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Stein's method for compound Poisson approximation was introduced by Barbour, Chen and Loh. One

dif®culty in applying the method is that the bounds on the solutions of the Stein equation are by no

means as good as for Poisson approximation. We show that, for the Kolmogorov metric and under a

condition on the parameters of the approximating compound Poisson distribution, bounds comparable

with those obtained for the Poisson distribution can be recovered.
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1. Introduction

Let W be any random variable on Z�, and let ëi > 0, i 2 N, be chosen to satisfyP
i>1 iëi ,1. Suppose that it can be shown that����E X

i>1

iëi g(W � i)ÿ Wg(W )

( )���� < å0 M0(g)� å1 M1(g) (1:1)

for all bounded g: N! R, where Ml(g) :� supw2NjÄ l g(w)j, l 2 Z�, and Äg(w) :�
g(w� 1)ÿ g(w). Then it follows that

dF (L (W ), CP(ë)) :� sup
f 2F
jE f (W )ÿ CP(ë)f f gj < å0 sup

f 2F
M0(gf )� å1 sup

f 2F
M1(gf ), (1:2)

for any set F of test functions, where gf solves the Stein equationX
i>1

iëi g( j� i)ÿ jg( j) � f ( j)ÿ CP(ë)f f g, j > 0: (1:3)

Here, CP(ë) denotes the compound Poisson distribution of
P

i>1 iZi, where the Zi � Po(ëi)

are independent.

There are many occasions, some of them discussed in Roos (1994), in which (1.1) can be

shown to hold for small å0 and å1. However, the resulting distance estimates (1.2) are not as

powerful as they could be, for lack of sharp bounds on the quantities sup f 2F Ml(gf ) for the

commonest choices of test functions F and for most CP(ë). Barbour et al. (1992a) found
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reasonable bounds for the test functions F TV � f1A, A � Z�g, appropriate to total

variation approximation, under the additional condition on the ëi that

ë1 > 2ë2 > 3ë3 >. . . ; (1:4)

their bounds are

sup
f 2F TV

M0(gf ) < 1 ^ 2���
r
p

� �
; sup

f 2F TV

M1(gf ) < 1 ^ 1

r
1

4r
� log�(2r)

� �� �
, (1:5)

where r � ë1 ÿ 2ë2. The bound on M1 is weak because of the logarithmic factor, which may

be super¯uous. In this paper, we consider only the set of test functions F K :�
f f k , k 2 N: f k(x) � 1[k,1)(x)g appropriate to Kolmogorov distance. For these functions, we

give neat bounds which do not involve any logarithmic factor, and which replace ë1 ÿ 2ë2 in

the denominator by ë1, at times also a substantial improvement: these are contained in the

following result.

Proposition 1.1. Let gk denote the solution to the Stein equation (1.3) for f � f k. If

condition (1.4) holds, then, for all k 2 N,

M0(gk) < 1 ^
�������
2

eë1

r
, (1:6)

M1(gk) <
1

2
^ 1

ë1 � 1
: (1:7)

Remark 1.2. Under condition (1.4), our bounds (1.6) and (1.7) are uniformly sharper than

those in Theorem 3.1 of Barbour and Utev (1998); in particular, there is no unwanted

logarithmic factor in (1.7), nor do our bounds become large if 2ë2 is close to ë1.

We prove the proposition by using probabilistic arguments. To introduce them, let

íi � iëi ÿ (i� 1)ëi�1, i > 1. Under condition (1.4), the Stein equation (1.3) can be

rephrased in terms of a function h such that g � Äh, in the form

C h(n) � f (n)ÿ CP(ë)( f ), n 2 Z�, (1:8)

where the generator C , de®ned by

C h(n) �
X1
i�1

[h(n� i)ÿ h(n)]íi � n[h(nÿ 1)ÿ h(n)], (1:9)

is that of an immigration±death process X with unit per capita death rate and with

immigration in batches at intensity ë1, a batch of size j coming with probability í j=ë1. X has

equilibrium distribution CP(ë), and the Stein equation (1.8) has solution hf given by

hf (n) � ÿ
�1

0

[E f (Xn(t))ÿ CP(ë)( f )] dt, (1:10)

where Xn is an X-process with Xn(0) � n. Note that X n, X n�1 and X n�2 can be realized on
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the same probability space by taking E1 and E2 to be two independent standard exponential

random variables which are also independent of Xn, and setting

X n�1(t) � X n(t)� 1fE1.tg, X n�2(t) � Xn(t)� 1fE1.tg � 1fE2.tg: (1:11)

