Estimating Stein's constants for compound Poisson approximation

A.D. BARBOUR ${ }^{1}$ and AIHUA XIA ${ }^{2}$

${ }^{1}$ Institut für Angewandte Mathematik, Universität Zürich, Winterthurerstr. 190, 8057 Zürich, Switzerland. E-mail: adb@amath.unizh.ch
${ }^{2}$ Department of Statistics, School of Mathematics, The University of New South Wales, Sydney 2052, Australia. E-mail: xia@maths.unsw.edu.au

Stein's method for compound Poisson approximation was introduced by Barbour, Chen and Loh. One difficulty in applying the method is that the bounds on the solutions of the Stein equation are by no means as good as for Poisson approximation. We show that, for the Kolmogorov metric and under a condition on the parameters of the approximating compound Poisson distribution, bounds comparable with those obtained for the Poisson distribution can be recovered.

Keywords: coupling; immigration-death process; Kolmogorov metric; Stein's method

1. Introduction

Let W be any random variable on \mathbb{Z}_{+}, and let $\lambda_{i} \geqslant 0, i \in \mathbb{N}$, be chosen to satisfy $\sum_{i \geqslant 1} i \lambda_{i}<\infty$. Suppose that it can be shown that

$$
\begin{equation*}
\left|\mathrm{E}\left\{\sum_{i \geqslant 1} i \lambda_{i} g(W+i)-W g(W)\right\}\right| \leqslant \varepsilon_{0} M_{0}(g)+\varepsilon_{1} M_{1}(g) \tag{1.1}
\end{equation*}
$$

for all bounded $g: \mathbb{N} \rightarrow \mathbb{R}$, where $M_{l}(g):=\sup _{w \in \mathbb{N}}\left|\Delta^{l} g(w)\right|, \quad l \in \mathbb{Z}_{+}$, and $\Delta g(w):=$ $g(w+1)-g(w)$. Then it follows that

$$
\begin{equation*}
d_{\mathscr{F}}(\mathscr{C}(W), \mathrm{CP}(\lambda)):=\sup _{f \in \mathscr{F}}|\mathrm{E} f(W)-\mathrm{CP}(\lambda)\{f\}| \leqslant \varepsilon_{0} \sup _{f \in \mathscr{F}} M_{0}\left(g_{f}\right)+\varepsilon_{1} \sup _{f \in \mathscr{F}} M_{1}\left(g_{f}\right), \tag{1.2}
\end{equation*}
$$

for any set \mathscr{F} of test functions, where g_{f} solves the Stein equation

$$
\begin{equation*}
\sum_{i \geqslant 1} i \lambda_{i} g(j+i)-j g(j)=f(j)-\mathrm{CP}(\lambda)\{f\}, \quad j \geqslant 0 \tag{1.3}
\end{equation*}
$$

Here, $\operatorname{CP}(\boldsymbol{\lambda})$ denotes the compound Poisson distribution of $\sum_{i \geqslant 1} i Z_{i}$, where the $Z_{i} \sim \operatorname{Po}\left(\lambda_{i}\right)$ are independent.

There are many occasions, some of them discussed in Roos (1994), in which (1.1) can be shown to hold for small ε_{0} and ε_{1}. However, the resulting distance estimates (1.2) are not as powerful as they could be, for lack of sharp bounds on the quantities $\sup _{f \in \mathscr{F}} M_{l}\left(g_{f}\right)$ for the commonest choices of test functions \mathscr{F} and for most $\mathrm{CP}(\boldsymbol{\lambda})$. Barbour et al. (1992a) found
reasonable bounds for the test functions $\mathscr{F}_{\mathrm{TV}}=\left\{1_{A}, A \subset \mathbb{Z}_{+}\right\}$, appropriate to total variation approximation, under the additional condition on the λ_{i} that

$$
\begin{equation*}
\lambda_{1} \geqslant 2 \lambda_{2} \geqslant 3 \lambda_{3} \geqslant \ldots \tag{1.4}
\end{equation*}
$$

their bounds are

$$
\begin{equation*}
\sup _{f \in \mathscr{F} \mathrm{TV}} M_{0}\left(g_{f}\right) \leqslant\left(1 \wedge \frac{2}{\sqrt{\rho}}\right) ; \quad \sup _{f \in \mathscr{F} \mathrm{TV}} M_{1}\left(g_{f}\right) \leqslant\left\{1 \wedge \frac{1}{\rho}\left(\frac{1}{4 \rho}+\log ^{+}(2 \rho)\right)\right\} \tag{1.5}
\end{equation*}
$$

where $\rho=\lambda_{1}-2 \lambda_{2}$. The bound on M_{1} is weak because of the logarithmic factor, which may be superfluous. In this paper, we consider only the set of test functions $\mathscr{F}_{\mathrm{K}}:=$ $\left\{f_{k}, k \in \mathbb{N}: f_{k}(x)=1_{[k, \infty)}(x)\right\}$ appropriate to Kolmogorov distance. For these functions, we give neat bounds which do not involve any logarithmic factor, and which replace $\lambda_{1}-2 \lambda_{2}$ in the denominator by λ_{1}, at times also a substantial improvement: these are contained in the following result.

