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We consider the problem of detecting an unknown number of change-points in the spectrum of a

second-order stationary random process. To reach this goal, some maximal inequalities for quadratic

forms are ®rst given under very weak assumptions. In a parametric framework, and when the number

of changes is known, the change-point instants and the parameter vector are estimated using the

Whittle pseudo-likelihood of the observations. A penalized minimum contrast estimate is proposed

when the number of changes is unknown. The statistical properties of these estimates hold for strongly

mixing and also long-range dependent processes. Estimation in a nonparametric framework is also

considered, by using the spectral measure function. We conclude with an application to electro-

encephalogram analysis.
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1. Introduction

Estimating change-points in the spectrum of a time series has been widely studied as a

particular topic of the general change-point problem: see, for example, Brodsky and

Darkhovsky (1993) or Basseville and Nikiforov (1993) for a thorough survey.

In Picard (1985) and later on in a series of articles by Giraitis and Leipus (1990; 1992),

a posteriori detection of a change in the spectral distribution function is considered, based

on a Kolmogorov±Smirnov type test statistic. Functional limit theorems under the null

hypothesis of no changes are given under very general conditions. Giraitis and Leipus

(1992) also consider the behaviour of the statistics under local alternatives. These results are

based on a functional limit theorem for quadratic forms under L2 type conditions. Brodsky

and Darkhovsky (1993) consider additionally the problem of multiple changes and construct

consistent estimators for the number of changes for strongly mixing sequences, under

certain conditions on larger-order cumulants.

For strongly dependent processes the changes in the spectrum may affect the long-range

dependence parameter. Depending on the value of this parameter, limiting processes can
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change ± see, for example, Fox and Taqqu (1997) and Terrin and Taqqu (1991) ± and thus

the distribution of the test statistic.

Following the papers of Lavielle and Moulines (1999) and Lavielle (1999), on detecting

change-points in the marginal distribution of a sequence of (possibly dependent)

observations, we study in this paper the detection of multiple change-points in a piecewise

stationary centred time series which may exhibit long-range dependence. This kind of

problem arises, for example, in network data where it is reasonable to assume that the

dependence structure of the data changes in time (Taqqu et al., 1995).

We assume that the distribution of the process depends on a parameter è that changes

abruptly at some unknown instants (t�j , j > 1). To obtain asymptotical results, we consider

here the case where the sequence (t�j ) depends on the volume of the observations. If

the number of segments K� is known, change-points are found together with the sequence

of parameters (è�j , 1 < j < K�) by minimizing a certain contrast function constructed on

the basis of the Whittle pseudo-likelihood of the observations. This approximation of the

likelihood implicitly asserts that we are assuming that observations in different time

segments are asymptotically uncorrelated. Furthermore, we also require that the fourth-order

cumulants decay fast enough.

Assume there exist 0 , ô1 , . . . , ôK�ÿ1 , 1, such that t�j � [nô�j ]. Then the length of

each segment tends to in®nity at the same rate as the total number of observations

(t�j�1 ÿ t�j � O(n)). It is shown, under very weak conditions, that the minimum contrast

estimator of the normalized change-points sequence (t̂ n,1=n, . . . , t̂ n,K�ÿ1=n) converges to the

true normalized sequence (ô�1 , . . . , ô�
K�ÿ1

). The estimated vector of parameters also

converges to the true vector of parameters (è�j , 1 < j < K�). Furthermore, it is shown that

the errors of location t̂n, j ÿ t�j � OP(1), for a wide class of (weakly or strongly) dependent

proceses.

When the number of changes is unknown, it is estimated by minimizing a penalized

contrast function. The penalization term has the form ân K, where K is the number of

segments, that is, the number of parameters in the model, and where (ân) is a positive

sequence decreasing to 0. Penalized estimation has been considered, for example, when

estimating the order of an ARMA process (see Akaike 1974; or Hannan 1980), or the order

of a mixture of populations (see Dacunha-Castelle and Gassiat 1997). Then this problem of

change-points detection can be seen as a problem of model selection via penalization, as in

Lavielle (1999). We show that the estimated number of change-points converges to the true

number of change-points if ân goes to 0 at an appropriate rate that depends on the

covariance structure of the process.

