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We consider quantile estimation under a two-sample semi-parametric model in which the log ratio of

two unknown density functions has a known parametric form. This two-sample semi-parametric

model, arising naturally from case±control studies and logistic discriminant analysis, can be regarded

as a biased sampling model. A new quantile estimator is constructed on the basis of the maximum

semi-parametric likelihood estimator of the underlying distribution function. It is shown that the

proposed quantile estimator is asymptotically normally distributed with smaller asymptotic variance

than that of the standard quantile estimator. Also presented are some results on simulation and from

the analysis of a real data set.
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1. Introduction

Let X 1, . . . , Xn0
be a random sample from a population with distribution function G and

density or frequency function g. Independent of the X is, let Z1, . . . , Z n1
be another random

sample from a population with distribution function H and density or frequency function h.

The quantile function associated with G is the function de®ned by Gÿ1(s) � infft; G(t) > sg
for s 2 (0, 1). On the basis of the sample X1, . . . , Xn0

, the standard estimator of the quantile

function Gÿ1(s) is the empirical quantile function Ĝÿ1(s), where Ĝ is the empirical

distribution function of X1, . . . , Xn0
given by Ĝ(x) � (1=n0)

Pn0

i�1 I [X i<x]. The process���
n
p

(Ĝÿ1 ÿ Gÿ1) is referred to as the quantile process. In this paper, we consider estimating

Gÿ1(s) under the following two-sample semi-parametric model in which the two unknown

density functions g and h are linked by an `exponential tilt' exp[á� r(x)â]:

X1, . . . , Xn0
�i:i:d g(x), Z1, . . . , Z n1

�i:i:d: h(x) � exp[á� r(x)â]g(x), (1:1)

where r(x) � (r1(x), . . . , rp(x)) is a 1 3 p vector of functions of x, â � (â1, . . . , âp)T is a

p 3 1 parameter vector, and á is a normalizing parameter that makes h(x) integrate to 1. In

most applications, r(x) � x or r(x) � (x, x2).

For r(x) � x, model (1.1) encompasses many common distributions, including two

exponential distributions with different means and two normal distributions with common

variance but different means. Furthermore, model (1.1) with r(x) � x or r(x) � (x, x2) has
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wide applications in the logistic discriminant analysis (Anderson 1972; 1979). Moreover,

model (1.1) with r(x) � x arises naturally from case±control studies. Let Y be a binary

response variable and X be the associated covariate; then the (prospective) logistic

regression model is of the form

P(Y � 1jX � x) � exp(á� � xâ)

1� exp(á� � xâ)
, (1:2)

where á� and â are parameters and the marginal distribution of X is not speci®ed. In case±

control studies, data are collected retrospectively in the sense that for samples of subjects

having Y � 1 (`cases') and having Y � 0 (`controls'), the value x of X is observed.

Speci®cally, let X1, . . . , Xn0
be a random sample from F(xjy � 0) and, independent of the X i,

let Z1, . . . , Z n1
be a random sample from F(xjy � 1). If ð � P(Y � 1) � 1ÿ P(Y � 0) and

f (xjY � i) is the conditional density or frequency function of X given Y � i for i � 0, 1, then

it can be shown from (1.2) and Bayes's rule that model (1.1) holds with g(x) � f (xjY � 0),

h(x) � f (xjY � 1), á � á� � logf(1ÿ ð)=ðg and r(x) � x. For an exposition on the

application of logistic regression to case±control studies, see for example Breslow and Day

(1980), Prentice and Pyke (1979) and Farewell (1979). For a specially designed exponential

family of densities obtained by putting an exponential family `through' a kernel estimator,

Efron and Tibshirani (1996) considered density estimation by employing Poisson regression

techniques. It can be shown in the case of two-sample problems that Efron and Tibshirani's

exponential family of densities coincides with model (1.1) with r(x) � (x, x2).

As an alternative to the two-sample location±scale model, model (1.1), which is

reminiscent of the Cox proportional hazards model, is equivalent to a two-sample semi-

parametric model in which the ratio of two unspeci®ed density functions has a known

parametric form. Furthermore, that we test the equality of G and H can be regarded as a

special case of model (1.1) with á � â � 0. Moreover, model (1.1) can also be viewed as a

biased sampling model with weight function exp[á� r(x)â] depending on the unknown

parameters á and â. Vardi (1982; 1985), Gill et al. (1988) and Qin (1993) discussed

estimating distribution functions in biased sampling models with known weight functions.

Fokianos et al. (1998) have applied model (1.1) with r(x) � (x, x2) to a data set from

spaceborne precipitation radar and a spaceborne radiometer. Gilbert et al. (1998) have

employed model (1.1) with r(x) � (x, x2) to analyse HIV vaccine trial data for assessing

differential vaccine protection against human immunode®ciency virus types. For a more

general model h(x) � w(x, è)g(x), with w non-negative and of a known parametric form,

Gilbert et al. (1999) have discussed identi®ability issues and maximum likelihood

estimation of è and G. One application of estimating G is to test the validity of model

(1.1) or to test the consistency of the `exponential tilt' in model (1.1). Qin and Zhang

(1997) considered a goodness-of-®t test for logistic regression model (1.2) based on case±

control data by employing the maximum semi-parametric likelihood estimator of G to test

the validity of model (1.1) with r(x) � x. Another application of estimating G is to

facilitate estimation of functionals of G such as the generalized impact fraction discussed

by Drescher and Becher (1997). In the present paper, however, we are interested in the

problem of estimating quantiles of G under model (1.1). Note that since the form of g(x) is
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not speci®ed, statistical inferences based on model (1.1) would be more robust than those

based on a full parametric model in which the form of g(x) is known.

Under model (1.1), the standard empirical quantile function Ĝÿ1(s) based on the (control)

sample X 1, . . . , Xn0
ignores the information contained in the (case) sample Z1, . . . , Z n1

. In

this paper, we consider an alternative yet appealing estimator of Gÿ1(s), which takes both

samples X 1, . . . , Xn0
and Z1, . . . , Z n1

into account. Our approach is ®rst to estimate the

parameters á and â by maximizing a semi-parametric likelihood function and then to obtain

the maximum semi-parametric likelihood estimator ~G of G by putting weights on all the

observations X i and Z j. This approach leads us to estimate Gÿ1(s) by ~Gÿ1(s). It is shown

that ~Gÿ1(s) is asymptotically normal with smaller asymptotic variance than that of Ĝÿ1(s)

for each s 2 (0, 1). The maximum semi-parametric likelihood estimator ~G of G is derived

in Section 2 by employing the empirical likelihood method developed by Owen (1988;

1990). For a more complete survey of developments in empirical likelihood, see Hall and

La Scala (1990) and Owen (1991).

