argument to that for I n,

II n � Op(nÿí):

This completes the proof of step 1.

Step 2. Next we shall construct ~D(r)
ni

such that (3.6) holds. Notice that, for any sequence

of versions ~D(r)
n of D(r)

n , we have

max
2< j<nÿ2

sup
j=n< t ,( j�1)=n

j ~D(r)
n (t)ÿ ~D(r)

n ( j=n)j � 0,

so that the supremum in (3.6) when J � [2=ni, 1ÿ 2=ni] is bounded by

max
2< j<nÿ2

sup
j=n< t<( j�1)=n

j ~D(r)
n ( j=n)ÿ ó n B( j=n)j

(t(1ÿ t))1=2ÿí � max
2< j<nÿ2

sup
j=n< t<( j�1)=n

jó n B( j=n)ÿ ó n B(t)j
(t(1ÿ t))1=2ÿí

�: ~I n � eII n:

By (2.25) in Einmahl and Mason (1992), we have eII n � Op(nÿí). Observe that, by

smoothness properties of (t(1ÿ t))1=2ÿí, we can derive ~I n � Op(nÿí) from the statement

max
2< j<nÿ2

j ~D(r)
n ( j=n)ÿ ó n B( j=n)j

(( j=n)(1ÿ j=n))1=2ÿí � Op(nÿí): (3:9)

Therefore it is enough to construct ~D(r)
n such that (3.9) holds in order to verify (3.6) when

J � [2=ni, 1ÿ 2=ni].

This construction will be performed by an application of the Skorohod embedding.

Notice that the martingale
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nD(r)
n

j

n

� �
nÿ jÿ 1

� nMn( j), 1 < j < nÿ 2,

is not centred, but has expectation

mn � E(nMn(1)) � nE(cn( f r(1)))

nÿ 2
� ÿncn(1)

(nÿ 1)(nÿ 2)
:

Hence we must apply the Skorohod embedding to the centred martingale

nZn( j) � nMn( j)ÿ mn, 1 < j < nÿ 2,

whose difference sequence în(1), . . . , în(nÿ 2) is given by

în( j) � nM n(1)ÿ mn, j � 1,

n(M n( j)ÿ M n( jÿ 1)), 2 < j < nÿ 2:

�
For later use, we record that by (3.1) of Lemma 3.1, we have, for j � 1, . . . , nÿ 2,

în( j) � n

nÿ jÿ 1
(cn( f r( j))ÿ Efcn( f r( j))jF n( jÿ 1)g�, (3:10)

which, by the way, clearly shows that nZn is a centred martingale.

Let (Ù, A, P) be a probability space which carries a standard Wiener process W . For

each n > 3, de®ne the Wiener process

Wn(t) :� ó nW (t=ó 2
n), 0 < t ,1:

Then there exist stopping times Tn( j) < Tn( j� 1), 1 < j < nÿ 2, with respect to Wn such

that the random variables

næn( j) :� Wn(Tn( j)), 1 < j < nÿ 2, (3:11)

satisfy

(næn( j))1< j<nÿ2�L (nZn( j))1< j<nÿ2: (3:12)

Moreover, the following is true. Let B [n, t] � ó (Wn(s) : 0 < s < t) for 0 < t ,1, and let

B n( j) be the ó-®eld of the events in the ®ltration which are known at time Tn( j) for

1 < j < nÿ 2. Let ôn( j), 1 < j < nÿ 2, be de®ned by ôn(1) � Tn(1) and

ôn(i) � Tn( j)ÿ Tn( jÿ 1), for 2 < j < nÿ 2: (3:13)

Then each ôn( j) is non-negative and measurable with respect to B n( j), and for the difference

sequence çn(1), . . . , çn(nÿ 2) of the martingale næn(1), . . . , næn(nÿ 2) we have, for

1 < j < nÿ 2,

E(ôn( j)jB n( jÿ 1)) � E(ç2
n( j)jB n( jÿ 1))

� E(ç2
n( j)jçn(1), . . . , çn( jÿ 1)), (3:14)
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where B n(0) is the trivial ó-®eld. Finally, for any 1 , p ,1, there exists a constant C p ,1
depending only on p such that, for all 1 < j < nÿ 2,

E(ô p
n ( j)jB n( jÿ 1)) < C pE(jçn( j)j2 pjB n( jÿ 1))

� C pE(jçn( j)j2 pjçn(1), . . . , çn( jÿ 1)) (3:15)

(see Hall and Heyde 1980; Scott and Huggins 1983). Statement (3.9) will be derived later on

from

max
2< j<nÿ2

jnæn( j)ÿ W n( jó 2
n=(nÿ j))j

( j=n)1=2ÿí(1ÿ j=n)ÿ1=2ÿí � Op(nÿí): (3:16)

Statement (3.16), itself, is derived from the following proposition by exactly the same

arguments as employed in the proof of Theorem 1 in Einmahl and Mason (1992, pp. 113±

115). We will not detail these arguments here but concentrate on the proof of the proposition.