This kind of method also extends to semi-parametric type tests. Indeed, if we consider

that the spectral distribution function changes abruptly in certain given frequency bands, we

can build a contrast function by using the integrated periodogram. An application to

electroencephalogram (EEG) analysis illustrates the ability of the proposed method to detect

changes in the electrical activity of the brain.

In Section 2 we present some useful results dealing with quadratic forms, based on

certain maximal inequalities for sums of (possibly dependent) random variables due to

MoÂricz et al. (1982). Sections 3 and 4 are respectively devoted to the parametric and

nonparametric contexts.
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2. Some preliminary results for quadratic forms

In order to give asymptotic results concerning the estimated change-points, we must control

uniformly in probability the quadratic forms which appear in the empirical contrasts. Here,

uniformity is both with respect to the parameter space and the change-point instants. A ®rst

result, given in Lemma 2.2, deals with uniform inequalities in probability over all the

possible change-point con®gurations. Uniform results with respect to the parameter space are

then established in Lemma 2.3.

2.1. Some maximal inequalities for quadratic forms

Let (X t, t 2 N) be a real second-order stationary process with zero mean and autocovariance

function ã. Let (b(u), u 2 Z) be a bounded sequence of real numbers such that b(u) � b(ÿu),

and such that
P

Zb(u)ã(u) ,1.

We consider here the quadratic form Q1m de®ned by

Q1:n �
Xn

t�1

Xn

s�1

b(t ÿ s)X t X s ÿ n
X�1

u�ÿ1
b(u)ã(u): (1)

Then, for any 0 < m < n, we have

Q1: n � Q1: m � Qm�1: m � 2Rm,n,

where

Rm,n �
Xm

t�1

Xn

s�m�1

b(t ÿ s)X t Xs:

In this section, we are interested in controlling Q1:n and Rm,n in probability. To do this,

we assume the following hypotheses are satis®ed:

Hypothesis 1.

(i) There exist a D . 0 and a â > 1 such that, for any u > 0, jb(u)j < Duÿâ.
(ii) There exist a C . 0 and an á. 0 such that, for any u > 0, jã(u)j < Cuÿá.

(iii) There exists a k. 0 such that, for any (t, s, t9, s9) 2 Z4,

jcum(X t, Xs, Xt9, Xs9)j < kjt ÿ sjÿájt9ÿ s9jÿá:

We have the following results:

Lemma 2.1. Under Hypothesis 1, for any å. 0, let

h �
4ÿ 2áÿ 2â if á� â, 3

2
,

1� å if á� â � 3
2
,

1 if á� â. 3
2
;

8><>: h9 �
2ÿ á if á, 1,

1� å if á � 1,

1 if á. 1:

8>><>>:
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Then, there exists a C1 . 0 and a D1 . 0 such that, for all n > 1, for all 0 , m < n,

EQ2
1:n < C1 nh, (2)

ER2
m,n < D1 mh9: (3)

Remark. In the case á� â � 3
2

(for h) or á � 1 (for h9), the bounds in (2) and (3) can be

sharpened to obtain C1 n log n and D1 m log m. However, this improved result will not change

the rates given in Lemma 2.2 below, and therefore the rates of convergence of the estimated

change-points given in Section 3.

Proof. Let C denote any non-negative constant. Assume that m < n=2. Under Hypothesis

1(i) and 1(ii), we have:

EQ1:n �
Xn

t�1

Xn

s�1

ã(t ÿ s)b(t ÿ s)

< C n(2ÿáÿâ)_1;

ERm,n �
Xm

t�1

Xn

s�m�1

ã(t ÿ s)b(t ÿ s)

�
Xm

u�1

uã(u)b(u)� m
Xnÿm

u�m�1

ã(u)b(u)�
Xn

u�nÿm�1

(nÿ u)ã(u)b(u)

< C m(2ÿáÿâ)_0:

On the other hand, under Hypothesis 1(iii) and following, for example, Terrin and Taqqu

(1991),

var Q1:n �
Xn

t�1

Xn

s�1

Xn

t9�1

Xn

s9�1

(cum(X t, Xs, Xt9, Xs9)� 2ã(t ÿ t9)ã(sÿ s9))b(t ÿ s)b(t9ÿ s9)