This paper is organized as follows. In Section 2, we propose an alternative quantile

estimator ~Gÿ1(s) by deriving the maximum semi-parametric likelihood estimators of á, â
and G. Section 3 pertains to the asymptotic relative ef®ciency of the maximum semi-

parametric likelihood estimator of (á, â) relative to the maximum likelihood estimator

(á, â) under a two-sample parametric model. Section 4 concerns the asymptotic behaviour

of ~Gÿ1(s). Some numerical results are presented in Section 5 to demonstrate the

performance of the proposed quantile estimator. Finally, proofs of the main theoretical

results are provided in Section 6.

2. The modi®ed empirical quantile function

Let fT1, . . . , Tng denote the pooled sample fX 1, . . . , Xn0
; Z1, . . . , Z n1

g with n � n0 � n1.

Based on the observed data in (1.1), we can write the likelihood function as

L (á, â, G) �
Yn0

i�1

dG(Xi)
Yn1

j�1

w(Z j) dG(Z j) �
Yn

i�1

pi

( ) Yn1

j�1

w(Z j)

( )
,

where w(x) � exp[á� r(x)â] and pi � dG(Ti), i � 1, . . . , n, are (non-negative) jumps with

total mass unity. Similar to the approach of Owen (1988; 1990) and Qin and Lawless (1994),

it can be shown by using the method of Lagrange multipliers that the maximum value of L ,

subject to constraints
Pn

i�1 pi � 1, pi > 0,
Pn

i�1 pifw(Ti)ÿ 1g � 0, is attained at

~pi � 1

n0

1

1� r exp[~á� r(Ti) ~â]
, (2:1)

where r � n1=n0 and (~á, ~â) is the maximum semi-parametric likelihood estimator of (á, â)

obtained as a solution to the following system of score equations:
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@ l(á, â)

@á
� n1 ÿ

Xn

i�1

r exp[á� r(Ti)â]

1� r exp[á� r(Ti)â]
� 0,

@ l(á, â)

@â
�
Xn1

j�1

r(Z j)ÿ
Xn

i�1

r exp[á� r(Ti)â]

1� r exp[á� r(Ti)â]
r(Ti) � 0,

with l(á, â) being the pro®le log-likelihood function of (á, â) given by

l(á, â) �
Xn1

j�1

[á� r(Z j)â]ÿ
Xn

i�1

logf1� r exp[á� r(Ti)â]g ÿ n log n0: (2:2)

As a result, the maximum semi-parametric likelihood estimator of G(t) is identical to

~G(t) �
Xn

i�1

~pi I [Ti< t] � 1

n0

Xn

i�1

I [Ti< t]

1� r exp[~á� r(Ti)~â]
: (2:3)

On the basis of ~G in (2.3), we propose, under model (1.1), to estimate the quantile function

Gÿ1(s) by ~Gÿ1(s) for s 2 (0, 1). Throughout this paper, we refer to the function ~Gÿ1(s) as the

modi®ed empirical quantile function and the process
���
n
p

( ~Gÿ1 ÿ Gÿ1) as the modi®ed

quantile process.

Remark 2.1. The pro®le log-likelihood function l(á, â) in (2.2) can alternatively be written as

l(á, â) �
Xn0

i�1

[(ÿá)� r(X i)(ÿâ)]ÿ
Xn

i�1

logf1� rÿ1 exp[(ÿá)� r(Ti)(ÿâ)]g ÿ n log n1:

This can also be derived from the following two-sample semi-parametric model:

X 1, . . . , Xn0
�i:i:d: g(x) � exp[ÿáÿ r(x)â]h(x), Z1, . . . , Z n1

�i:i:d: h(x): (2:4)

Thus, the maximum semi-parametric likelihood estimator (~á, ~â) of (á, â) is the same under

model (1.1) as that under model (2.4).

Remark 2.2. Remark 2.1 indicates that H(t) can be estimated by

~H(t) � 1

n1

Xn

i�1

1

1� rÿ1 exp[ÿ~áÿ r(Ti) ~â]
I [Ti< t] �

Xn

i�1

~pi exp[~á� r(Ti)~â]I [Ti< t], (2:5)

where ~pi is de®ned in (2.1). On the basis of ~H in (2.5) and under model (1.1), the quantile

function Hÿ1(s) associated with H can be estimated by ~Hÿ1(s) for s 2 (0, 1).

Remark 2.3. Our proposed procedure can also be applied to mixture sampling data in which

a sample of n � n0 � n1 members is randomly selected from the whole population with both

n0 and n1 being random.

We close this section by presenting the following theorem whose proof is similar to that

in Prentice and Pyke (1979) and to that in Qin and Zhang (1997).
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Theorem 2.1. Let (á0, â0) be the true value of (á, â) under model (1.1). Let

A11(t) �
� t

ÿ1

exp[á0 � r(x)â0]

1� r exp[á0 � r(x)â0]
dG(x), A11 � A11(1),

A12(t) �
� t

ÿ1

exp[á0 � r(x)â0]

1� r exp[á0 � r(x)â0]
r(x) dG(x), A12 � A12(1),

A22 �
�

exp[á0 � r(x)â0]

1� r exp[á0 � r(x)â0]
r(x)r(x)T dG(x),

A � A11 AT
12

A12 A22

 !
, Ó � 1� r

r
Aÿ1 ÿ 1� r 0

0 0

� �" #
, S � r

1� r
A:

(a) If model (1.1) holds and Aÿ1 exists, we can write

~áÿ á0

~âÿ â0

 !
� 1

n
Sÿ1

@ l(á0, â0)

@á

@ l(á0, â0)

@â

0BB@
1CCA� op(nÿ1=2),

where

@ l(á0, â0)

@á
� @ l(á, â)

@á

����
(á,â)�(á0,â0)

and
@ l(á0, â0)

@â
� @ l(á, â)

@â

����
(á,â)�(á0,â0)

:

As a result, ���
n
p ~áÿ á0

~âÿ â0

� �
!d N p�1(0, Ó):

(b) If model (1.1) holds and Aÿ1 exists, we can write

~G(t)ÿ Ĝ(t) � H1(t)ÿ H2(t)ÿ Ĝ(t)� Rn(t), (2:6)

where

H1(t) � 1

n0

Xn

i�1

I [Ti< t]

1� r exp[á0 � r(Ti)â0]
, H2(t) � r

n
(A11(t), AT

12(t))Sÿ1

@ l(á0, â0)

@á

@ l(á0, â0)

@â

0BB@
1CCA,

(2:7)

and the remainder term Rn(t) satis®es

sup
ÿ1< t<1

jRn(t)j � op(nÿ1=2): (2:8)

As a result,
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���
n
p

( ~G ÿ Ĝ)!D W in D[ÿ1, 1],

where W is a Gaussian process with continuous sample path and satis®es, for ÿ1 < s <
t <1,

EW (t) � 0,

EW (s)W (t) � r(1� r)(A11(s), AT
12(s))

1

0

 !
ÿ Aÿ1

A11(t)

A12(t)

 !" #
: (2:9)