Let hk denote the solution to the Stein equation (1.10) for f � f k, so that we have

gk � Ähk . Then it follows that

ä1 hk(n) :� ÿ[hk(n� 1)ÿ hk(n)] � ÿgk(n),

ä2 hk(n) :� ÿ[hk(n� 2)ÿ 2hk(n� 1)� hk(n)] � ÿÄgk(n),

and the required bounds on M0(gk) and M1(gk) follow from corresponding bounds on

ä1 hk(n) and ä2 hk(n), n 2 Z�. Now (1.11) and (1.10) can immediately be used to give

ä1 hk(n) �
�1

0

E[ f k(X n(t)� 1fE1.tg)ÿ f k(Xn(t))] dt

�
�1

0

eÿ tE[ f k(X n(t)� 1)ÿ f k(X n(t))] dt, (1:12)

ä2 hk(n) �
�1

0

E[ f k(Xn(t)� 1fE1.tg � 1fE2.tg)ÿ f k(X n(t)� 1fE1.tg)

ÿ f k(X n(t)� 1fE2.tg)� f k(Xn(t))] dt

�
�1

0

eÿ2 t E[ f k(Xn(t)� 2)ÿ 2 f k(Xn(t)� 1)� f k(X n(t))] dt: (1:13)

Clearly,

f k(X n(t)� 1)ÿ f k(Xn(t)) �
1, if Xn(t) � k ÿ 1,

0, otherwise,

(
(1:14)

and

f k(Xn(t)� 2)ÿ 2 f k(Xn(t)� 1)� f k(X n(t)) �
0, if X n(t) > k or < k ÿ 3,

ÿ1, if X n(t) � k ÿ 1,

1, if X n(t) � k ÿ 2:

8>><>>: (1:15)

The combination of the representations (1.12) and (1.13) with the very simple forms of the

integrands given in (1.14) and (1.15) makes the proofs possible. Indeed, it already follows

immediately that ä1 hk(n) > 0 for all n and k, and that M1(hk) < 1 and M2(hk) < 1
2
.

2. Proof of (1.6)

For (1.6), we use (1.12), writing X n in the form X n(t) � Yn(t)� S(t), where Yn and S are

independent, S denoting the population resulting from immigrants after time 0, and Yn that
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remaining from the initial n individuals at time 0. Then, by the usual concentration

inequality,

max
s>0

P(X n(t) � s) < max
s>0

P(S(t) � s): (2:1)

Fixing any t . 0, the number of batches immigrating between 0 and t has a Poisson

distribution; conditional on this number, the times of immigration are independent, and

uniformly distributed on [0, t]. Let pt denote the probability that a batch arriving in [0, t] has

individuals still surviving at time t. Then

pt � tÿ1

� t

0

X
i>1

(íi=ë1)f1ÿ (1ÿ eÿu)ig du > tÿ1

� t

0

eÿu du � tÿ1(1ÿ eÿ t), (2:2)

and hence the number Nt of batches which arrive in [0, t] and have individuals still alive at t,

a thinning of the original batches, has distribution Po(ë1 tpt).

Let Ul, l 2 N, be independent, and distributed according to the number of members of a

batch arriving in [0, t] which are alive at time t, conditional on there being at least one

alive. Then P(S(t) � 0) � P(Nt � 0) and

P(S(t) � s) �
X
r>0

P(Nt � r)P
Xr

l�1

Ul � s

 !
: (2:3)

But, for s > 1, X
r>1

P
Xr

l�1

Ul � s

 !
� P

[
r>1

Xr

l�1

Ul � s

( ) !
< 1,

so that, for all s > 0,

P(S(t) � s) < max
r>0

P(Nt � r) < f2 eë1(1ÿ eÿ t)gÿ1=2, (2:4)

(see Barbour et al. 1992b, p. 262). Combining this with (1.12) and (1.14), it follows that

ä1 hk(n) <

�1
0

eÿ t����������������������������
2 eë1(1ÿ eÿ t)

p dt �
�������
2

eë1

r
,

as required.