< C
Xn

t�1

Xn

s�1

Xn

t9�1

Xn

s9�1

jt ÿ t9jÿájsÿ s9jÿájb(t ÿ s)b(t9ÿ s9)j

< C nh:

We show (3) in the same way. Indeed, we have

var Rm,n < C
Xm

t�1

Xn

s�m�1

Xm

t9�1

Xn

s9�m�1

jt ÿ t9jÿájsÿ s9jÿájb(t ÿ s)b(t9ÿ s9)j

< C
Xm

t�1

Xm

t9�1

jt ÿ t9jÿá
Xn

s�m�1

Xn

s9�m�1

jsÿ s9jÿájb(t ÿ s)b(t9ÿ s9)j:
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Note that Xm

t�1

Xm

t9�1

jt ÿ t9jÿá < C mh9:

On the other hand,Xn

s�m�1

Xn

s9�m�1

jsÿ s9jÿájb(t ÿ s)b(t9ÿ s9)j <
Xn

u�1

b(u)2 � 2
Xn

u�1

jb(u)j
Xn

v�u�1

jb(v)kuÿ vjÿá

< C 1� 2
Xn

u�1

uÿâ u1ÿâÿá
 !

,1,

because 1ÿ 2âÿ á,ÿ1. This yields the required bound. h

Using Lemma 2.1, we can now obtain some useful maximal inequalities:

Lemma 2.2. Under Hypothesis 1, for any å. 0, let a � max(4ÿ 2áÿ 2â, 1� å) and

a9 � max(2ÿ á, 1� å). Then, there exist C2 . 0, C3 . 0, D2 . 0 and D3 . 0 such that, for

all n . 0, for all m . 0, and for all ä. 0, the following inequalities are satis®ed:

P max
1<k<n

jQ1:k j. ä
� �

< C2

na

ä2
, (4)

P max
k>m

jQ1:k j
k

. ä

� �
< C3

maÿ2

ä2
, (5)

P max
1<k , n

max
k�1< l<n

jRk, lj. ä
� �

< D2

na

ä2
, (6)

P max
k>n

jRk,nj
k

. ä

� �
< D3

ma9ÿ2

ä2
: (7)

Proof. First we show that, under the hypothesis of Lemma 2.2, there exists a constant A . 0

such that, for any ä. 0 and for any positive and decreasing sequence d1 > d2 > . . . >
dn . 0,

P max
1<k<n

dk jQ1:k j. ä
� �

< C2

naÿ1

ä2

Xn

t�1

d2
t :

This result is an extension of the following HaÂjek±ReÂnyi type inequality for partial sums (see

Levielle and Moulines 1999):

Theorem 2.3. Let (Xt, t 2 N) be a sequence of zero-mean random variables. Assume that

there exist A1 . 0 and 1 , a , 2 such that, for all 1 < i < j, E(
P j

t�i X t)
2 < A1j jÿ i� 1ja.

Then, there exists a constant A2 > 1 such that, for any n > 1, for any ä. 0, and for any

positive and decreasing sequence d1 > d2 > . . . > dn . 0, we have the inequality
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P max
1<k<n

dk

����Xk

t�1

X t

����. ä

 !
< A2

naÿ1

ä2

Xn

t�1

d2
t :

For any 1 < r < k < n, we can write Q1:k � Q1:r � Qr�1:k � 2Rr,k . Using Lemma 2.1,

ER2
r,k < E(Q2

1:k � Q2
1:r � Q2

r�1:k)

< 2C1 ka:

On the other hand, Rr,k can be expressed as a sum: Rr,k �
Pk

t�1çr, t where çr,1 �
çr,2 � . . . � çr,r � 0 and çr, t �

Pr
s�1 X t Xsb(t ÿ s) for t . r. Thus, the maximal inequality

proposed in Theorem 2.3 holds for Rr,k : there exists D . 0 such that

P max
1<k<n

dk jRr,k j. ä
� �

< D
naÿ1

ä2

Xn

t�1

d2
t :