3. Asymptotic relative ef®ciency of (~á, ~â)

In this section, we consider the asymptotic relative ef®ciency of the maximum semi-

parametric likelihood estimator (~á, ~â) relative to the maximum likelihood estimator of (á, â)

under the following two-sample parametric model in which (X 1, . . . , Xn0
) and (Z1, . . . , Z n1

)

are independent and

X 1, . . . , Xn0
�i:i:d: g(x) � exp[è1T (x)� d(è1)� S(x)],

Z1, . . . , Z n1
�i:i:d: h(x) � exp[è2T (x)� d(è2)� S(x)], (3:1)

where è1 and è2 are real parameters and d(:), T (:), and S(:) are real-valued functions. In other

words, we assume that the distributions of both X 1 and Z1 belong to the one-parameter

exponential family of distributions (Bickel and Doksum 1977, p. 67). It is easy to see that

model (3.1) is a special case of model (1.1) with á � d(è2)ÿ d(è1), â � è2 ÿ è1 and

r(x) � T (x). Let è̂1 and è̂2 denote, respectively, the maximum likelihood estimators of è1 and

è2 under model (3.1). Then according to the standard results on maximum likelihood

estimation in exponential families, we can show that
�����
n0
p

(è̂1 ÿ è1)!d N (0, [ÿd 0(è1)]ÿ1) and�����
n1
p

(è̂2 ÿ è2)!d N (0, [ÿd 0(è2)]ÿ1). Furthermore, according to the invariance property of

maximum likelihood estimation, the maximum likelihood estimators of á and â under model

(3.1) are, respectively, given by á̂ � d(è̂2)ÿ d(è̂1) and â̂ � è̂2 ÿ è̂1. Since è̂1 and è̂2 are

independent, it can be shown after some algebra that
���
n
p

(á̂ÿ á0)!d N (0, ó 2
á̂) and���

n
p

(â̂ÿ â0)!d N (0, ó 2

â̂
), where (á0, â0) is the true value of (á, â) under model (3.1) and

ó 2
á̂ � ÿ(1� r)

[d9(è1)]2

d 0(è1)
� 1

r
[d9(è2)]2

d 0(è2)

 !
, ó 2

â̂
� ÿ(1� r)

1

d 0(è1)
� 1

r
1

d 0(è2)

� �
: (3:2)

Equations (3.2), along with part (a) of Theorem 2.1, imply that the asymptotic relative

ef®ciency of ~á relative to á̂ is given by

e(~á, á̂) � [d9(è1)]2

d 0(è1)
� 1

r
[d9(è2)]2

d 0(è2)

 !�
1� r
r
ÿ 1

r
A22

A11 A22 ÿ A2
12

 !
(3:3)
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and the asymptotic relative ef®ciency of ~â relative to â̂ is given by

e( ~â, â̂) � ÿ 1

d 0(è1)
� 1

r
1

d 0(è2)

� ��
1

r
A11

A11 A22 ÿ A2
12

 !
, (3:4)

where A11, A12, and A22 are de®ned in Theorem 2.1 with r(x) � T (x).

Example 3.1. Let X1, . . . , Xn0
�i:i:d: N (è1, 1) and, independent of the X i, let Z1, . . . ,

Z n1
�i:i:d: N (è2, 1). Then model (3.1) holds with d(è1) � ÿè2

1=2, d(è2) � ÿè2
2=2, T (x) � x,

S(x) � ÿfx2 � log(2ð)g=2 and model (1.1) holds with á � (è2
1 ÿ è2

2)=2 and â � è2 ÿ è1.

According to (3.3) and (3.4), the asymptotic relative ef®ciency of ~á relative to á̂ is given by

e(~á, á̂) � (rè2
1 � è2

2)

�
A22

A11 A22 ÿ A2
12

ÿ (1� r)

 !
and the asymptotic relative ef®ciency of ~â relative to â̂ is given by

e( ~â, â̂) � (1� r)

�
A11

A11 A22 ÿ A2
12

,

where A11, A12, and A22 are de®ned in Theorem 2.1 with r(x) � x. It can be shown that if

á � ÿâ2=2, then e( ~â, â̂) remains the same when r is replaced by rÿ1. Table 1 presents some

numerical values of e(~á, á̂) and e(~â, â̂) when è1 � 0, è2 � 1 and n � 60. As expected, the

maximum likelihood estimators á̂ and â̂ are more ef®cient than the maximum semi-

parametric likelihood estimators á̂ and ~â and the values of e( ~â, â̂) are the same for r and

rÿ1.

Example 3.2. Let X1, . . . , Xn0
�i:i:d: g(x) � è1 exp(ÿè1x) and, independent of the X i, let Z1,

. . . , Z n1
�i:i:d: h(x) � è2 exp(ÿè2x). Then model (3.1) holds with d(è1) � log(è1), d(è2) �

log(è2), T (x) � ÿx and S(x) � 0, and model (1.1) holds with á � log(è2)ÿ log(è1) and

â � è2 ÿ è1. According to (3.3) and (3.4), the asymptotic relative ef®ciency of ~á relative to á̂
is given by

e(~á, á̂) � (1� r)

�
A22

A11 A22 ÿ A2
12

ÿ (1� r)

 !

Table 1. Asymptotic relative ef®ciencies e(~á, á̂) and

e( ~â, â̂) when è1 � 0, è2 � 1 and n � 60

(n0, n1) r e(~á, á̂) e(~â, â̂)

(50, 10) 0.2 0.884 74 0.742 10

(40, 20) 0.5 0.829 44 0.674 49

(30, 30) 1.0 0.784 88 0.656 71

(20, 40) 2.0 0.741 21 0.674 49

(10, 50) 5.0 0.689 18 0.742 10
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and the asymptotic relative ef®ciency of ~â relative to â̂ is given by

e( ~â, â̂) � (rè2
1 � è2

2)

�
A11

A11 A22 ÿ A2
12

,

where A11, A12, and A22 are de®ned in Theorem 2.1 with r(x) � ÿx. Table 2 presents some

numerical values of e(~á, á̂) and e(~â, â̂) when è1 � 1, è2 � 2 and n � 60. As expected, the

maximum likelihood estimators á̂ and â̂ are more ef®cient than the maximum semi-

parametric likelihood estimators ~á and ~â. It is seen that the values of e(~â, â̂), ranging from

0.67 to 0.92, are slightly more variable than those of e(~á, á̂), ranging from 0.71 to 0.87.

4. Asymptotic results

In this section, we study the asymptotic properties of the modi®ed empirical quantile function
~Gÿ1(s). To this end, let (á0, â0) be the true value of (á, â) under model (1.1). We assume that

r � n1=n0 is positive and ®nite and remains ®xed as n � n0 � n1 !1.