Proposition 3.2. For 0 < ä, 1
4
, we have, along the sequence of all integers n such that n

and r are relatively prime,

max
2< j<nÿ2

j2äÿ1(nÿ j)1�2ä

����T n( j)ÿ jó 2
n

nÿ j

���� � Op(n2ä):

Proof. We write, using (3.14),

max
2< j<nÿ2

j2äÿ1(nÿ j)1�2ä

����Tn( j)ÿ jó 2
n

nÿ j

����
< max

2< j<nÿ2
j2äÿ1(nÿ j)1�2ä

����Xj

i�1

[ôn(i)ÿ E(ôn(i)jB n(iÿ 1))]

����
� max

2< j<nÿ2
j2äÿ1(nÿ j)1�2ä

����Xj

i�1

E(ç2
n(i)jçn(1), . . . , çn(iÿ 1))ÿ jó 2

n

nÿ j

����
�: �I n � �II n:

Consider �I n ®rst. By the HaÂjek±ReÂnyi inequality we obtain, for 0 , c ,1,

pn(c) � P(nÿ2ä�I n > c) (3:17)

< k2cÿ2 nÿ4ä
Xnÿ2

i�1

i4äÿ2(nÿ i)2�4äE([ôn(i)ÿ E(ôn(i)jB n(iÿ 1))]2):

Clearly, by (3.15), for 1 < i < nÿ 2,

E([ôn(i)ÿ E(ôn(i)jB n(iÿ 1))]2) < E(ô2
n(i)) < C2E(ç4

n(i)) � C2E(î4
n(i)), (3:18)

so that
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pn(c) < C2k2cÿ2 nÿ4ä
Xnÿ2

i�1

i4äÿ2(nÿ i)2�4äE(î4
n(i)): (3:19)

We shall bound E(î4
n(i)). Notice that by (3.10), the cr-inequality and Jensen's inequality in

combination with Corollary 2.2, we obtain, for i � 1, . . . , n,

E(î4
n(i)) < 32

n

nÿ iÿ 1

� �4

Ec4
n( f r(i)) < 64

n

nÿ iÿ 1

� �4ìn

n
, (3:20)

where ìn is as in (1.5). Combining (3.19) and (3.20), we ®nd

pn(c) < 64k3C2cÿ2 n3ÿ4äìn

Xnÿ2

i�1

i 4äÿ2(nÿ i)ÿ2�4ä:

It can be readily shown that

n2ÿ4ä
Xnÿ2

i�1

i4äÿ2(nÿ i)ÿ2�4ä � O(1):

Thus, in view of assumption (1.5),

pn(c) < 64k3C2cÿ2 nìnO(1) � O(cÿ2),

which yields �I n � Op(n2ä).

For the proof of �II n � Op(n2ä), notice that

�II n�L max
2< j<nÿ2

j2äÿ1(nÿ j)1�2ä

����Xj

i�1

E(î2
n(i)jîn(1), . . . , în( jÿ 1))ÿ jó 2

n

nÿ j

����
< max

2< j<nÿ2
j2äÿ1(nÿ j)1�2ä

����Xj

i�1

[E(î2
n(i)jîn(1), . . . , în( jÿ 1))ÿ î2

n(i)]

����
� max

2< j<nÿ2
j2äÿ1(nÿ j)1�2ä

����Xj

i�1

[î2
n(i)ÿ E(î2

njF n(iÿ 1))]

����
� max

2< j<nÿ2
j2äÿ1(nÿ j)1�2ä

����Xj

i�1

E(î2
n(i)jF n(iÿ 1))ÿ jó 2

n

nÿ j

����
�: Rn,1 � Rn,2 � Rn,3:

Note that the summands appearing in Rn,1 and Rn,2 are martingale differences. Therefore, the

HaÂjek-ReÂnyi inequality can be applied as in (3.17) to obtain, for 0 , c ,1 and j � 1, 2,