Following the proof advanced by MoÂricz et al. (1982), we have

P max
1<k<n

dk jQ1:k j. ä
� �

< P max
1<k<rÿ1

dk jQ1:k j. ä
� �� P(drjQ1:rj. p1ä)

� P max
r�1<k<n

dk jQr�1:k j. p2ä
� �� P max

r�1<k<n
dk jRr,k j. p3ä

� �
,

where p1, p2 and p3 are positive numbers such that p1 � p2 � p3 � 1. By induction, we have

P max
1<k<n

dk jQ1:k j. ä
� �

<
C2

ä2
(r ÿ 1)aÿ1

Xrÿ1

t�1

d2
t �

(nÿ r)aÿ1

p2
2

Xn

t�r�1

d2
t �

C1 ra

C2 p2
1

d2
r �

Dnaÿ1

C2 p2
3

Xn

t�1

d2
t

 !
:

Choose r such that (r ÿ 1)aÿ1
Prÿ1

t�1 d2
t < naÿ1

Pn
t�1d2

t=2a and (nÿ r)aÿ1
Pn

t�a�1d2
t <

naÿ1
Pn

t�1d2
t=2a. Then, since (dt) is a decreasing sequence, rad2

r < raÿ1
Pr

t�1d2
t and

P max
1<k<N

dk jQ1:k j. ä
� �

<
C2

ä2

1

2a
1� 1

p2
2

� �
� C1

C2 p2
1

� D

C2 p2
3

� �
naÿ1

Xn

t�1

d2
t :

Now choose p2 close enough to 1 and C2 large enough, in order to ensure that

1

2a
1� 1

p2
2

� �
� C1

C2 p2
1

� D

C2 p2
3

< 1

(note that this is always possible, since a . 1).

We obtain (4) with dk � 1 for any k > 0. Setting dk � 1=k, we obtain

P max
1<k<n

jQ1:k j
k

. ä

� �
< C2

naÿ1

ä2

Xn

t�1

1

t2
: (8)

Then (5) is a direct consequence of (8), since
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P max
k>m

jQ1:k j
k

. ä

� �
<
X1
p�0

P max
2 p m<k , 2 p�1 m

jQ1:k j
k

. ä

� �

<
C2 maÿ2

ä2(1ÿ 2aÿ2)
:

Finally, (6) and (7) are shown by using the same kind of arguments as for (4) and (5). h

2.2. Uniform convergence of parametric quadratic forms

Assume now that the function b depends on a parameter è that belongs to a compact subset

È of Rd . For any è 2 È, assume that (b(u, è), u 2 N) is a bounded sequence of real numbers

such that b(u, è) � b(ÿu, è) and
P

Zb(u, è)ã(u) ,1.

For any è 2 R, for any n . 0 and any 0 < m < n, set

Q1:n(è) �
Xn

t�1

Xn

s�1

b(t ÿ s, è)X t X s ÿ n
X�1

k�ÿ1
b(u, è)ã(u),

Rm,n(è) �
Xm

t�1

X
s�m�1

b(t ÿ s, è)X t Xs:

We assume that the following hypothesis is satis®ed:

Hypothesis 2.

(i) For any è 2 È, Hypothesis 1 is satis®ed.

(ii) The function b is continuously differentiable with respect to è (on the interior of È).

Furthermore, there exists a D9 . 0 such that, for any u > 0, for any è 2 È,

j@èb(u, è)j < D9uÿ1.

Lemma 2.4. Under Hypothesis 2, for all ä. 0,

lim
n!1P sup

è2È
max

1<k<n

jQ1:k(è)j
n

. ä

 !
� 0, (9)

lim
m!1P sup

è2È
max
k>m

jQ1:k(è)j
k

. ä

 !
� 0, (10)

lim
n!1 P sup

è2È
max

1<k , n
max

k�1< l<n

jRk, l(è)j
n

. ä

 !
� 0, (11)

lim
m!1 P sup

è2È
max
k>m

jRk,n(è)j
k

. ä

 !
� 0, (12)
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Proof. Equation (9) follows directly from the following two remarks:

(i) By using Lemma 2.2, for any è in È, for any ä. 0, we have that, under Hypothesis