3. Proof of (1.7)

We begin with a straightforward calculation. If Z is an exponential random variable with

mean 1=ì, then

E exp(ÿ2Z) � ì

ì� 2
, E

� Z

0

eÿ2 t dt

( )
� 1

ì� 2
: (3:1)

Now, de®ning Si
j � infft: Xi(t) � jg, i, j > 0, we have
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f k(X n(t)� 2)ÿ 2 f k(X n(t)� 1)� f k(Xn(t)) > 0,

for t , S n
kÿ1. Thus, from (1.13), it follows that

ä2 hk(n) � E

�S n
kÿ1

0

eÿ2 t[ f k(X n(t)� 2)ÿ 2 f k(X n(t)� 1)� f k(Xn(t))] dt

� E

�1
S n

kÿ1

eÿ2 t[ f k(X n(t)� 2)ÿ 2 f k(Xn(t)� 1)� f k(X n(t))] dt

> E

�1
S n

kÿ1

eÿ2 t[ f k(X n(t)� 2)ÿ 2 f k(X n(t)� 1)� f k(Xn(t))] dt

� E exp(ÿ2S n
kÿ1) 3 E

�1
0

eÿ2 t[ f k(X kÿ1(t)� 2)ÿ 2 f k(X kÿ1(t)� 1)� f k(X kÿ1(t))] dt

� E exp(ÿ2S n
kÿ1)ä2 hk(k ÿ 1): (3:2)

Similarly, since f k(Xn(t)� 2)ÿ 2 f k(X n(t)� 1)� f k(X n(t)) < 0 for t , S n
kÿ2, we obtain

ä2 hk(n) � E

�S n
kÿ2

0

eÿ2 t[ f k(X n(t)� 2)ÿ 2 f k(X n(t)� 1)� f k(Xn(t))] dt

� E

�1
S n

kÿ2

eÿ2 t[ f k(X n(t)� 2)ÿ 2 f k(X n(t)� 1)� f k(Xn(t))] dt

< E exp(ÿ2S n
kÿ2)ä2 hk(k ÿ 2): (3:3)

Thus, in order to bound ä2 hk(n), it is enough to be able to control ä2 hk(k ÿ 1) and

ä2 hk(k ÿ 2).

Next, we show that

ä2 hk(k ÿ 1) < 0, for k > 1 (3:4)

ä2 hk(k ÿ 2) . 0, for k . 1: (3:5)

First, observe that, for r > k ÿ 1,Xr

n�kÿ1

ä2 hk(n) �
Xr

n�kÿ1

[ä1 hk(n� 1)ÿ ä1 hk(n)]

� ä1 hk(r � 1)ÿ ä1 hk(k ÿ 1),

and that

ä1 hk(r � 1) �
�1

0

eÿ t E[ f k(X r�1(t)� 1)ÿ f k(X r�1(t))] dt � E expfÿS r�1
kÿ1gä1 hk(k ÿ 1)! 0

as r!1,

since limr!1 S r
kÿ1 � 1 almost surely. Hence

P1
n�kÿ1ä2 hk(n) converges, and
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X1
n�kÿ1

ä2 hk(n) � ÿä1 hk(k ÿ 1) < 0: (3:6)

On the other hand, for n . k ÿ 1, since X can make only unit downward steps, we have

f k(X n(t)� 2)ÿ 2 f k(Xn(t)� 1)� f k(X n(t)) � 0

for t , S n
kÿ1, and hence the inequality in (3.2) becomes the equality

ä2 hk(n) � E exp(ÿ2S n
kÿ1)ä2 hk(k ÿ 1): (3:7)

This in turn gives X1
n�kÿ1

ä2 hk(n) � ä2 hk(k ÿ 1)
X1

n�kÿ1

E exp(ÿ2S n
kÿ1), (3:8)

which, with (3.6), implies (3.4).

To prove (3.5), observe that, if k . 1, then it follows from (3.6) thatX1
n�kÿ2

ä2 hk(n) � hk(k ÿ 1)ÿ hk(k ÿ 2) �
�1

0

eÿ t E[ f k(X kÿ2(t))ÿ f k(X kÿ2(t)� 1)] dt

� E

�S kÿ2
kÿ1

0

eÿ t[ f k(X kÿ2(t))ÿ f k(X kÿ2(t)� 1)] dt

� E

�1
S kÿ2

kÿ1

eÿ t[ f k(X kÿ2(t))ÿ f k(X kÿ2(t)� 1)] dt;

but, from (1.14), f k(X 0(t))ÿ f k(X 0(t)� 1) � 0 for t , S kÿ2
kÿ1, givingX1

n�kÿ2

ä2 hk(n) � E eÿS kÿ2
kÿ1 E

�1
0

eÿs[ f k(X kÿ1(s))ÿ f k(X kÿ1(s)� 1)] dt

. E

�1
0

eÿs[ f k(X kÿ1(s))ÿ f k(X kÿ1(s)� 1)] ds

�
X1

n�kÿ1

ä2 hk(n),

so that (3.5) is proved.