Proposition 1.1. Let g_{k} denote the solution to the Stein equation (1.3) for $f=f_{k}$. If condition (1.4) holds, then, for all $k \in \mathbb{N}$,

$$
\begin{align*}
& M_{0}\left(g_{k}\right) \leqslant 1 \wedge \sqrt{\frac{2}{\mathrm{e} \lambda_{1}}} \tag{1.6}\\
& M_{1}\left(g_{k}\right) \leqslant \frac{1}{2} \wedge \frac{1}{\lambda_{1}+1} \tag{1.7}
\end{align*}
$$

Remark 1.2. Under condition (1.4), our bounds (1.6) and (1.7) are uniformly sharper than those in Theorem 3.1 of Barbour and Utev (1998); in particular, there is no unwanted logarithmic factor in (1.7), nor do our bounds become large if $2 \lambda_{2}$ is close to λ_{1}.

We prove the proposition by using probabilistic arguments. To introduce them, let $v_{i}=i \lambda_{i}-(i+1) \lambda_{i+1}, i \geqslant 1$. Under condition (1.4), the Stein equation (1.3) can be rephrased in terms of a function h such that $g=\Delta h$, in the form

$$
\begin{equation*}
\mathscr{C} h(n)=f(n)-\mathrm{CP}(\lambda)(f), \quad n \in \mathbb{Z}_{+} \tag{1.8}
\end{equation*}
$$

where the generator \mathscr{C}, defined by

$$
\begin{equation*}
\mathscr{C} h(n)=\sum_{i=1}^{\infty}[h(n+i)-h(n)] v_{i}+n[h(n-1)-h(n)], \tag{1.9}
\end{equation*}
$$

is that of an immigration-death process X with unit per capita death rate and with immigration in batches at intensity λ_{1}, a batch of size j coming with probability $v_{j} / \lambda_{1} . X$ has equilibrium distribution $\mathrm{CP}(\boldsymbol{\lambda})$, and the Stein equation (1.8) has solution h_{f} given by

$$
\begin{equation*}
h_{f}(n)=-\int_{0}^{\infty}\left[\mathrm{E} f\left(X_{n}(t)\right)-\mathrm{CP}(\lambda)(f)\right] \mathrm{d} t \tag{1.10}
\end{equation*}
$$

where X_{n} is an X-process with $X_{n}(0)=n$. Note that X_{n}, X_{n+1} and X_{n+2} can be realized on
the same probability space by taking E_{1} and E_{2} to be two independent standard exponential random variables which are also independent of X_{n}, and setting

$$
\begin{equation*}
X_{n+1}(t)=X_{n}(t)+1_{\left\{E_{1}>t\right\}}, \quad X_{n+2}(t)=X_{n}(t)+1_{\left\{E_{1}>t\right\}}+1_{\left\{E_{2}>t\right\}} . \tag{1.11}
\end{equation*}
$$

Let h_{k} denote the solution to the Stein equation (1.10) for $f=f_{k}$, so that we have $g_{k}=\Delta h_{k}$. Then it follows that

$$
\begin{gathered}
\delta_{1} h_{k}(n):=-\left[h_{k}(n+1)-h_{k}(n)\right]=-g_{k}(n), \\
\delta_{2} h_{k}(n):=-\left[h_{k}(n+2)-2 h_{k}(n+1)+h_{k}(n)\right]=-\Delta g_{k}(n),
\end{gathered}
$$

and the required bounds on $M_{0}\left(g_{k}\right)$ and $M_{1}\left(g_{k}\right)$ follow from corresponding bounds on $\delta_{1} h_{k}(n)$ and $\delta_{2} h_{k}(n), n \in \mathbb{Z}_{+}$. Now (1.11) and (1.10) can immediately be used to give

$$
\begin{gather*}
\delta_{1} h_{k}(n)=\int_{0}^{\infty} \mathrm{E}\left[f_{k}\left(X_{n}(t)+1_{\left\{E_{1}>t\right\}}\right)-f_{k}\left(X_{n}(t)\right)\right] \mathrm{d} t \\
=\int_{0}^{\infty} \mathrm{e}^{-t} \mathrm{E}\left[f_{k}\left(X_{n}(t)+1\right)-f_{k}\left(X_{n}(t)\right)\right] \mathrm{d} t \tag{1.12}\\
\delta_{2} h_{k}(n)=\int_{0}^{\infty} \mathrm{E}\left[f_{k}\left(X_{n}(t)+1_{\left\{E_{1}>t\right\}}+1_{\left\{E_{2}>t\right\}}\right)-f_{k}\left(X_{n}(t)+1_{\left\{E_{1}>t\right\}}\right)\right. \\
\left.\quad-f_{k}\left(X_{n}(t)+1_{\left\{E_{2}>t\right\}}\right)+f_{k}\left(X_{n}(t)\right)\right] \mathrm{d} t \\
=\int_{0}^{\infty} \mathrm{e}^{-2 t} \mathrm{E}\left[f_{k}\left(X_{n}(t)+2\right)-2 f_{k}\left(X_{n}(t)+1\right)+f_{k}\left(X_{n}(t)\right)\right] \mathrm{d} t \tag{1.13}
\end{gather*}
$$