We ®rst establish the weak convergence of the modi®ed quantile process
���
n
p

( ~Gÿ1 ÿ Gÿ1)

to a Gaussian process on a subinterval of [0, 1] by expressing ~G as the mean of a sequence

of independent and identically distributed stochastic processes with a remainder term of

order op(nÿ1=2).

Theorem 4.1. Let 0 , a , b , 1 be given. Suppose that the conditions of Theorem 2.1 hold.

Suppose further that G has continuous positive density g on [Gÿ1(a)ÿ å, Gÿ1(b)� å] for

some å. 0. Then, one can write

~Gÿ1(s)ÿ Gÿ1(s) � Qn(s)� rn(s), (4:1)

where

Qn(s) � ÿ H1(Gÿ1(s))ÿ H2(Gÿ1(s))ÿ s

g(Gÿ1(s))
(4:2)

and the remainder term rn(s) satis®es

sup
a<s<b

jrn(s)j � op(nÿ1=2): (4:3)

Table 2. Asymptotic relative ef®ciencies e(~á, á̂) and

e( ~â, â̂) when è1 � 1, è2 � 2 and n � 60

(n0, n1) r e(~á, á̂) e(~â, â̂)

(50, 10) 0.2 0.870 92 0.921 36

(40, 20) 0.5 0.786 96 0.847 83

(30, 30) 1.0 0.733 69 0.778 69

(20, 40) 2.0 0.706 86 0.715 73

(10, 50) 5.0 0.715 65 0.671 43
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As a result, ���
n
p

( ~Gÿ1 ÿ Gÿ1)!D V (Gÿ1)=g(Gÿ1) on D[a, b], (4:4)

where V is a Gaussian process with continuous sample path and satis®es, for ÿ1 < s <
t <1,

EV (t) � 0,

EV (s)V (t) � (1� r) G(s)[1ÿ G(t)]ÿ r(A11(s), AT
12(s))

1

0

 !
ÿ Aÿ1

A11(t)

A12(t)

 !" #( )
: (4:5)

Theorem 4.1 enables us to establish the asymptotic normality of the sample quantiles

associated with ~G. We present two results. The ®rst concerns the asymptotic joint

distribution of k sample quantiles, whereas the second pertains to the asymptotic

distribution of a single sample quantile ~îq � ~Gÿ1(q).

Corollary 4.1. Let 0 , q1 , . . . , qk , 1. Suppose that the conditions of Theorem 2.1 hold.

Suppose further that G has continuous positive density g in neighbourhoods of Gÿ1(q1), . . . ,

Gÿ1(qk). Then as n!1,���
n
p

( ~Gÿ1(q1)ÿ Gÿ1(q1), . . . , ~Gÿ1(qk)ÿ Gÿ1(qk))!d Nk(0, B),

where 0 � (0, 0, . . . , 0)T and B � (bij)k3k with

bij � 1� r
g(Gÿ1(qi))g(Gÿ1(q j))

3 qi(1ÿ q j)ÿ r[A11(Gÿ1(qi)), AT
12(Gÿ1(qi))]

1

0

 !
ÿ Aÿ1

A11(Gÿ1(q j))

A12(Gÿ1(q j))

 !" #( )
(4:6)

and bij � b ji for i . j.

Corollary 4.2. Let 0 , q , 1. Suppose that the conditions of Theorem 2.1 hold. Suppose

further that G has a continuous positive density g in a neighbourhood of Gÿ1(q). Then, as

n!1, ���
n
p

( ~Gÿ1(q)ÿ Gÿ1(q))!d N (0, ó 2
~î
),

where

ó 2
~î
� (1� r)

[g(Gÿ1(q))]2
q(1ÿ q)ÿ r[A11(Gÿ1(q)), AT

12(Gÿ1(q))]
1

0

� �
ÿ Aÿ1

A11(Gÿ1(q))

A12(Gÿ1(q))

 !" #( )
:

(4:7)
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Remark 4.1. The results in Theorem 4.1 and its corollaries also hold for ~Hÿ1(s) de®ned in

Remark 2.2. We only need to replace r by rÿ1 and (á0, â0) by (ÿá0, ÿâ0) in (4.5)±(4.7).

Next we consider the asymptotic relative ef®ciency of the standard quantile estimator

î̂q � Ĝÿ1(q) relative to the proposed quantile estimator ~îq � ~Gÿ1(q). On the basis of the

(control) sample X1, . . . , Xn0
, let

ó 2

î̂
� q(1ÿ q)

[g(Gÿ1(q))]2

be the asymptotic variance of
�����
n0
p

î̂q. If limn0!1 var[
�����
n0
p

î̂q] � ó 2

î̂
and limn!1 var[

���
n
p ~î]

� ó 2
~î
, then

lim
n!1

var(î̂q)

var(~îq)
� (1� r) lim

n!1
var[

�����
n0
p

î̂q]

var[
���
n
p ~îq]

� (1� r)
ó 2

î̂

ó 2
~î

:

This motivates the following de®nitions regarding the asymptotic relative ef®ciency of î̂q

relative to ~îq. Under the conditions of Corollary 4.2, we de®ne the asymptotic relative

ef®ciency of î̂q relative to ~îq by

e(î̂q, ~îq) �
ó 2

~î

(1� r)ó 2

î̂

� 1ÿ 1

q(1ÿ q)
r[A11(Gÿ1(q)), AT

12(Gÿ1(q))]
1

0

 !
ÿ Aÿ1

A11(Gÿ1(q))

A12(Gÿ1(q))

 !" #( )
:

The following corollary, which is a straightforward consequence of (2.9), indicates that the

proposed quantile estimator ~îq has smaller asymptotic variance than the standard quantile

estimator î̂q. Thus, ~îq is more ef®cient than î̂q under model (1.1).

Corollary 4.3. Under the conditions of Corollary 4.2, we have e(î̂q, ~îq) < 1.

Finally, we consider estimating the asymptotic variance ó 2
~î

given in Corollary 4.2. On the

basis of ~G in (2.3), we propose to estimate ó 2
~î

by

~ó 2
~î
� (1� r)

~G(~îq � bn)ÿ ~G(~îq ÿ bn)

2bn

" #ÿ2

3 q(1ÿ q)ÿ r[ ~A11(~îq), ~AT
12(~îq)]

1

0

 !
ÿ ~Aÿ1

~A11(~îq)

~A12(~îq)

 !24 358<:
9=;, (4:8)

where
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~A11(t)�
Xn

i�1

~pi

exp[~á� r(Ti) ~â]

1� rexp[~á� r(Ti)~â]
I [Ti< t] � 1

n0

Xn

i�1

exp[~á� r(Ti)~â]

f1� rexp[~á� r(Ti) ~â]g2
I [Ti< t],

~A12(t)�
Xn

i�1

~pi

exp[~á� r(Ti) ~â]

1� rexp[~á� r(Ti)~â]
r(Ti)I [Ti< t] � 1

n0

Xn

i�1

exp[~á� r(Ti)~â]

f1� rexp[~á� r(Ti) ~â]g2
r(Ti)I [Ti< t],

~A11 � ~A11(1), ~A12 � ~A12(1),

~A22 �
Xn

i�1

~pi

exp[~á� r(Ti)~â]

1� rexp[~á� r(Ti) ~â]
r(Ti)rT(Ti)� 1

n0

Xn

i�1

exp[~á� r(Ti) ~â]

f1� rexp[~á� r(Ti) ~â]g2
r(Ti)rT(Ti),

~A�
~A11

~AT
12

~A12
~A22

 !
:

Note that ~g(t) � (2bn)ÿ1[ ~G(t � bn)ÿ ~G(t ÿ bn)] is a special case of the following kernel

estimator of the density function g(t) of G(t),

~g(t) � 1

bn

�
K

t ÿ y

bn

� �
d ~G(y),

when K is the uniform kernel function, that is, K(x) � 1
2

if x 2 [ÿ1, 1) and K(x) � 0 if

x =2 [ÿ1, 1).