Now, by (3.2)±(3.5), if k . 1, then ä2 hk(k ÿ 1) < 0, ä2 hk(k ÿ 2) . 0 and

ä2 hk(k ÿ 1) < ä2 hk(n) < ä2 hk(k ÿ 2); if k � 1, then ä2 hk(0) < ä2 hk(n) < 0. Thus it

suf®ces to show that

ä2 hk(k ÿ 1) > ÿ 1

ë1 � 1
for k > 1 (3:9)

and
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ä2 hk(k ÿ 2) <
1

ë1 � 1
for k . 1: (3:10)

Taking (3.9), let Vi � infft: X i(t) 6� ig); then, by (3.1) and using conditioning,

ä2 hk(k ÿ 1) � E

�Vkÿ1

0

eÿ2 t(ÿ1) dt

� E

�1
Vkÿ1

eÿ2 t[ f k(X kÿ1(t)� 2)ÿ 2 f k(X kÿ1(t)� 1)� f k(X kÿ1(t))] dt

� ÿ 1

ë1 � k � 1
� E exp(ÿ2Vkÿ1) . Eä2 hk(X kÿ1(Vkÿ1))

� ÿ 1

ë1 � k � 1
� E exp(ÿ2Vkÿ1)

3
X1
i�1

íi

ë1 � k ÿ 1
ä2 hk(k ÿ 1� i)� k ÿ 1

ë1 � k ÿ 1
ä2 hk(k ÿ 2)

" #

> ÿ 1

ë1 � k � 1
� E exp(ÿ2Vkÿ1)

X1
i�1

íi

ë1 � k ÿ 1
ä2 hk(k ÿ 1� i),

from (3.5). But now, again since X makes only unit downward jumps, we have

S kÿ1�i
kÿ1 > S k

kÿ1, almost surely, and

ä2 hk(k ÿ 1� i) � E exp(ÿ2S kÿ1�i
kÿ1 )ä2 hk(k ÿ 1) > E exp(ÿ2S k

kÿ1)ä2 hk(k ÿ 1) � ä2 hk(k),

remembering that ä2 hk(k ÿ 1) < 0. Thus, from (3.1), it follows that

ä2 hk(k ÿ 1) > ÿ 1

ë1 � k � 1
� E exp(ÿ2Vkÿ1)

X1
i�1

íi

ë1 � k ÿ 1
ä2 hk(k)

� ÿ 1

ë1 � k � 1
� ë1 � k ÿ 1

ë1 � k � 1

ë1

ë1 � k ÿ 1
. ä2 hk(k)

� ÿ 1

ë1 � k � 1
� ë1

ë1 � k � 1
ä2 hk(k)

� ÿ 1

ë1 � k � 1
� ë1

ë1 � k � 1
E exp(ÿ2S k

kÿ1)ä2 hk(k ÿ 1): (3:11)

Inequality (3.9) is now rapidly proved, once we have shown that

ë1ei < i for all i 2 N, (3:12)

where ei :� E exp(ÿ2Si
iÿ1), i > 1. To do so, by the Markov property and because X makes

only unit downward jumps, and since Vi � exp(ë1 � i),
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ei � E exp(ÿ2Vi) . E exp[ÿ2(Si
iÿ1 ÿ Vi)]

� ë1 � i

ë1 � i� 2

X1
j�1

E[exp(ÿ2(Si
iÿ1 ÿ Vi))jXi(Vi) � i� j] .

í j

ë1 � i
� i

ë1 � i

( )

� ë1 � i

ë1 � i� 2

X1
j�1

E exp(ÿ2S
i� j
iÿ1) .

í j

ë1 � i
� i

ë1 � i

" #

<
1

ë1 � i� 2
[ë1E exp(ÿ2Si�1

iÿ1)� i]

� 1

ë1 � i� 2
[ë1E exp(ÿ2Si�1

i ) . E exp(ÿ2Si
iÿ1)� i]

� 1

ë1 � i� 2
[ë1ei�1ei � i]:

Hence

(ë1 � i� 2)ei < ë1ei�1ei � i,

which in turn implies that

ë1ei ÿ i < ë1ei�1ei ÿ (i� 2)ei < (ë1ei�1 ÿ (i� 1))ei: (3:13)

For i . ë1, we clearly have ë1ei , i, since ei , 1. For i < ë1, writing l � [ë1]� 1, (3.13)

implies that

ë1ei ÿ i < (ë1el ÿ l)
Ylÿ1

j�i

ej , 0,

and so (3.12) holds for all i. Substituting this into (3.11), we have

ä2 hk(k ÿ 1) > ÿ 1

ë1 � k � 1
� ë1

ë1 � k � 1
.

k

ë1

. ä2 hk(k ÿ 1),

which in turn implies (3.9).