Clearly,

$$
f_{k}\left(X_{n}(t)+1\right)-f_{k}\left(X_{n}(t)\right)= \begin{cases}1, & \text { if } X_{n}(t)=k-1 \tag{1.14}\\ 0, & \text { otherwise }\end{cases}
$$

and

$$
f_{k}\left(X_{n}(t)+2\right)-2 f_{k}\left(X_{n}(t)+1\right)+f_{k}\left(X_{n}(t)\right)=\left\{\begin{align*}
0, & \text { if } X_{n}(t) \geqslant k \text { or } \leqslant k-3 \tag{1.15}\\
-1, & \text { if } X_{n}(t)=k-1 \\
1, & \text { if } X_{n}(t)=k-2
\end{align*}\right.
$$

The combination of the representations (1.12) and (1.13) with the very simple forms of the integrands given in (1.14) and (1.15) makes the proofs possible. Indeed, it already follows immediately that $\delta_{1} h_{k}(n) \geqslant 0$ for all n and k, and that $M_{1}\left(h_{k}\right) \leqslant 1$ and $M_{2}\left(h_{k}\right) \leqslant \frac{1}{2}$.

2. Proof of (1.6)

For (1.6), we use (1.12), writing X_{n} in the form $X_{n}(t)=Y_{n}(t)+S(t)$, where Y_{n} and S are independent, S denoting the population resulting from immigrants after time 0 , and Y_{n} that
remaining from the initial n individuals at time 0 . Then, by the usual concentration inequality,

$$
\begin{equation*}
\max _{s \geqslant 0} \mathrm{P}\left(X_{n}(t)=s\right) \leqslant \max _{s \geqslant 0} \mathrm{P}(S(t)=s) . \tag{2.1}
\end{equation*}
$$

Fixing any $t>0$, the number of batches immigrating between 0 and t has a Poisson distribution; conditional on this number, the times of immigration are independent, and uniformly distributed on $[0, t]$. Let p_{t} denote the probability that a batch arriving in $[0, t]$ has individuals still surviving at time t. Then

$$
\begin{equation*}
p_{t}=t^{-1} \int_{0}^{t} \sum_{i \geqslant 1}\left(v_{i} / \lambda_{1}\right)\left\{1-\left(1-\mathrm{e}^{-u}\right)^{i}\right\} \mathrm{d} u \geqslant t^{-1} \int_{0}^{t} \mathrm{e}^{-u} \mathrm{~d} u=t^{-1}\left(1-\mathrm{e}^{-t}\right) \tag{2.2}
\end{equation*}
$$

and hence the number N_{t} of batches which arrive in $[0, t]$ and have individuals still alive at t, a thinning of the original batches, has distribution $\operatorname{Po}\left(\lambda_{1} t p_{t}\right)$.

Let $U_{l}, l \in \mathbb{N}$, be independent, and distributed according to the number of members of a batch arriving in $[0, t]$ which are alive at time t, conditional on there being at least one alive. Then $\mathrm{P}(S(t)=0)=\mathrm{P}\left(N_{t}=0\right)$ and

$$
\begin{equation*}
\mathrm{P}(S(t)=s)=\sum_{r \geqslant 0} \mathrm{P}\left(N_{t}=r\right) \mathrm{P}\left(\sum_{l=1}^{r} U_{l}=s\right) . \tag{2.3}
\end{equation*}
$$

But, for $s \geqslant 1$,

$$
\sum_{r \geqslant 1} \mathrm{P}\left(\sum_{l=1}^{r} U_{l}=s\right)=\mathrm{P}\left(\bigcup_{r \geqslant 1}\left\{\sum_{l=1}^{r} U_{l}=s\right\}\right) \leqslant 1
$$

so that, for all $s \geqslant 0$,

$$
\begin{equation*}
\mathrm{P}(S(t)=s) \leqslant \max _{r \geqslant 0} \mathrm{P}\left(N_{t}=r\right) \leqslant\left\{2 \mathrm{e} \lambda_{1}\left(1-\mathrm{e}^{-t}\right)\right\}^{-1 / 2} \tag{2.4}
\end{equation*}
$$

(see Barbour et al. 1992b, p. 262). Combining this with (1.12) and (1.14), it follows that

$$
\delta_{1} h_{k}(n) \leqslant \int_{0}^{\infty} \frac{\mathrm{e}^{-t}}{\sqrt{2 \mathrm{e} \lambda_{1}\left(1-\mathrm{e}^{-t}\right)}} \mathrm{d} t=\sqrt{\frac{2}{\mathrm{e} \lambda_{1}}}
$$

as required.