P(nÿ2äRn, j > c) < k4cÿ2 nÿ4ä
Xnÿ2

i�1

i4äÿ2(nÿ i)2�4äE(î4
n(i)):
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This is the same bound as in (3.19). Therefore, we have Rn, j � Op(n2ä), for j � 1, 2. It

remains to consider Rn,3. Note that

j

nÿ j
�
Xj

i�1

n

(nÿ i)(nÿ i� 1)
,

so that we can write after a few steps

Rn,3 < max
2< j<nÿ2

j2äÿ1(nÿ j)1�2ä
Xj

i�2

E(î2
n(i)jF n(iÿ 1))ÿ n(nÿ i� 1)ó 2

n

(nÿ i)(nÿ iÿ 1)2

" #������
������

� n1�2ä

���� n

nÿ 2

� �2

E(c2
n( f n(1)))ÿ m2

n ÿ
ó 2

n

nÿ 1

����� O(n2ä)

�: R9n,3 � R 0n,3 � O(n2ä):

Then it is easy to check that

R 0n,3 < k5ó
2
n n2ä,

which by assumption (1.4) gives R 0n,3 � O(n2ä).

It remains to treat R9n,3. For this, we need to compute E(î2
n(i)jF n(iÿ 1)), for

2 < i < nÿ 2. Using (3.1) in Lemma 3.1 along with (3.10), we obtain

E(î2
n(i)jF n(iÿ 1))

� n2

(nÿ iÿ 1)2(nÿ i)

Xn

l�i

c2
n( f r(l ))ÿ c2

n(K n,iÿ1)ÿ 1

nÿ i

Xiÿ1

l�1

cn( f r(l ))� cn(K n,iÿ1)

 !2
8<:

9=;:
(3:21)

Using this representation, we can write

R9n,3 < max
2< j<nÿ2

j2äÿ1(nÿ j)1�2ä
Xj

i�2

n2

(nÿ iÿ 1)2(nÿ i)

����Xn

l�i

(c2
n( f r(l ))ÿ ó 2

n=n)

����
� max

2< j<nÿ2
j2äÿ1(nÿ j)1�2ä

Xj

i�2

n2

(nÿ iÿ 1)2(nÿ i)2

Xn

l�i

cn( f r(l ))ÿ cn(K n,iÿ1)

 !2

� max
2< j<nÿ2

j2äÿ1(nÿ j)1�2ä
Xj

i�2

n2c2
n(K n,iÿ1)

(nÿ iÿ 1)2(nÿ i)
,

that is,

558 E. Haeusler, D.M. Mason and T.S. Turova



R9n,3 < k6 max
2< j<nÿ2

j2äÿ1(nÿ j)1�2ä
Xj

i�2

n2

(nÿ i)3

����Xn

l�i

(c2
n( f r(l ))ÿ ó 2

n=n)

����
� k6 max

2< j<nÿ2
j2äÿ1(nÿ j)1�2ä

Xj

i�2

n2

(nÿ i)4

Xn

l�i

cn( f r(l ))

 !2

� k6 max
2< j<nÿ2

j2äÿ1(nÿ j)1�2ä
Xj

i�2

n2c2
n(K n,iÿ1)

(nÿ i)3
: (3:22)

Now by applying the elementary fact (3.8) and noticing that j2äÿ1(nÿ j)1�2ä is non-

increasing in j, we obtain

R9n,3 < k6 n2
Xnÿ2

i�2

i2äÿ1(nÿ i)ÿ2�2ä

����Xn

l�i

d n( f r(l ))

����
� k6 n2

Xnÿ2

i�2

i2äÿ1(nÿ i)ÿ3�2ä
Xn

l�i

cn( f n(l ))

 !2

� k6 n2
Xnÿ2

i�2

i2äÿ1(nÿ i)ÿ2�2äc2
n(K n,iÿ1)

�: rn,1 � rn,2 � rn,3,

where d n(k) :� c2
n(k)ÿ ó 2

n=n for k � 1, . . . , n.

To bound rn,1 and rn,2 we need the following lemma, which we state in a more general

form than we need here, but which will be used in this form later on.