2,

lim
n!1 P max

1<k , n

jQ1:k(è)j
n

. ä

� �
� 0:

(ii) For any å. 0, let ù(k, å) � supkèÿè9k<ånÿ1jQ1:k(è)ÿ Q1:k(è9)j, where k:k is the

Euclidian norm. Then, there exist two sequences î(v) and å(v), î(v)! 0 and å(v)! 0

when v!1, such that lim P(max1<k , nù(k, å(v)) . î(v)) � 0. Indeed, let ~Q1:n be the

quadratic form de®ned in (1) with b(u) � uÿ1. Under Hypothesis 2 there exists C . 0 such

that

ù(k, å) < C
j ~Q1:k j

n
� 2å

X�1
u�ÿ1

jã(u)j
u

( )
:

By Lemma 2.1 we have nÿ1 max1<k<nj ~Q1:k j converges to 0. Now use Hypothesis 1 to

conclude that
Pjã(u)j=u converges.

We show (10), (11) and (12) in exactly the same way. h

3. Parametric estimation in the presence of change-points

3.1. Description of the model

Assume that the spectrum of the zero-mean process X � (X t, t 2 Z) depends on a parameter

è which changes abruptly at some unknown instants t�1 , t�2 , . . . , t�
K�ÿ1

with

0 , t�1 , . . . , t�
K�ÿ1

, n. These changes affect the covariance of process X , and we

furthermore assume the process is asymptotically uncorrelated before and after a change.

More precisely, we assume the following hypothesis is satis®ed:

Hypothesis 3.

(i) There exists a vector (è�1 , . . . , è�K�), such that è�j takes its values in the interior of

a compact subset È of Rd for any 1 < j < K�, and such that

EX s X t � ã(t ÿ s, è�j ) if t�jÿ1 � 1 < s < t < t�j :
(ii) There exists a G . 0 and a ã. 0 such that

EX s X t < Gjt ÿ sjÿã if there exists 1 < j < K� ÿ 1 such that s < t�j , t:

(iii) There exists a k. 0 such that for any (t, s, t9, s9) 2 Z4,

jcum(X t, X s, Xt9, Xs9)j < kjE(X t X s)E(Xt9 Xs9)j:
As an example, consider the AR(1) process Xt which is the solution to the following

equation:
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Xt � W�(t)Xtÿ1 � å t

where (åt) is a white noise, and where W� is a time-varying piecewise constant function that

takes its values in (ÿ1, �1). This example is a particular case of the more general problem of

estimating the function W� which has been considered by Dahlhaus (1997), assuming that W�
is smooth enough to guarantee that the process is locally stationary.

We de®ne the con®guation of normalized change-points by ô� � (ô�1 , . . . , ô�
K�ÿ1

), where

t�j � [nô�j ], and 0 , ô1 , . . . , ôK�ÿ1 , 1. The problem consists in estimating the vector of

parameters è� and estimating the con®guration of normalized change-points ô� from n

observations X1, X 2, . . . , X n. The aim of this section is to study the behaviour of an

estimator of (ô�, è�), as n!1.

We use index j for the true con®guaration of change-points t� � (t�j , 1 < j < K� ÿ 1)

and for the true sequence of parameters è� � (è�j , 1 < j < K�). We use index k for any

other con®guration. We denote by T�j the set of indices that belong to segment j in the

con®guration t�, and by Tk the set of indices that belong to segment k in the con®guration

t:

T�j � ft 2 Z, t�jÿ1 � 1 < t < t�j g,
Tk � ft 2 Z, tkÿ1 � 1 < t < tkg:

The lengths of T�j and Tk are respectively n�j and nk . Denote by Tkj � T�j \ Tk the vector of

indices that belong to segment j in the con®guration t� and to segment k in the con®guration

t. The length of Tkj is nkj.

The dependence with respect to n of t�j , tk , T�j , Tk and Tkj is omitted for notational

convenience. For the same reason, the dependence of Tk and Tkj with respect to the

con®guration of change-points t is also omitted.