3. Proof of (1.7)

We begin with a straightforward calculation. If Z is an exponential random variable with mean $1 / \mu$, then

$$
\begin{equation*}
\mathrm{E} \exp (-2 Z)=\frac{\mu}{\mu+2}, \quad \mathrm{E}\left\{\int_{0}^{Z} \mathrm{e}^{-2 t} \mathrm{~d} t\right\}=\frac{1}{\mu+2} \tag{3.1}
\end{equation*}
$$

Now, defining $S_{j}^{i}=\inf \left\{t: X_{i}(t)=j\right\}, i, j \geqslant 0$, we have

$$
f_{k}\left(X_{n}(t)+2\right)-2 f_{k}\left(X_{n}(t)+1\right)+f_{k}\left(X_{n}(t)\right) \geqslant 0
$$

for $t<S_{k-1}^{n}$. Thus, from (1.13), it follows that

$$
\begin{align*}
\delta_{2} h_{k}(n)= & \mathrm{E} \int_{0}^{S_{k-1}^{n}} \mathrm{e}^{-2 t}\left[f_{k}\left(X_{n}(t)+2\right)-2 f_{k}\left(X_{n}(t)+1\right)+f_{k}\left(X_{n}(t)\right)\right] \mathrm{d} t \\
& +\mathrm{E} \int_{S_{k-1}^{n}}^{\infty} \mathrm{e}^{-2 t}\left[f_{k}\left(X_{n}(t)+2\right)-2 f_{k}\left(X_{n}(t)+1\right)+f_{k}\left(X_{n}(t)\right)\right] \mathrm{d} t \\
\geqslant & \mathrm{E} \int_{S_{k-1}^{n}}^{\infty} \mathrm{e}^{-2 t}\left[f_{k}\left(X_{n}(t)+2\right)-2 f_{k}\left(X_{n}(t)+1\right)+f_{k}\left(X_{n}(t)\right)\right] \mathrm{d} t \\
= & \mathrm{E} \exp \left(-2 S_{k-1}^{n}\right) \times \mathrm{E} \int_{0}^{\infty} \mathrm{e}^{-2 t}\left[f_{k}\left(X_{k-1}(t)+2\right)-2 f_{k}\left(X_{k-1}(t)+1\right)+f_{k}\left(X_{k-1}(t)\right)\right] \mathrm{d} t \\
= & \mathrm{E} \exp \left(-2 S_{k-1}^{n}\right) \delta_{2} h_{k}(k-1) . \tag{3.2}
\end{align*}
$$

Similarly, since $f_{k}\left(X_{n}(t)+2\right)-2 f_{k}\left(X_{n}(t)+1\right)+f_{k}\left(X_{n}(t)\right) \leqslant 0$ for $t<S_{k-2}^{n}$, we obtain

$$
\begin{align*}
\delta_{2} h_{k}(n)= & \mathrm{E} \int_{0}^{S_{k-2}^{n}} \mathrm{e}^{-2 t}\left[f_{k}\left(X_{n}(t)+2\right)-2 f_{k}\left(X_{n}(t)+1\right)+f_{k}\left(X_{n}(t)\right)\right] \mathrm{d} t \\
& +\mathrm{E} \int_{S_{k-2}^{n}}^{\infty} \mathrm{e}^{-2 t}\left[f_{k}\left(X_{n}(t)+2\right)-2 f_{k}\left(X_{n}(t)+1\right)+f_{k}\left(X_{n}(t)\right)\right] \mathrm{d} t \\
\leqslant & \mathrm{E} \exp \left(-2 S_{k-2}^{n}\right) \delta_{2} h_{k}(k-2) . \tag{3.3}
\end{align*}
$$

Thus, in order to bound $\delta_{2} h_{k}(n)$, it is enough to be able to control $\delta_{2} h_{k}(k-1)$ and $\delta_{2} h_{k}(k-2)$.