Lemma 3.2. Let a(i), b(i), 1 < i < n, n > 3, be constants such that
Pn

i�1a(i) � 0. Let a be

the greatest common divisor of n and 1 < r < nÿ 1. Then whenever m . 2, with n � ma, or

r is relatively prime to n,

E
Xn

i�1

a(i)b( f r(i))

 !2

<
2

n

Xn

i�1

a2(i)
Xn

i�1

b2(i): (3:23)

Proof. It is easy to see, taking into account Proposition 2.1, that for any i 6� j

Eb( f r(i))b( f r( j)) � 1

(nÿ 1)(nÿ 2)

X
1b(k)b(l ), (3:24)

where
P

1 runs over all 1 < k, l < n, such that k 6� l, k 6� i, l 6� j and (k, l ) 6� ( j, i). This,

together with Proposition 2.1, gives us after some computation
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E
Xn

i�1

a(i)b( f r(i))

 !2

�
Pn

i�1a2(i)
Pn

i�1b2(i)

nÿ 2
ÿ n

Pn
i�1a2(i)b2(i)

(nÿ 1)(nÿ 2)

<
2

n

Xn

i�1

a2(i)
Xn

i�1

b2(i),

where we used the condition
Pn

i�1a(i) � 0. h

From Lemma 3.2 with

a(l ) �
1ÿ iÿ 1

n
, for 1 < l < iÿ 1,

ÿ iÿ 1

n
, for iÿ 1 , l < n,

8>><>>:
and b(i) � cn(i), we obtain that, for any 1 , i < n,

E
Xiÿ1

l�1

cn( f r(l ))

 !2

< 2
iÿ 1

n

� �
1ÿ iÿ 1

n

� �Xn

l�1

c2
n(l ): (3:25)

Further, by noting that
Pn

k�1d n(k) � 0, we obtain that

E
Xiÿ1

l�1

d n( f r(l ))

 !2

< 2
iÿ 1

n

� �
1ÿ iÿ 1

n

� �Xn

l�1

d2
n(l )

< 2
iÿ 1

n

� �
1ÿ iÿ 1

n

� �
ìn: (3:26)

We now see, using (3.26), that

Ern,1 < k7 n
Xnÿ2

i�2

i2äÿ1=2(nÿ i)ÿ3=2�2äì1=2
n � O(n2ä)

and, applying (3.25), that

Ern,2 < k8

Xnÿ2

i�2

i2ä(nÿ i)ÿ2�2äó 2
n � O(n2ä):

Further, by Lemma 3.1,
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Ern,3 � k9 n2
Xnÿ2

i�2

i2äÿ1(nÿ i)ÿ2�2ä

Piÿ1
k�1c2

n(k)

nÿ 1
� (nÿ i)c2

n(i)

nÿ 1

� �

< k9 n
Xnÿ2

i�2

i2äÿ1(nÿ i)ÿ2�2äó 2
n � k9 n

Xnÿ2

i�2

i2äÿ1(nÿ i)ÿ1�2äc2
n(i)

< k10 n2äó 2
n � k9 n

������
ìn

p Xnÿ2

i�2

i 4äÿ2(nÿ i)ÿ2�4ä

 !1=2

,

which, by (1.4) and (1.5), is O(n2ä). This completes the proof of Proposition 3.2. h

We can now de®ne the vector ( ~D(r)
n (2=n), . . . , ~D(r)

n ((nÿ 2)=n)) and then verify (3.9). Set

n ~D(r)
n ( j=n)

nÿ jÿ 1
� næn( j)� mn, 2 < j < nÿ 2:

Then we have

n ~D(r)
n ( j=n)

nÿ jÿ 1
�L nZn( j)� mn � nMn( j) � nD(r)

n ( j=n)

nÿ jÿ 1
,

where, in view of (3.12), the equality in distribution holds uniformly in 2 < j < nÿ 2. This

shows

( ~D(r)
n (2=n), . . . , ~D(r)

n ((nÿ 2)=n))�L (D(r)
n (2=n), . . . , D(r)

n ((nÿ 2)=n)):

For the proof of (3.9) we proceed as in Einmahl and Mason (1992, p. 113) and de®ne the

required Brownian bridge by

B(t) � (1ÿ t)W
t

1ÿ t

� �
, 0 < t , 1,

and B(1) � 0. Notice that

ó n B(t) � (1ÿ t)Wn

tó 2
n

1ÿ t

� �
:

Then, after a little algebra, we obtain

max
2< j<nÿ2

j ~D(r)
n ( j=n)ÿ ó n B( j=n)j

(( j=n)(1ÿ j=n))1=2ÿí < max
2< j<nÿ2

jnæn( j)ÿ W n( jó 2
n=(nÿ j))j

( j=n)1=2ÿí(1ÿ j=n)ÿ1=2ÿí

� max
2< j<nÿ2

nÿ1jW n( jó 2
n=(nÿ j))j

( j=n)1=2ÿí(1ÿ j=n)1=2ÿí � jmnjn1=2ÿí

:� I9n � II9n � III 9n:

The ®rst summand, I9n, is Op(nÿí) by (3.16). Further, the easily established facts that
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Xnÿ1

j�1

EW 2
n( jó 2

n=(nÿ j))

n2( j=n)1ÿ2í(1ÿ j=n)1ÿ2í
� O(nÿ2í)

and

jmnj < 4ó n nÿ1=2, for n > 3,

along with 0 < í, 1
4

and assumption (1.4), imply II9n � Op(nÿí) and III9n � O(nÿí). Hence

we have achieved the construction of the versions ~D(r)
n such that (3.9) holds. Thus, by the

arguments just preceding (3.9), we see that (3.6) is satis®ed when J � [2=ni, 1ÿ 2=ni].

It remains to verify that (3.6) also holds when J � [r=ni, 2=ni] and [1ÿ 2=ni, 1ÿ r=ni],

with 0 , r, 2. For this, note that for all 0 , r < 2 we have

sup
r=n< t<2=n

ó njB(t)j
(t(1ÿ t))1=2ÿí � sup

1ÿ2=n< t<1ÿr=n

ó njB(t)j
(t(1ÿ t))1=2ÿí � Op(nÿí);

see Einmahl and Mason (1992, p. 115). Therefore, it is enough to show that versions ~D(r)
n of

D(r)
n can be constructed so that also

sup
r=n< t , 2=n

j ~D(r)
n (t)j

(t(1ÿ t))1=2ÿí � sup
1ÿ2=n , t<1ÿr=n

j ~D(r)
n (t)j

(t(1ÿ t))1=2ÿí � Op(nÿí): (3:27)

Since we can construct ~D(r)
n on (r=n, 2=n) [ (1ÿ 2=n, 1ÿ r=n) from ~D(r)

n on [2=n, 1ÿ 2=n],

it suf®ces to show that the processes D(r)
n which we want to mimic have the desired

behaviour, that is, it remains to verify (3.27) for D(r)
n instead of ~D(r)

n . This, however, is easily

done employing the de®nition of D(r)
n , which gives

D(r)
n (t) �

0, 0 < t , 1=n

cn( f r(1)), 1=n < t , 2=n

D(r)
n (1ÿ 2=n), 1ÿ 2=n < t < 1:

8<:
We will not give the details of these elementary arguments. This completes the proof of step

2. Clearly steps 1 and 2 imply Theorem 1.1. h

Remark 3.1. For reference later on, we note that an examination of the proof of Theorem 1.1

shows that if ãi denotes the OP(nÿíi ) term in (1.6), then for all x . 0 and for some function r

sup
i>1

P(ní
iãi . x) < r(x),

satisfying r(x)! 0, as x!1, where the function r depends only on the Y 1 and Y 2

appearing in (1.4) and (1.5) and 0 < í, 1
4
:

Remark 3.2. Using the trivial inequality

ìn �
Xn

i�1

c4
n(i) < max

1< j<n
c2

n( j)ó 2
n(c),

it is routine to modify the proof of Theorem 1.1 to yield Theorem 1.2.
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4. Proofs of Corollaries 1.1 and 1.2

4.1. Proof of Corollary 1.1

Choose a ã. 0 and set, for i � 1, . . . , n,

cn(i) � bn(i)=ó n(b),

ct
ã,n(i) � cn(i) or 0, according as c2

n(i) < ã=n or not,

cã,n(i) � ct
ã,n(i)ÿ nÿ1

Xn

k�1

ct
ã,n(k):

Notice that

Wn(r) �
���
n
p Pn

i�1an(i)cn( f r(i))

ó n(a)

�
���
n
p Pn

i�1an(i)cã,n( f r(i))

ó n(a)
�

���
n
p Pn

i�1an(i)(cn( f r(i))ÿ cã,n( f r(i)))

ó n(a)

�: Wã,n(r)� W t
ã,n(r):

Let n � ma and r � sa, where a is the greatest common divisor of r and n, and C1, . . . , Ca

be the m-cycles as in Proposition 2.1. Further, for k � 1, . . . , a, let

V k � fi1,k , . . . , im,kg � fs1,k , . . . , sm,kg
as in (2.16) denote the set of the vertices of the cycle Ck , where