Under the conditions given in Corollary 4.2, it can be shown that

~A11(~îq) � A11(Gÿ1(q))� op(1), ~A12(~îq) � A12(Gÿ1(q))� op(1), ~A � A� op(1):

Moreover, if nb2
n !1 as n!1, then we can show under the conditions of Corollary 4.2

that

~G(~îq � bn)ÿ ~G(~îq ÿ bn)

2bn

� g(Gÿ1(q))� op(bn)� Op(nÿ1=2bÿ1
n ):

Therefore, we have the following result.

Theorem 4.2. Under the conditions of Corollary 4.2 and the condition that nb2
n !1 as

n!1, we have

~ó 2
~î
� ó 2

~î
� op(1),

where ~ó 2
~î

is given by (4.8).

5. Numerical results

In this section, we report the results of a real data problem and a simulation study.
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5.1. An example

By employing the logistic regression model (1.2), Hosmer and Lemeshow (1989) analysed the

relationship between age and coronary heart disease status based on a study of 100 subjects.

The complete data set is listed on page 3 in their book. Let X denote age and Y � 1 or 0

represent the presence or absence of coronary heart disease; then the sample data (Xi, Yi),

i � 1, . . . , 100, can be thought of as being drawn independently and identically from the

joint distribution of (X , Y ). Remark 2.3 implies that our proposed procedure can be applied

to this data set. By ®tting model (1.1), we have (~á, ~â) � (ÿ5:027 60, 0:110 92). Since

n0 � 57 and n1 � 43, we can estimate á� in model (1.2) by ~á� � ÿ5:027 60ÿ log(57=43) �
ÿ5:309 451, which coincides with Hosmer and Lemeshow's result. Figure 1 shows the curves

of four estimated quantile functions ~Gÿ1(s), Ĝÿ1(s), ~Hÿ1(s), and Ĥÿ1(s) for s 2 (0, 1). The

curve of ~Gÿ1(s) ( ~Hÿ1(s)) bears a resemblance to that of Ĝÿ1(s) (Ĥÿ1(s)). In addition, the

left-hand panel of Figure 1 reveals that the median age in the disease-free population is

estimated to be ~Gÿ1(0:5) � Ĝÿ1(0:5) � 38, whereas the right-hand panel of Figure 1

indicates that the median age in the diseased population is estimated to be ~Hÿ1(0:5) � 53 or

Ĥÿ1(0:5) � 54. According to Corollary 4.3, Theorem 4.2 and equation (4.8), an approximate

95% con®dence interval for Gÿ1(0:5) is given by ~I � (34:16, 41:84) on the basis of ~G. On

the other hand, based on Ĝ and ó̂ 2

î̂
� [fĜ(î̂0:5 � bn0

)ÿ Ĝ(î̂0:5 ÿ bn0
)g=bn0

]ÿ2, an

approximate 95% con®dence interval for Gÿ1(0:5) is given by Î � (34:05, 41:95). It is seen

that ~I is narrower than Î , indicating that statistical inference based on ~G is more accurate than

that based on Ĝ. In computing ~I and Î, we chose bn � bn0
� 4:0 so that the curve of ~g

resembles the curve of ĝ(t) � (1=bn0
)
�

K((t ÿ y)=bn0
) dĜ(y).

5.2. A simulation study

In our simulation study, we consider estimating the ®rst quartile Gÿ1(0:25) of G. We assume

that g(x) is the standard normal density function and h(x) is the density function of an

N (ì, 1) distribution. It is easy to see that g(x) and h(x) are related by

h(x) � exp(á� xâ)g(x), where á � ì2=2 and â � ì. Thus, model (1.1) holds with

r(x) � x. Let ì � 1 be ®xed. Our aim is to compare the performance of ~î0:25 � ~Gÿ1(0:25)

with that of î̂0:25 � Ĝÿ1(0:25) by examining their biases, variances and relative ef®ciencies.

In our simulations, we generated, for each pair (n0, n1), 1000 independent sets of combined

random samples of size n � 60 from the N (0, 1) and N (1, 1) populations. The simulation

results are summarized in Table 3.

In Table 3, bias(î̂0:25) and var(î̂0:25) stand for, respectively, the average of 1000 biases of

î̂0:25 and the sample variance of 1000 estimates î̂0:25, whereas bias(~î0:25) and var(~î0:25)

stand for, respectively, the average of 1000 biases of ~î0:25 and the sample variance of 1000

estimates ~î0:25. In addition, we use cvar(î̂0:25) and cvar(~î0:25) to represent, respectively, the

averages of 1000 variance estimates of î̂0:25 and of ~î0:25. Moreover, e(î̂0:25, ~î0:25) stands for

the relative ef®ciency of î̂0:25 relative to ~î0:25, that is e(î̂0:25, ~î0:25) � var(~î0:25)=var(î̂0:25).

Finally, in calculating variance estimates, we have employed (4.8) with q � 0:25 to estimate

the asymptotic variance of ~î0:25, and have employed ó̂ 2

î̂
� [fĜ(î̂0:25 � bn0

)ÿ Ĝ(î̂0:25 ÿ
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bn0
)g=bn0

]ÿ2 to estimate the asymptotic variance of î̂0:25. In this simulation study, the

bandwidths bn and bn0
were selected according to the optimal bandwidth hopt �

k
ÿ2=5
2 [

�
K2(x)]1=5[

�f f 0(x)g2 dx]ÿ1=5 nÿ1=5 in the usual kernel density estimation (Silverman

1986, p. 40), where f (:) is the density function of the population distribution and

k2 �
�

x2 K(x) dx with K being the uniform kernel function given in Section 4. It can be

shown that hopt � (12
���
ð
p

=n)1=5 when the population distributions is N (0, 1). Consequently,

we take bn � (12
���
ð
p

=n)1=5 and bn0
� (12

���
ð
p

=n0)1=5 in our simulations.