Next, we show that

$$
\begin{array}{ll}
\delta_{2} h_{k}(k-1) \leqslant 0, & \text { for } k \geqslant 1 \\
\delta_{2} h_{k}(k-2)>0, & \text { for } k>1 . \tag{3.5}
\end{array}
$$

First, observe that, for $r \geqslant k-1$,

$$
\begin{aligned}
\sum_{n=k-1}^{r} \delta_{2} h_{k}(n) & =\sum_{n=k-1}^{r}\left[\delta_{1} h_{k}(n+1)-\delta_{1} h_{k}(n)\right] \\
& =\delta_{1} h_{k}(r+1)-\delta_{1} h_{k}(k-1),
\end{aligned}
$$

and that

$$
\begin{array}{r}
\delta_{1} h_{k}(r+1)=\int_{0}^{\infty} \mathrm{e}^{-t} \mathrm{E}\left[f_{k}\left(X_{r+1}(t)+1\right)-f_{k}\left(X_{r+1}(t)\right)\right] \mathrm{d} t=\mathrm{E} \exp \left\{-S_{k-1}^{r+1}\right\} \delta_{1} h_{k}(k-1) \rightarrow 0 \\
\text { as } r \rightarrow \infty
\end{array}
$$

since $\lim _{r \rightarrow \infty} S_{k-1}^{r}=\infty$ almost surely. Hence $\sum_{n=k-1}^{\infty} \delta_{2} h_{k}(n)$ converges, and

$$
\begin{equation*}
\sum_{n=k-1}^{\infty} \delta_{2} h_{k}(n)=-\delta_{1} h_{k}(k-1) \leqslant 0 \tag{3.6}
\end{equation*}
$$

On the other hand, for $n>k-1$, since X can make only unit downward steps, we have

$$
f_{k}\left(X_{n}(t)+2\right)-2 f_{k}\left(X_{n}(t)+1\right)+f_{k}\left(X_{n}(t)\right)=0
$$

for $t<S_{k-1}^{n}$, and hence the inequality in (3.2) becomes the equality

$$
\begin{equation*}
\delta_{2} h_{k}(n)=\mathrm{E} \exp \left(-2 S_{k-1}^{n}\right) \delta_{2} h_{k}(k-1) \tag{3.7}
\end{equation*}
$$

This in turn gives

$$
\begin{equation*}
\sum_{n=k-1}^{\infty} \delta_{2} h_{k}(n)=\delta_{2} h_{k}(k-1) \sum_{n=k-1}^{\infty} \operatorname{Eexp}\left(-2 S_{k-1}^{n}\right) \tag{3.8}
\end{equation*}
$$

which, with (3.6), implies (3.4).
To prove (3.5), observe that, if $k>1$, then it follows from (3.6) that

$$
\begin{aligned}
\sum_{n=k-2}^{\infty} \delta_{2} h_{k}(n)= & h_{k}(k-1)-h_{k}(k-2)=\int_{0}^{\infty} \mathrm{e}^{-t} \mathrm{E}\left[f_{k}\left(X_{k-2}(t)\right)-f_{k}\left(X_{k-2}(t)+1\right)\right] \mathrm{d} t \\
= & \mathrm{E} \int_{0}^{S_{k-1}^{k-2}} \mathrm{e}^{-t}\left[f_{k}\left(X_{k-2}(t)\right)-f_{k}\left(X_{k-2}(t)+1\right)\right] \mathrm{d} t \\
& +\mathrm{E} \int_{S_{k-1}^{k-2}}^{\infty} \mathrm{e}^{-t}\left[f_{k}\left(X_{k-2}(t)\right)-f_{k}\left(X_{k-2}(t)+1\right)\right] \mathrm{d} t
\end{aligned}
$$

but, from (1.14), $f_{k}\left(X_{0}(t)\right)-f_{k}\left(X_{0}(t)+1\right)=0$ for $t<S_{k-1}^{k-2}$, giving

$$
\begin{aligned}
\sum_{n=k-2}^{\infty} \delta_{2} h_{k}(n) & =\mathrm{Ee}^{-S_{k-1}^{k-2}} \mathrm{E} \int_{0}^{\infty} \mathrm{e}^{-s}\left[f_{k}\left(X_{k-1}(s)\right)-f_{k}\left(X_{k-1}(s)+1\right)\right] \mathrm{d} t \\
& >\mathrm{E} \int_{0}^{\infty} \mathrm{e}^{-s}\left[f_{k}\left(X_{k-1}(s)\right)-f_{k}\left(X_{k-1}(s)+1\right)\right] \mathrm{d} s \\
& =\sum_{n=k-1}^{\infty} \delta_{2} h_{k}(n)
\end{aligned}
$$

so that (3.5) is proved.
Now, by $(3.2)-(3.5), \quad$ if $k>1, \quad$ then $\quad \delta_{2} h_{k}(k-1) \leqslant 0, \quad \delta_{2} h_{k}(k-2)>0 \quad$ and $\delta_{2} h_{k}(k-1) \leqslant \delta_{2} h_{k}(n) \leqslant \delta_{2} h_{k}(k-2)$; if $k=1$, then $\delta_{2} h_{k}(0) \leqslant \delta_{2} h_{k}(n) \leqslant 0$. Thus it suffices to show that

$$
\begin{equation*}
\delta_{2} h_{k}(k-1) \geqslant-\frac{1}{\lambda_{1}+1} \quad \text { for } k \geqslant 1 \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta_{2} h_{k}(k-2) \leqslant \frac{1}{\lambda_{1}+1} \quad \text { for } k>1 \tag{3.10}
\end{equation*}
$$