1 < s1,k , . . . , sm,k < n:

Write, for k � 1, . . . , a,

ak,m � mÿ1
X
i2V k

an(i) and cã,k,m � mÿ1
X
i2V k

cã,n(i):

With this notation we can write

Wã,n(r) �
���
n
p Pa

k�1

P
i2V k

an(i)(cã,n( f r(i))ÿ cã,k,m)

ó n(a)
�

���
n
p

m
Pa

k�1ak,mcã,k,m

ó n(a)

�:
Xa

k�1

Tã,k,n(s)� Äã,n(r) �: Vã,n(r)� Äã,n(r):

Set, for k � 1, . . . , a, and i � 1, . . . , m,

ak,m(i) � an(si,k)ÿ ak,m, cã,k,m(i) � cã,n(si,k)ÿ cã,k,m

and

f k,s(i) to be the index j such that s j,k � f r(si,k):
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Further, let

C
(s)
ã,k,m(t) �

X
i<mt

cã,k,m( f k,s(i)), 0 < t < 1:

Using this notation we can write, for each k � 1, . . . , a,

Tã,k,n(s) �
���
n
p Pm

i�1ak,m(i)cã,k,m( f k,s(i))

ó n(a)
:

For each ã. 0 and k � 1, . . . , a, let

ó 2
k,m(a) �

Xm

i�1

a2
k,m(i) and ó 2

ã,k,m(c) �
Xm

i�1

c2
ã,k,m(i):

The following proposition is crucial to our proof.

Proposition 4.1. With the above assumptions and notation, for each ã. 0, n > 3,

1 < r < nÿ 1 and k � 1, . . . , a, there exist on a rich enough probability space versions
~Tã,k,n(s) of Tã,k,n(s), that is, ~Tã,k,n(s)�L Tã,k,n(s), jointly in k � 1, . . . , a, and a standard

normal random variable Z such that

~Vã,n(r) :�
Xa

k�1

~Tã,k,n(s) � sn(ã)Z � op(1), (4:1)

where

s2
n(ã) �

Xa

k�1

aó 2
k,m(a)ó 2

ã,k,m(c)=ó 2
n(a): (4:2)

Proof. For any ã. 0 and k � 1, . . . , a, we see from their de®nitionsXm

i�1

cã,k,m(i) � 0,
Xm

i�1

c2
ã,k,m(i) < ã,

Xm

i�1

c4
ã,k,m(i) < mã2=n2:

Thus conditioned on V k , the process C
(s)
ã,k,m satis®es the assumptions of Theorem 1.1. Hence

conditioned on V k , for every k � 1, . . . , a, there exist versions ~C(s)
ã,k,m of C

(s)
ã,k,m and a

standard Brownian bridge B such that for all 0 < í, 1
4

sup
1=m< t<1ÿ1=m

míj ~C(s)
ã,k,m(t)ÿ óã,k,m(c)B(t)j

(t(1ÿ t))1=2ÿí �: äk,m, (4:3)

where äk,m is a random variable such that for all for x . 0, uniformly in n > 3 and

1 < k < a,

P(äk,m . xjV k) < r(x), (4:4)

for some function r satisfying r(x)! 0 as x!1. (See Remark 3.1.)

Next let Am,k (or jAm,k j) be the random atomic measure that places mass
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ak,m(i)ÿ ak,m(i� 1)

ó n(a)
or
jak,m(i)ÿ ak,m(i� 1)j

ó n(a)

� �
on each i=m, for i � 1, . . . , m, where ak,m(m� 1) :� 0. De®ne each ~Tã,k,n(s), k � 1, . . . , a,

to be the integral

~Tã,k,n(s) � ���
n
p �1ÿ1=m

1=m

~C(s)
ã,k,m(t) dAm,k(t),

which one readily checks to have the same distribution as Tã,k,n(s). Introduce the random

variables

Zã,k,n �
���
n
p

óã,k,m(c)

�1ÿ1=m

1=m

B(t) dAm,k(t):

Now by (4.3) we have, for any 0 < í, 1
4
,

j ~Tã,k,n(s)ÿ Zã,k,nj < aín1=2ÿí
�1ÿ1=m

1=m

(t(1ÿ t))1=2ÿí djAm,k j(t)äk,m,

< Drn,k(í)äk,m,

for some constant D . 0, where

rn,k(í) � m1=2ÿíXm

i�1

i

m
1ÿ i

m

� �� �1=2ÿí
jak,m(i)ÿ ak,m(i� 1)j=ó n(a):