Let f (ë, è�j ) be the spectral density of X in segment j of the true con®guration

t� � (t�1 , . . . , t�
K�ÿ1

). For any ç. 0, let L (ç) be the set of Lipschitz functions of order ç
over (ÿð, ð]. That is, g 2 L (ç) if there exists a K such that supë2(ÿð,ð]jg(ë� ì) ÿ
g(ë)j < Kjìjç.

We shall assume that the following hypothesis on f and ã is satis®ed:

Hypothesis 4.

(i) The parametrization is proper: if è 6� è9 then f (ë, è) 6� f (ë, è9) over a set of

positive Lebesgue measure.

(ii) È is compact and, for any 1 < j < K�, è�j 2 8È, the interior of È � Rd .

Furthermore, è�j 6� è�j�1 for any 1 < j < K� ÿ 1:
(iii) 1= f (ë, è) is three times continuously differentiable with respect to è.

(iv) For any è 2 È, there exists ç(è) such that, for all 1 < i, l < d, and all å. 0,

1

f (:, è)
2 L (ç(è)),

@

@èi

1

f (:, è)

� �
2 L (ç(è)ÿ å),

@2

@èi@èl

1

f (:, è)

� �
2 L (ç(è)ÿ å),

(v) There exists a function á: È! (0, �1) such that, for any u . 0 and any

1 < j < K�,
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jã(u, è�j )j � O(uÿá(è�j )):

A couple of comments are in order. Concerning Hypothesis 4(ii), it might sometimes be

useful for practical purposes to assume that there exists a minimum jump size, independent

of the true con®guration è�. That is, there exists a Ä such that

inf
1< j<K�ÿ1

kè�j�1 ÿ è�j k > Ä:

However, as the number of change-points is ®xed, there always exists a constant C�, which

bounds this minimum jump size.

Turning to Hypothesis 4(iv), call b(k, è) the kth Fourier coef®cient of 1= f (:, è).

Following this notation, call @èi
b(k, è) and @2

èièl
b(k, è) the kth Fourier coef®cients of

@èi
1= f (:, è) and @2

èièi
1= f (:, è), respectively. Then Hypothesis 4(iv) yields that for all å. 0,

b(u, è) � O(uÿ1ÿç(è), @èi
b(u, è) � O(uÿ1ÿç(è)�å) and @2

èièl
b(u, è) � O(uÿ1ÿç(è)�å).

Hypothesis 4 is satis®ed for a wide class of second-order stationary processes. In

particular, it is satis®ed if X is an ARMA process. It is also satis®ed if X is a piecewise

strongly dependent process according to the following de®nition:

De®nition 1. We say that Y � (Yt, t > 0) is a strongly dependent process if the following

hold:

(i) Y is a centred linear process: there exists an independently and identically

distributed sequence of centred random variables æ with fourth-order cumulant

k4 ,1 and a sequence (at) of l2(Z), such that formally Yt �
P

s2Zasæ tÿs.

(ii) The spectral density f (ë, è�) of Y , è� 2 È, belongs to a parametric family such that

f (ë, è) and 1= f (ë, è) can be written as

f (ë, è) � C1(ë, è)L1(ë, è)jëjá(è)ÿ1

1

f (ë, è)
� C2(ë, è)L2(ë, è)jëj1ÿá(è)

where á: È! (0, 1) is three times continuously differentiable, C1 and C2 are strictly

positive and three times conitinuously differentiable with respect to (ë, è), and L1 and

L2 are strictly positive and slowly varying functions which are three times continuously

differentiable with respect to (ë, è), for ë 6� 0.

In particular, we have that (see Fox and Taqqu 1987) the covariance function of Y , under

De®nition 1, has the form

ã(s, è�) � EYtY t�s � O(C(è�)jsjÿá(è�) L1(s, è�)):

Furthermore, if as � O(jsj ÿ (1� á(è�))=2), then Hypothesis 3(iii) is satis®ed.
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3.2. Estimation when the number of change-points is known

3.2.1. The estimator

For a given number of segments K, let T K be the set of con®gurations of change-points and

ÈK the space of the parameters,

T K � ft � (t0, t1, . . . , tK ), t0 � 0 , t1 , t2 , . . . , tK � ng,
ÈKfè � (è1, è2, . . . , èK ), èk 2 Èg,

where È ws introduced in Section 3.1.