It is seen from Table 3 that the biases and variances of ~î0:25 are all smaller than those of

Figure 1. Estimated quantile functions ~Gÿ1(s), Ĝÿ1(s), ~Hÿ1(s), and Ĥÿ1(s) for s 2 (0, 1). The solid

curve and dashed curve on the left panel represent ~Gÿ1(s) and Ĝÿ1(s), respectively, while the solid

curve and dashed curve on the right panel stand for ~Hÿ1(s) and Ĥÿ1(s), respectively.
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î̂0:25 for various values of (n0, n1). By examining the magnitude of the relative ef®ciency

e(î̂0:25, ~î0:25), we see that the improvement of the proposed ®rst quartile estimator ~î0:25 over

the standard ®rst quartile estimator î̂0:25 in terms of variance reduction is more apparent as

r � n1=n0 gets larger. This phenomenon is not unexpected because, on the basis of the

(control) sample X1, . . . , Xn0
, we would expect to estimate Gÿ1(0:25) by î̂0:25 less

accurately when n0 gets smaller. With regard to the variance estimates, Table 3 indicates

that the proposed estimator ~ó 2
~î

in (4.8) works well in most cases. This simulation study

indicates that when the second sample Z1, . . . , Z n1
is available, it is advantageous to

employ the proposed quantile estimate ~Gÿ1(s) to estimate Gÿ1(s) because ~Gÿ1(s) improves

Ĝÿ1(s) in terms of variance reduction for various values of r and such an improvement is

expected to be even more obvious for r > 1.

6. Proofs

First we present a lemma which will be used in the proof of Theorem 4.1.

Lemma 6.1. Let 0 , a , b , 1 be given. Suppose that model (1.1) holds and the conditions of

Theorem 2.1 hold.

(a) supÿ1< t<1j ~G(t)ÿ G(t)j � Op(nÿ1=2).

(b) If G has continuous positive density g on [Gÿ1(a), Gÿ1(b)], then supa<s<bj ~Gÿ1(s)

ÿ Gÿ1(s)j � Op(nÿ1=2).

(c) supa<s<bj ~G( ~Gÿ1(s))ÿ sj � Op(nÿ1).

(d) If G has continuous positive density g on [Gÿ1(a)ÿ å, Gÿ1(b)� å] for some å. 0,

then for any C . 0, supGÿ1(a)<x<Gÿ1(b) supj yÿxj<Cnÿ1=2 j ~G(x)ÿ ~G(y)ÿ G(x)� G(y)j �
op(nÿ1=2).

Proof. Part (a) is a straightforward consequence of part (b) of Theorem 2.1 along with
~G(t)ÿ G(t) � ~G(t)ÿ Ĝ(t)� [Ĝ(t)ÿ G(t)] and supÿ1< t<1jĜ(t)ÿ G(t)j � Op(nÿ1=2).

For part (b), since max1<i<n ~pi < 1=n0 � (1� r)=n by (2.1), it follows from part (a) that

Table 3. Biases, variances, and ef®ciencies of ~î0:25 and î̂0:25

(n0, n1) r bias(î̂0:25) bias(~î0:25) var(î̂0:25) var(~î0:25) cvar(î̂0:25) cvar(~î0:25) e(î̂0:25, ~î0:25)

(50, 10) 0.2 0.014 08 0.013 02 0.038 13 0.037 20 0.043 10 0.041 20 0.975 61

(40, 20) 0.5 0.046 19 0.008 32 0.047 42 0.043 00 0.053 22 0.049 91 0.906 79

(30, 30) 1 0.007 99 0.005 40 0.065 14 0.056 80 0.077 38 0.063 77 0.871 97

(20, 40) 2 ÿ0.084 44 0.001 02 0.097 13 0.077 21 0.135 85 0.090 11 0.794 91

(10, 50) 5 0.035 56 0.025 82 0.172 38 0.127 56 0.278 70 0.152 09 0.739 99
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Än � max
1<i<n

sup
~G(T(iÿ1)),s< ~G(T(i))

jsÿ G(T(i))j < max
1<i<n

j ~G(T(i))ÿ G(T(i))j � max
1<i<n

j ~G(T(iÿ1))ÿ G(T(i))j

< 2 sup
ÿ1, t,1

j ~G(t)ÿ G(t)j � max
1<i<n

~pi � Op(nÿ1=2), (6:1)

where T(1) < T(2) < . . . < T(n) are the order statistics of T1, . . . , Tn and T(0) � ÿ1. Since G

has continuous positive density g on [Gÿ1(a), Gÿ1(b)], g(Gÿ1(s)) is bounded away from zero

on [a, b], which, along with (6.1), implies that

sup
a<s<b

j ~Gÿ1(s)ÿ Gÿ1(s)j < max
1<i<n

sup
~G(T(iÿ1)),s< ~G(T(i))

jT(i) ÿ Gÿ1(s)j

� max
1<i<n

sup
~G(T(iÿ1)),s< ~G(T(i))

jGÿ1(G(T(i)))ÿ Gÿ1(s)j

< sup
a<s<b

1

g(Gÿ1(s))

� �
Än � op(Än) � Op(nÿ1=2):

For part (c), we have

sup
a<s<b

j ~G( ~Gÿ1(s))ÿ sj < max
1<i<n

sup
~G(T(iÿ1)),s< ~G(T(i))

j ~G(T(i))ÿ sj

< max
1<i<n

j ~G(T(i))ÿ ~G(T(iÿ1))j � max
1<i<n

~pi � Op(nÿ1):

Turning to the proof of part (d), let än � Cnÿ1=2 and fmng be a sequence of positive

integers such that mn � [nè] with è. 1
2
, where [nè] denotes the largest integer less or equal

to nè. We ®rst divide the interval [[mnGÿ1(a)]=mn, [mnGÿ1(b)� 1]=mn] into subintervals

I i � [ti, ti�1] for i � 0, 1, . . . , d n ÿ 1, where t k � ([mnGÿ1(a)]� k)=mn for k � 0, 1,

. . . , d n with d n � [mnGÿ1(b)� 1]ÿ [mnGÿ1(a)]. We then subdivide each interval

[ti ÿ [mnän � 1]=mn, ti � [mnän � 1]=mn] for i � 0, 1, . . . , d n into subintervals I ij �
[tij, ti( j�1)] for j � ÿbn, . . . , bn ÿ 1, where tij � ti � j=mn for j � ÿbn, bn � 1, . . . ,

bn ÿ 1, bn with bn � [mnän � 1]. Now let

ai � G(ti�1)ÿG(ti), aij � G(ti( j�1))ÿG(tij), i� 0, . . . , d n, j�ÿbn, . . . , bn,

Zij � [H1(ti)ÿ H2(ti)ÿG(ti)]ÿ [H1(tij)ÿ H2(tij)ÿG(tij)], i� 0, . . . , d n, j�ÿbn, . . . , bn,