Notice that

ak,m(i) � J1

si,k

n� 1

� �
ÿ J2

si,k

n� 1

� �
, i � 1, . . . , m:

Thus by setting

d n(i) �
����J1

i

n� 1

� ������ ����J2

i

n� 1

� �����, i � 1, . . . , n,

we conclude by using the monotonicity of J1 and J2 that, both conditioned on V k and

unconditionally, we obtain after summation by parts, that for some D1 . 0

rn,k(í) < D1

X[n=2]�1

i�1

iÿ1=2ÿí(d n(i)� d n(n� 1ÿ i))=ó n(a) �: rn:

Since by (1.13), for each j > 1,

max
1<i< j

jd n(i)� d n(n� 1ÿ i)j=ó n(a)! 0,

we see that, for each ®xed j > 1,
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rn � o(1)� D1

X[n=2]�1

i� j�1

iÿ1=2ÿí(d n(i)� d n(n� 1ÿ i))=ó n(a)

< o(1)� D2 jÿí

by using the Cauchy±Schwarz inequality and (1.12), for some D2 . 0. Noting that j > 1 can

be made arbitrarily large, we conclude

rn ! 0 as n!1: (4:5)

Thus we obtain, conditioned on V k , that

j ~Tã,k,n(s)ÿ Zã,k,nj < Drnäk,m, (4:6)

where rn satis®es (4.5). Notice that, conditioned on V k,, Zã,k,n is a mean-zero normal

random variable with

nÿ1 var(Zã,k,njV k)

� óÿ2
n (a)ó 2

ã,k,m(c)
Xm

i�1

Xm

j�1

i ^ j

m
ÿ ij

m2

� �
(ak,m(i)ÿ ak,m(i� 1))(ak,m( j)ÿ ak,m( j� 1)):

At this point we need the following easily veri®ed fact:

Fact 1. Choose m > 2 and let d(1), . . . , d(m� 1) be constants such that d(m� 1) � 0.

Then Xm

i�1

Xm

j�1

i ^ j

m
ÿ ij

m2

� �
(d(i)ÿ d(i� 1))(d( j)ÿ d( j� 1)) �

Xm

i�1

d2(i)

m
ÿ d m

ÿ �
2,

where d m � mÿ1
Pm

i�1d(i).

From this fact we get that

var(Zã,k,njV k) � aó 2
k,m(a)ó 2

ã,k,m(c)

ó 2
n(a)

�: s2
k,m(ã):

Thus, conditioned on V k , we can write each

Zã,k,n �: sk,m(ã)Z k,

where Zk is a standard normal random variable. Clearly, since the Tã,k,n(s), k � 1, . . . , a, are

independent given V 1, . . . , V a, the Z1, . . . , Za can be constructed to be independent

conditioned on V 1, . . . , V a, so that, conditioned on V 1, . . . , V a,

Z :� sÿ1
n (ã)

Xa

k�1

sk,m(ã)Z k,

with sn(ã) as in (4.2), is a standard normal random variable. Putting everything together, we

have constructed ~Tã,k,n(s), k � 1, . . . , a, and Z, conditionally on V 1, . . . , V a, such that
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~Vã,n(r) �
Xa

k�1

~Tã,k,n(s) � sn(ã)Z � Drnäm, (4:7)

where äm �
Pa

k�1äk,m. However, since there are only ®nitely many possible V 1, . . . , V a for

any ®xed n and r, without any measurability problems, we can construct these random

variables so that (4.7) holds unconditionally. Finally, notice by (4.4) that äm � OP(1), which,

when combined with (4.5), completes the proof of Proposition 4.1. h

Lemma A1 of Berkes and Phillipp (1979) allows the appropriate probability spaces on

which (sn(ã)Z, ~Vã,n(r)) and (Vã,n(r), W t
ã,n(r)� Äã,n(r)) sit to be coupled to form the triple

(sn(ã)�Z, �Vã,n(r), �W t
ã,n(r)� �Äã,n(r)),

where

(sn(ã)Z, ~Vã,n(r))�L (sn(ã)�Z, �Vã,n(r))

and

( �Vã,n(r), �W t
ã,n(r)� �Äã,n(r))�L (Vã,n(r), W t

ã,n(r)� Äã,n(r)):

Thus

Wn(r)�L �Vã,n(r)� �W t
ã,n(r)� �Äã,n(r): (4:8)