Taking (3.9), let $V_{i}=\inf \left\{t: X_{i}(t) \neq i\right\}$); then, by (3.1) and using conditioning,

$$
\begin{aligned}
\delta_{2} h_{k}(k-1)= & \mathrm{E} \int_{0}^{V_{k-1}} \mathrm{e}^{-2 t}(-1) \mathrm{d} t \\
& +\mathrm{E} \int_{V_{k-1}}^{\infty} \mathrm{e}^{-2 t}\left[f_{k}\left(X_{k-1}(t)+2\right)-2 f_{k}\left(X_{k-1}(t)+1\right)+f_{k}\left(X_{k-1}(t)\right)\right] \mathrm{d} t \\
= & -\frac{1}{\lambda_{1}+k+1}+\mathrm{E} \exp \left(-2 V_{k-1}\right) \cdot \mathrm{E} \delta_{2} h_{k}\left(X_{k-1}\left(V_{k-1}\right)\right) \\
= & -\frac{1}{\lambda_{1}+k+1}+\mathrm{E} \exp \left(-2 V_{k-1}\right) \\
& \times\left[\sum_{i=1}^{\infty} \frac{v_{i}}{\lambda_{1}+k-1} \delta_{2} h_{k}(k-1+i)+\frac{k-1}{\lambda_{1}+k-1} \delta_{2} h_{k}(k-2)\right] \\
\geqslant & -\frac{1}{\lambda_{1}+k+1}+\mathrm{E} \exp \left(-2 V_{k-1}\right) \sum_{i=1}^{\infty} \frac{v_{i}}{\lambda_{1}+k-1} \delta_{2} h_{k}(k-1+i),
\end{aligned}
$$

from (3.5). But now, again since X makes only unit downward jumps, we have $S_{k-1}^{k-1+i} \geqslant S_{k-1}^{k}$, almost surely, and

$$
\delta_{2} h_{k}(k-1+i)=\mathrm{E} \exp \left(-2 S_{k-1}^{k-1+i}\right) \delta_{2} h_{k}(k-1) \geqslant \mathrm{E} \exp \left(-2 S_{k-1}^{k}\right) \delta_{2} h_{k}(k-1)=\delta_{2} h_{k}(k)
$$ remembering that $\delta_{2} h_{k}(k-1) \leqslant 0$. Thus, from (3.1), it follows that

$$
\begin{align*}
\delta_{2} h_{k}(k-1) & \geqslant-\frac{1}{\lambda_{1}+k+1}+\mathrm{E} \exp \left(-2 V_{k-1}\right) \sum_{i=1}^{\infty} \frac{v_{i}}{\lambda_{1}+k-1} \delta_{2} h_{k}(k) \\
& =-\frac{1}{\lambda_{1}+k+1}+\frac{\lambda_{1}+k-1}{\lambda_{1}+k+1} \frac{\lambda_{1}}{\lambda_{1}+k-1} \cdot \delta_{2} h_{k}(k) \\
& =-\frac{1}{\lambda_{1}+k+1}+\frac{\lambda_{1}}{\lambda_{1}+k+1} \delta_{2} h_{k}(k) \\
& =-\frac{1}{\lambda_{1}+k+1}+\frac{\lambda_{1}}{\lambda_{1}+k+1} \operatorname{Eexp}\left(-2 S_{k-1}^{k}\right) \delta_{2} h_{k}(k-1) \tag{3.11}
\end{align*}
$$

Inequality (3.9) is now rapidly proved, once we have shown that

$$
\begin{equation*}
\lambda_{1} e_{i} \leqslant i \quad \text { for all } i \in \mathbb{N}, \tag{3.12}
\end{equation*}
$$

where $e_{i}:=\mathrm{E} \exp \left(-2 S_{i-1}^{i}\right), i \geqslant 1$. To do so, by the Markov property and because X makes only unit downward jumps, and since $V_{i} \sim \exp \left(\lambda_{1}+i\right)$,