H n(x, y)� ~G(x)ÿ ~G(y)ÿG(x)�G(y), K n � max
0<i<d n

max
ÿbn< j<bn

jH n(ti, tij)j, (6:2)

where H1 and H2 are de®ned in (2.7). Since G has continuous density g on [Gÿ1(a)ÿ å,

Gÿ1(b)� å], g is bounded on [Gÿ1(a)ÿ å, Gÿ1(b)� å], that is g(x) < Mf for all x in

[Gÿ1(a)ÿ å, Gÿ1(b)� å], with Mf being some constant. Furthermore, applying the mean

value theorem gives max0<i<d n
ai < Mf =mn and max0<i<d n

maxÿbn< j<b n
aij < Mf =mn for

large n. These facts, along with the monotonicity of ~G and G, imply that, for large n,
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sup
ti<x< t i�1

sup
tij< y< t i( j�1)

jH n(x, y)j < K n � 2Mf

mn

: (6:3)

Inequality (6.3) further implies that, for large n,

sup
Gÿ1(a)<x<Gÿ1(b)

sup
j yÿxj<än

j ~G(x)ÿ ~G(y)ÿ G(x)� G(y)j < max
0<i<d n

sup
x2 I i

max
ÿbn< j<bnÿ1

sup
t ij< y< ti( j�1)

jH n(x, y)j

< K n � 2Mf

mn

� K n � o(nÿ1=2): (6:4)

Thus, in order to prove part (d), it is enough to show that K n � op(nÿ1=2). For this purpose,

by (6.2), (2.6), and (2.8), we have

K n � max
0<i<d n

max
ÿbn< j<b n

j[H1(ti)ÿ H2(ti)ÿ G(ti)]ÿ [H1(tij)ÿ H2(tij)ÿ G(tij)]� Rn(ti)ÿ Rn(tij)j

< max
0<i<d n

max
ÿbn< j<bn

jZijj � 2 sup
ÿ1,x,1

Rn(x) � max
0<i<d n

max
ÿbn< j<bn

jZijj � op(nÿ1=2): (6:5)

It now suf®ces to show that max0<i<d n
maxÿbn< j<bn

jZijj � op(nÿ1=2). For this purpose, it can

be shown after extensive algebra that

max
0<i<d n

max
ÿbn< j<b n

var
I [X1< ti] ÿ I [X1< t ij]

1� r exp[á0 � r(X1)â0]

� �
< Mf än � 1

mn

� �
� O(nÿ1=2),

max
0<i<d n

max
ÿbn< j<b n

var
rI [ Z1< t i] ÿ I [ Z1< t ij]

1� r exp[á0 � r(Z1)â0]

� �
< rMf än � 1

mn

� �
� O(nÿ1=2),

max
0<i<d n

max
ÿbn< j<b n

jrA11(ti)ÿ rA11(tij)j < Mf än � 1

mn

� �
� O(nÿ1=2),

max
0<i<d n

max
ÿbn< j<b n

jrAk
12(ti)ÿ rAk

12(tij)j < M r M
1=2
f än � 1

mn

� �1=2

� O(nÿ1=4), (6:6)

where M r � max1<k<r EGjrk(X 1)j2]1=2 and Ak
12(:) for k � 1, . . . , p are de®ned in (6.10).

According to (6.2) and (2.7), we can write
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max
0<i<d n

max
ÿbn< j<bn

jZijj

� max
0<i<d n

max
ÿb n< j<b n

1

n0

Xn

k�1

I [Tk < t i] ÿ I [Tk < t ij]

1� r exp[á0 � r(Tk)â0]
ÿ [G(ti)ÿ G(tij)]

�����

ÿ r
n

[A11(ti)ÿ A11(tij), AT
12(ti)ÿ AT

12(tij)]S
ÿ1

@ l(á0, â0)

@á

@ l(á0, â0)

@â

0BBBB@
1CCCCA
����������

� max
0<i<d n

max
ÿb n< j<b n

1

n0

Xn0

k�1

I [Xk< ti] ÿ I [Xk < t ij]

1� r exp[á0 � r(Xk)â0]
ÿ [G(ti)ÿ G(tij)]

�����
� 1

n1

Xn1

k�1

r[I [ Z k < t i] ÿ I [ Z k < tij]]

1� r exp[á0 � r(Z k)â0]
ÿ [G2(ti)ÿ G2(tij)]

ÿ r
n

[A11(ti)ÿ A11(tij), AT
12(ti)ÿ AT

12(tij)]S
ÿ1

@ l(á0, â0)

@á

@ l(á0, â0)

@â

0BBBB@
1CCCCA
����������

< max
0<i<d n

max
ÿbn< j<bn

���� 1

n0

Xn0

k�1

I [Xk< ti] ÿ I [Xk < t ij]

1� r exp[á0 � r(X k)â0]
ÿ [G(ti)ÿ G(tij)]

����
� max

0<i<d n

max
ÿbn< j<bn

���� 1

n1

Xn1

k�1

r[I [ Z k < ti] ÿ I [ Z k < t ij]]

1� r exp[á0 � r(Z k)â0]
ÿ [G2(ti)ÿ G2(tij)]

����

� max
0<i<d n

max
ÿbn< j<bn

r
n

[A11(ti)ÿ A11(tij), AT
12(ti)ÿ AT

12(tij)]S
ÿ1

@ l(á0, â0)

@á

@ l(á0, â0)

@â

0BBBB@
1CCCCA

�����������

�����������
, (6:7)

where G1(t) � � t

ÿ11=f1� r exp[á0 � r(x)â0]gg(x) dx and G2(t) � G(t)ÿ G1(t). To deal

with the ®rst term in (6.7), for any ë. 0, using (6.6) and Bernstein's inequality (Ser¯ing

1980, p. 95) gives
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P
���
n
p

max
0<i<d n

max
ÿbn< j<bn

���� 1

n0

Xn0

k�1

I [Xk < t i] ÿ I [Xk < tij]

1� r exp[á0 � r(X k)â0]
ÿ [G1(ti)ÿ G1(tij)]

� �����. ë

 !

<
Xd n

i�0

Xb n

j�ÿbn

P

����Xn0

k�1

I [Xk < t i] ÿ I [Xk< tij]

1� r exp[á0 � r(X k)â0]
ÿ [G1(ti)ÿ G1(tij)]

� �����. än n0ë

 !