On the other hand, if k . 1, since ä2 hk(k ÿ 2) > 0, ä2 hk(k ÿ 1) < 0 and

ä2 hk(k ÿ 3) < ä2 hk(k ÿ 2), it follows by the Markov property and from (3.7) that
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ä2 hk(k ÿ 2) � E

�Vkÿ2

0

eÿ2 t dt � E

�1
Vkÿ2

eÿ2 t[ f k(X kÿ2(t)� 2)ÿ 2 f k(X kÿ2(t)� 1)� f k(X kÿ2(t))] dt

� 1

ë1 � k ÿ 2� 2
�
X1
i�1

íi

ë1 � k ÿ 2
ä2 hk(k ÿ 2� i) . E eÿ2Vkÿ2

� k ÿ 2

ë1 � k ÿ 2
. ä2 hk(k ÿ 3) . E eÿ2Vkÿ2

<
1

ë1 � k
� k ÿ 2

ë1 � k ÿ 2
ä2 hk(k ÿ 2) . E eÿ2Vkÿ2

� 1

ë1 � k
� k ÿ 2

ë1 � k
ä2 hk(k ÿ 2),

and (3.10) follows.

4. Applications

In this section, we show how to obtain more accurate compound Poisson approximation

bounds from our estimates. As a simple illustration of what is to be gained, we consider the

compound Poisson approximation to the number of k-runs of 1s in a series of independent

identically distributed Bernoulli random variables îi, 1 < i < n, with P(îi � 1) � p. To

avoid edge effects we treat i� nj as i for 1 < i < n, j 2 Z :� f0, �1, �2, . . .g. De®ne

Ii �
Qi�kÿ1

j�i î j and W �Pn
i�1 Ii; then EIi � pk and EW � npk .

In the study of the accuracy of compound Poisson approximation to the distribution of W ,

Arratia et al. (1990) give a bound of order nkp2k(1ÿ p) on the approximation error, expressed in

terms of total variation distance. Under the condition p , 1
3
, so that the bound (1.5) can be applied,

Roos (1993) improves the bound to order kpk log(npk). In terms of Kolmogorov distance, Theorem

4.3 of Barbour and Utev (1998) can be employed to give a bound of order kpk � exp(ÿcnpk) for

some constant c (see also Eichelsbacher and Roos 1999). Here, with our new bounds on the Stein

constants, we can signi®cantly improve the error bound for Kolmogorov distance.

We use the notation of Roos (1994). Let

Ui �
Xiÿ1

j�iÿ(kÿ1)

Ij �
Xi�kÿ1

j�i�1

Ij,

the sum of Ijs which strongly in¯uence Ii, and

Xi �
Xiÿ(kÿ1)ÿ1

j�iÿ2(kÿ1)

Ij �
Xi�2(kÿ1)

j�i�k

Ij,

the sum of Ijs which weakly in¯uence Ii. Then

EUi � EX i � 2(k ÿ 1) pk , EIiX i � 2(k ÿ 1) p2k :
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The parameters of the approximating compound Poisson distribution are chosen as

ëi �

npkpiÿ1(1ÿ p)2, for i � 1, 2, . . . , k ÿ 1,

npkpiÿ1

i
[2(1ÿ p)� (2k ÿ iÿ 2)(1ÿ p)2], for i � k, . . . , 2k ÿ 2,

npkp2kÿ2

2k ÿ 1
, for i � 2k ÿ 1,

8>>>>><>>>>>:
(see Eichelsbacher and Roos 1999) and ë1 > 2ë2 > 3ë3 >. . . if p < 1

3
or if k > 4 and p < 1

2
.

Noting that Ii and Ui are independent of Ij for j < iÿ 2(k ÿ 1)ÿ 1 or j > i� 2(k ÿ 1)� 1,

Theorem 2 of Roos (1994), together with our improved bounds in Proposition 1.1, gives

dF K
(L (W ), CP(ë)) <

1

ë1 � 1
n(6k ÿ 5) p2k ,

p, for k � 1,

(6k ÿ 5) pk(1ÿ p)ÿ2, for k > 2:

�
This simple and explicit bound, albeit for Kolmogorov rather than total variation distance,

is to be compared with the previous bounds, which either grow with n or are not of optimal

order unless npk is large enough, and at best contain unspeci®ed, and often very large,

constants. Many other applications of compound Poisson approximation are given in

Eichelsbacher and Roos (1999); these can be improved for Kolmogorov distance by using

Proposition 1.1 in a similar way.
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