$$
\begin{aligned}
e_{i} & =\mathrm{E} \exp \left(-2 V_{i}\right) \cdot \mathrm{E} \exp \left[-2\left(S_{i-1}^{i}-V_{i}\right)\right] \\
& =\frac{\lambda_{1}+i}{\lambda_{1}+i+2}\left\{\sum_{j=1}^{\infty} \mathrm{E}\left[\exp \left(-2\left(S_{i-1}^{i}-V_{i}\right)\right) \mid X_{i}\left(V_{i}\right)=i+j\right] \cdot \frac{v_{j}}{\lambda_{1}+i}+\frac{i}{\lambda_{1}+i}\right\} \\
& =\frac{\lambda_{1}+i}{\lambda_{1}+i+2}\left[\sum_{j=1}^{\infty} \mathrm{E} \exp \left(-2 S_{i-1}^{i+j}\right) \cdot \frac{v_{j}}{\lambda_{1}+i}+\frac{i}{\lambda_{1}+i}\right] \\
& \leqslant \frac{1}{\lambda_{1}+i+2}\left[\lambda_{1} \mathrm{E} \exp \left(-2 S_{i-1}^{i+1}\right)+i\right] \\
& =\frac{1}{\lambda_{1}+i+2}\left[\lambda_{1} \mathrm{E} \exp \left(-2 S_{i}^{i+1}\right) \cdot \mathrm{E} \exp \left(-2 S_{i-1}^{i}\right)+i\right] \\
& =\frac{1}{\lambda_{1}+i+2}\left[\lambda_{1} \mathrm{e}_{i+1} e_{i}+i\right] .
\end{aligned}
$$

Hence

$$
\left(\lambda_{1}+i+2\right) e_{i} \leqslant \lambda_{1} e_{i+1} e_{i}+i
$$

which in turn implies that

$$
\begin{equation*}
\lambda_{1} e_{i}-i \leqslant \lambda_{1} e_{i+1} e_{i}-(i+2) e_{i} \leqslant\left(\lambda_{1} e_{i+1}-(i+1)\right) e_{i} . \tag{3.13}
\end{equation*}
$$

For $i>\lambda_{1}$, we clearly have $\lambda_{1} e_{i}<i$, since $e_{i}<1$. For $i \leqslant \lambda_{1}$, writing $l=\left[\lambda_{1}\right]+1$, (3.13) implies that

$$
\lambda_{1} e_{i}-i \leqslant\left(\lambda_{1} e_{l}-l\right) \prod_{j=i}^{l-1} e_{j}<0
$$

and so (3.12) holds for all i. Substituting this into (3.11), we have

$$
\delta_{2} h_{k}(k-1) \geqslant-\frac{1}{\lambda_{1}+k+1}+\frac{\lambda_{1}}{\lambda_{1}+k+1} \cdot \frac{k}{\lambda_{1}} \cdot \delta_{2} h_{k}(k-1),
$$

which in turn implies (3.9).
On the other hand, if $k>1, \quad$ since $\quad \delta_{2} h_{k}(k-2) \geqslant 0, \quad \delta_{2} h_{k}(k-1) \leqslant 0 \quad$ and $\delta_{2} h_{k}(k-3) \leqslant \delta_{2} h_{k}(k-2)$, it follows by the Markov property and from (3.7) that

$$
\begin{aligned}
\delta_{2} h_{k}(k-2)= & \mathrm{E} \int_{0}^{V_{k-2}} \mathrm{e}^{-2 t} \mathrm{~d} t+\mathrm{E} \int_{V_{k-2}}^{\infty} \mathrm{e}^{-2 t}\left[f_{k}\left(X_{k-2}(t)+2\right)-2 f_{k}\left(X_{k-2}(t)+1\right)+f_{k}\left(X_{k-2}(t)\right)\right] \mathrm{d} t \\
= & \frac{1}{\lambda_{1}+k-2+2}+\sum_{i=1}^{\infty} \frac{v_{i}}{\lambda_{1}+k-2} \delta_{2} h_{k}(k-2+i) \cdot \mathrm{Ee}^{-2 V_{k-2}} \\
& +\frac{k-2}{\lambda_{1}+k-2} \cdot \delta_{2} h_{k}(k-3) \cdot \mathrm{Ee}^{-2 V_{k-2}} \\
\leqslant & \frac{1}{\lambda_{1}+k}+\frac{k-2}{\lambda_{1}+k-2} \delta_{2} h_{k}(k-2) \cdot \mathrm{E} \mathrm{e}^{-2 V_{k-2}} \\
= & \frac{1}{\lambda_{1}+k}+\frac{k-2}{\lambda_{1}+k} \delta_{2} h_{k}(k-2)
\end{aligned}
$$

and (3.10) follows.

4. Applications

In this section, we show how to obtain more accurate compound Poisson approximation bounds from our estimates. As a simple illustration of what is to be gained, we consider the compound Poisson approximation to the number of k-runs of 1 s in a series of independent identically distributed Bernoulli random variables $\xi_{i}, 1 \leqslant i \leqslant n$, with $\mathrm{P}\left(\xi_{i}=1\right)=p$. To avoid edge effects we treat $i+n j$ as i for $1 \leqslant i \leqslant n, j \in \mathbb{Z}:=\{0, \pm 1, \pm 2, \ldots\}$. Define $I_{i}=\prod_{j=i}^{i+k-1} \xi_{j}$ and $W=\sum_{i=1}^{n} I_{i}$; then $\mathrm{E} I_{i}=p^{k}$ and $\mathrm{E} W=n p^{k}$.