Clearly now, on account of (4.8) and (4.1), using the fact that �Vã,n(r) and ~Vã,n(r) are equal in

distribution, the proof of Corollary 1.1 will be complete as soon as we have shown that

lim
ã!1 lim sup

n!1
E(W t

ã,n(r))2 � 0, (4:9)

for each ã. 0,

Äã,n(r) � op(1), (4:10)

and, for each ã. 0 and for all å. 0,

lim
ã!1 lim sup

n!1
Pfj1ÿ s2

n(ã)j. åg � 0: (4:11)

First consider (4.9). Note that, by Lemma 3.2,

E(W t
ã,n(r))2 < 2

Xn

j�1

1fb2
n( j)=ó 2

n(b) . ã=ngb2
n( j)=ó 2

n(b):

Therefore by assumption (1.15), we have (4.9).

Next we shall show (4.10). For this we need the following elementary ®nite-sampling

fact:

Fact 2. Choose n > 2, 1 < m < n and constants c(1), . . . , c(n) such that
Pn

i�1c(i) � 0.

Further, let Vm be a random subset of size m chosen from f1, . . . , ng with probability 1=(n
m).
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Then

E
X
i2Vm

c(i)

 !2

� m

n
1ÿ mÿ 1

nÿ 1

� �Xn

i�1

c2(i):

Applying Fact 2, we get that, for each k � 1, . . . , a,

Ec2
ã,k,m < mÿ2ã and E(a2

k,m) < mÿ2ó 2
n(a),

from which we obtain

cã,k,m � Op(mÿ1) and ak,m=ó n(a) � Op(mÿ1): (4:12)

Thus for each k � 1, . . . , a, ���
n
p

mak,mcã,k,m

ó n(a)
� Op(mÿ1=2), (4:13)

which implies (4.10).

Finally we turn to (4.11). Notice that each

ó 2
k,m(a) �

X
i2V k

a2
n(i)ÿ ma2

k,m:

From (4.12) we have, uniformly in 1 < k < a,

ma2
k,m=ó

2
n(a) � op(1):

This immediately yields that, uniformly in 1 < k < a,

ó 2
k,m(a)=ó 2

n(a) �
X
i2V k

a2
n(i)=ó 2

n(a)� op(1):

In the same way, it can be argued that, uniformly in 1 < k < a,

ó 2
ã,k,m(c)=ó 2

n(c) �
X
i2V k

c2
ã,n(i)=ó 2

n(c)� op(1):

Notice that

E
X
i2V k

a2
n(i)

" #
� mó 2

n(a)

n

and

E
X
i2V k

c2
ã,n(i)

" #
� m

n

Xn

i�1

c2
ã,n(i) �:

m

n
ó 2
ã,n(c):

Applying Fact 2, we obtain that
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E
X
i2V k

a2
n(i)ÿ mó 2

n(a)

n

" #2

<
Xn

i�1

a2
n(i)ÿ ó 2

n(a)

n

� �2

:

Now, using (1.13), it is easy to show that

max
1<i<n

fa2
n(i)=ó 2

n(a)g � o(1):

Thus one sees by using Chebyshev's inequality that, uniformly in 1 < k < a,X
i2V k

a2
n(i)=ó 2

n(a)ÿ m

n
� op(1):

Similarly, one proves that, uniformly in 1 < k < a,X
i2V k

c2
ã,n(i)=ó 2

n(c)ÿ mó 2
ã,n(c)=(nó 2

n(c)) � op(1):

Using assumption (1.15), it is now straightforward to verify that (4.11) holds. This

completes the proof of Corollary 1.1.

4.2. Proof of Corollary 1.2

To show that (1.16) remains true under assumption (1.14), note that, given any j as in (1.14)

and å. 0, we can ®nd a polynomial ö on (0, 1) such that�1

0

(j(u)ÿ ö(u))2 du , å: (4:14)

The argument just given shows that asymptotic normality holds for the statistic Ŵ n(r) formed

when the an(i), i � 1, . . . , n, in Wn(r) are replaced by

ö(i=(n� 1)), i � 1, . . . , n,

since any polynomial ö satis®es (1.12) and (1.13). Next, by applying Lemma 3.2 in

combination with (1.14), we readily check that we can make the mean squared difference

between the statistics Ŵ n(r) and Wn(r) arbitrarily close, as n!1, by choosing å. 0 small

enough in (4.14) and ö appropriately. This ®nishes the proof of Corollary 1.2.
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