< 2(d n � 1)(2bn � 1) exp ÿ n0ä
2
në

2

2M1(än � mÿ1
n )� 4

3
änë

 !
� o(1), as n!1:

Since ë is arbitrary, we can conclude that

max
0<i<d n

max
ÿb n< j<b n

���� 1

n0

Xn0

k�1

I [Xk < t i] ÿ I [Xk < tij]

1� r exp[á0 � r(X k)â0]
ÿ [G1(ti)ÿ G1(tij)]

���� � op(nÿ1=2): (6:8)

Similarly, we can show that

max
0<i<d n

max
ÿbn< j<bn

���� 1

n0

Xn1

k�1

r[I [ Z k < t i] ÿ I [ Z k< tij]

1� r exp[á0 � r(Z k)â0]
ÿ [G2(ti)ÿ G2(tij)]

���� � op(nÿ1=2): (6:9)

To deal with the third term in (6.7), note from part (a) of Theorem 2.1 that

1

n
Sÿ1

@ l(á0, â0)

@á

@ l(á0, â0)

@â

0BB@
1CCA � Op(nÿ1=2):

Moreover, de®ne

Ak
12(t) �

� t

ÿ1

exp[á0 � r(x)â0]

1� r exp[á0 � r(x)â0]
rk(x) dG(x), k � 1, . . . , p,

B0ij � r[A11(ti)ÿ A11(tij)], Bkij � r[Ak
12(ti)ÿ Ak

12(tij)], k � 1, . . . , p,

Bij � (B0ij, B1ij, . . . , Bpij), (6:10)

L � (L0, L1, . . . , L p)T � 1

n
Sÿ1

@ l(á0, â0)

@á

@ l(á0, â0)

@â

0BBB@
1CCCA:

According to (6.6) and part (a) of Theorem 2.1, we have

max
0<i<d n

max
ÿbn< j<bn

jBkijj � O(nÿ1=4), Lk � Op(nÿ1=2), k � 0, 1, . . . , p:

Thus
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max
0<i<d n

max
ÿbn< j<bn

r
n

[A11(ti)ÿ A11(tij), AT
12(ti)ÿ AT

12(tij)]S
ÿ1

@ l(á0, â0)

@á

@ l(á0, â0)

@â

0BBB@
1CCCA

����������

����������
� max

0<i<d n

max
ÿb n< j<b n

����Xp

k�1

Bkij Lk

���� <
Xp

k�0

jLk j max
0<i<d n

max
ÿb n< j<b n

jBkijj
h i � Op(nÿ3=4): (6:11)

Combining (6.7), (6.8), (6.9) and (6.11) yields

max
0<i<d n

max
ÿbn< j<bn

jZijj � op(nÿ1=2)� op(nÿ1=2)� Op(nÿ3=4) � op(nÿ1=2): (6:12)

Combine (6.5) and (6.12) gives K n � op(nÿ1=2). This completes the proof of Lemma 6.1

according to (6.4). h

Proof of Theorem 4.1. For convenience, we use Gÿ1 ~GGÿ1(:) etc. to denote composite

functions. Let

rn1(s) � ÿ[Gÿ1 ~GGÿ1(s)ÿ Gÿ1GGÿ1(s)� Qn(s)],

rn2(s) � Gÿ1G ~Gÿ1(s)ÿ Gÿ1 ~G ~Gÿ1(s)� Gÿ1 ~GGÿ1(s)ÿ Gÿ1GGÿ1(s),

rn3(s) � Gÿ1 ~G ~Gÿ1(s)ÿ Gÿ1(s);

then it is easy to see that

~Gÿ1(s)ÿ Gÿ1(s) � Qn(s)� rn1(s)� rn2(s)� rn3(s): (6:13)

Let ~x(s) � ~GGÿ1(s); then supa<s<bj~x(s)ÿ sj � Op(nÿ1=2) by part (a) of Lemma 6.1. Since G

has continuous positive density g on [Gÿ1(a), Gÿ1(b)], g(Gÿ1(s)) is bounded away from zero

on [a, b]. As a result, applying Taylor expansion and part (b) of Theorem 2.1 gives

sup
a<s<b

jrn1(s)j � sup
a<s<b

����Gÿ1(~x(s))ÿ Gÿ1(s)� Qn(s)

����
< sup

a<s<b

���� 1

g(Gÿ1(s))
[ ~G(Gÿ1(s))ÿ G(Gÿ1(s))]� Qn(s)

����� op(nÿ1=2)

� sup
a<s<b

���� Rn(Gÿ1(s))

g(Gÿ1(s))

����� op(nÿ1=2) � op(nÿ1=2): (6:14)

Let ön � supa<s<bj ~Gÿ1(s)ÿ Gÿ1(s)j; then ön � Op(nÿ1=2) by part (b) of Lemma 6.1.

Applying parts (a) and (d) of Lemma 6.1 gives
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sup
a<s<b

jrn2(s)j < sup
a<s<b

���� [ ~GGÿ1(s)ÿ GGÿ1(s)]ÿ [ ~G ~Gÿ1(s)ÿ G ~Gÿ1(s)]

g(Gÿ1(s))

����� op(nÿ1=2)

< sup
a<s<b

1

g(Gÿ1(s))

� �
sup

Gÿ1(a)<x<Gÿ1(b)

sup
j yÿxj<ö n

j[ ~G(x)ÿ G(x)]ÿ [ ~G(y)ÿ G(y)]j

� op(nÿ1=2) � op(nÿ1=2): (6:15)

Furthermore, by part (c) of Lemma 6.1, we have

sup
a<s<b

jrn3(s)j < sup
a<s<b

���� ~G( ~Gÿ1(s))ÿ s

g(Gÿ1(s))

����� op(nÿ1) � Op(nÿ1): (6:16)

Let rn(s) � rn1(s)� rn2(s)� rn3(s); then both (4.1) and (4.3) hold by combining (6.13)±

(6.16). To prove (4.4), according to (4.1) and (4.3), it is enough to show that���
n
p

Qn!D V (Gÿ1)=g(Gÿ1) on D[a, b]: (6:17)

Let

Vn(t) � H1(t)ÿ H2(t)ÿ G(t); (6:18)

then ���
n
p

Vn(t) � ���
n
p

(H1(t)ÿ H2(t)ÿ ~G(t))�
���������������
(1� r)

p �����
n0

p
( ~G(t)ÿ G(t)):

It is easy to see that EVn(t) � EH1(t)ÿ G(t) � 0. For s < t, it can be shown after very

extensive algebra that E[f ���
n
p

Vn(s)gf ���
n
p

Vn(t)g] � EV (s)V (t), which, along with the central

limit theorem for sample means and the CrameÂr±Wold device, implies that the ®nite-

dimensional distributions of
���
n
p

Vn converge weakly to those of V . By employing the

tightness criteria in Billingsley (1968), we can show that the process f ���
n
p

Vn(t),

ÿ1 < t <1g is tight in D[ÿ1, 1]. As a result, we have���
n
p

Vn!D V in D[ÿ1, 1]: (6:19)

Therefore, applying (4.2), (6.18), and (6.19) yields���
n
p

Qn � ÿ
���
n
p

Vn(Gÿ1)

g(Gÿ1)
ÿ!D ÿ V (Gÿ1)

g(Gÿ1)
�D V (Gÿ1)

g(Gÿ1)
on D[a, b],

thus establishing (6.17). The proof is completed. h
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