In the study of the accuracy of compound Poisson approximation to the distribution of W, Arratia et al. (1990) give a bound of order $n k p^{2 k}(1-p)$ on the approximation error, expressed in terms of total variation distance. Under the condition $p<\frac{1}{3}$, so that the bound (1.5) can be applied, Roos (1993) improves the bound to order $k p^{k} \log \left(n p^{k}\right)$. In terms of Kolmogorov distance, Theorem 4.3 of Barbour and Utev (1998) can be employed to give a bound of order $k p^{k}+\exp \left(-c n p^{k}\right)$ for some constant c (see also Eichelsbacher and Roos 1999). Here, with our new bounds on the Stein constants, we can significantly improve the error bound for Kolmogorov distance.

We use the notation of Roos (1994). Let

$$
U_{i}=\sum_{j=i-(k-1)}^{i-1} I_{j}+\sum_{j=i+1}^{i+k-1} I_{j},
$$

the sum of $I_{j} \mathrm{~s}$ which strongly influence I_{i}, and

$$
X_{i}=\sum_{j=i-2(k-1)}^{i-(k-1)-1} I_{j}+\sum_{j=i+k}^{i+2(k-1)} I_{j},
$$

the sum of $I_{j} \mathrm{~S}$ which weakly influence I_{i}. Then

$$
\mathrm{E} U_{i}=\mathrm{E} X_{i}=2(k-1) p^{k}, \quad \mathrm{E} I_{i} X_{i}=2(k-1) p^{2 k}
$$

The parameters of the approximating compound Poisson distribution are chosen as

$$
\lambda_{i}= \begin{cases}n p^{k} p^{i-1}(1-p)^{2}, & \text { for } i=1,2, \ldots, k-1, \\ \frac{n p^{k} p^{i-1}}{i}\left[2(1-p)+(2 k-i-2)(1-p)^{2}\right], & \text { for } i=k, \ldots, 2 k-2, \\ \frac{n p^{k} p^{2 k-2}}{2 k-1}, & \text { for } i=2 k-1,\end{cases}
$$

(see Eichelsbacher and Roos 1999) and $\lambda_{1} \geqslant 2 \lambda_{2} \geqslant 3 \lambda_{3} \geqslant \ldots$ if $p \leqslant \frac{1}{3}$ or if $k \geqslant 4$ and $p \leqslant \frac{1}{2}$. Noting that I_{i} and U_{i} are independent of I_{j} for $j \leqslant i-2(k-1)-1$ or $j \geqslant i+2(k-1)+1$, Theorem 2 of Roos (1994), together with our improved bounds in Proposition 1.1, gives

$$
d_{\mathscr{F}_{\mathrm{K}}}(\mathscr{C}(W), \mathrm{CP}(\boldsymbol{\lambda})) \leqslant \frac{1}{\lambda_{1}+1} n(6 k-5) p^{2 k}< \begin{cases}p, & \text { for } k=1 \\ (6 k-5) p^{k}(1-p)^{-2}, & \text { for } k \geqslant 2\end{cases}
$$

This simple and explicit bound, albeit for Kolmogorov rather than total variation distance, is to be compared with the previous bounds, which either grow with n or are not of optimal order unless $n p^{k}$ is large enough, and at best contain unspecified, and often very large, constants. Many other applications of compound Poisson approximation are given in Eichelsbacher and Roos (1999); these can be improved for Kolmogorov distance by using Proposition 1.1 in a similar way.

Acknowledgements

This work was supported by an Australian Research Council Small Grant from the University of New South Wales and by Swiss Nationalfonds Projekt no. 20-50686.97.

References

Arratia, R., Goldstein, L. and Gordon, L. (1990) Poisson approximation and the Chen-Stein method. Stat. Sci., 5, 403-434.
Barbour, A.D., Chen, L.H.Y. and Loh, W. (1992a) Compound Poisson approximation for nonnegative random variables via Stein's method. Ann. Probab., 20, 1843-1866.
Barbour, A.D., Holst, L. and Janson, S. (1992b) Poisson Approximation. Oxford: Clarendon Press.
Barbour, A.D. and Utev, S. (1998) Solving the Stein equation in compound Poisson approximation. Adv. Appl. Probab., 30, 449-475.
Eichelsbacher, P. and Roos, M. (1999) Compound Poisson approximation for dissociated random variables via Stein's method. Combin. Probab. Comput., 8, 335-346.
Roos, M. (1993) Stein-Chen Method for Compound Poisson Approximation. Doctoral thesis, University of Zurich.
Roos, M. (1994) Stein's method for compound Poisson approximation: the local approach. Ann. Appl. Probab., 4, 1177-1187.

Received November 1998