Let t 2 T K be any con®guration of the K ÿ 1 change-points, and let è 2 ÈK be any

vector of K parameters. Then, for any 1 < k < K, let

In(Tk , ë) � 1

nk

����X
t2Tk

X te
ÿe ië

����2 (13)

be the periodogram computed over the window Tk, and

Wn(Tk , èk) �
�

(ÿð,ð]

log f (ë, èk)� In(Tk , ë)

f (ë, èk)

� �
dë (14)

be minus the Whittle log-likelihood of (X t, t 2 Tk) evaluated at èk .

For a given con®guration t of T K , let è̂n(Tk) be the value of è 2 È that minimizes

Wn(Tk , è), that is, è̂n(Tk) is the Whittle estimate of è�k computed over the kth segment of

t. De®ne wW(è) by

wW(è) �
�

(ÿð,ð]

log f (ë, è)� f (ë, W)

f (ë, è)

� �
dë: (15)

Under Hypothesis 4(i), we have that è�j is the value of è 2 È that minimizes wè�j (è). For any

å. 0 and 1 < j < K, set

a(è�j ) �
2(1ÿ á(è�j )ÿ ç(è�j )) if á(è�j )� ç(è�j ) , 1

2
,

1� å if á(è�j )� ç(è�j ) � 1
2
,

1 if á(è�j )� ç(è�j ) . 1
2
:

8><>:
Note that when the change-point sequence is known, the Whittle estimate of è�j converges at

rate n
a(è�j )=2ÿ1

j , for any 1 < j < K�:

Lemma 3.1. Under Hypothesis 4, there exists a C . 0 such that, for any 1 < j < K�,

lim
ä!1

lim
n!1 P

�
n

1ÿa(è�j )=2

j kè̂n(T�j )ÿ è�j k. ä

�
� 0:

Remark. We shall see in Theorem 3.4 that we obtain the same rates when the change-point

sequence is unknown.
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Proof. The proof uses standard minimum contrast estimator arguments. For any 1 < j < K�,
for any è 2 È, set

Sn(T�j , è) �
X
t2T�j

X
s2T�j

X t X sb(t ÿ s, è)ÿ n�j
X�1

u�ÿ1
ã(u, è�j )b(u, è): (16)

Here b(u, è) is the uth Fourier coef®cient of 1= f (:, è). The estimator è̂n(T�j ) minimizes

Wn(T�j , è). On the other hand, using equations (13)±(16), Wn(T�j , è) can be decomposed as

a deterministic contrast function plus a random ¯uctuation:

Wn(T�j , è) � wè�j (è)� Sn(T�j , è)

n�j
:

It is enough to see that wè�j (è) reaches its minimum for è � è�j and that the random

¯uctuation Sn(T�j , è)=n�j tends to 0 in probability, uniformly in è, at the speci®ed rate. h

In many interesting cases (under mixing conditions, or under De®nition 1), a(è�j ) � 1

and under some mild additional technical conditions a central limit theorem is available:

there exists a d 3 d limiting covariance matrix Ã(è�j ) such that���
n
p

(è̂n(T�j )ÿ è�j )!L N (0, Ã(è�j )):

See Giraitis and Surgailis (1990) or LudenÄa and Lavielle (1999) for an extension to random

®elds.

De®ne Jn(t, è) as

Jn(t, è) � 1

n

XK

k�1

nk Wn(Tk , èk): (17)

When t� is unknown the estimate (t̂n, è̂n) is the value of (t, è) that minimizes Jn(t, è) in

T K 3 ÈK . Thus, è̂n,k �def
è̂n(T̂n,k) is the Whittle estimate of è�k computed in the segment k of

the estimated con®guration of change-points t̂n, with T̂n,k � ft 2 Z, t̂n,kÿ1 � 1 < t < t̂n,kg.

3.2.2. Consistency of the estimator

We ®rst establish the consistency of the estimator when the number of segments K� is

known, but when the location of the change-points is unknown.

Theorem 3.2. Let t̂n be the estimate of the change-points sequence and è̂n be the estimate of

the parameters in the different segments, obtained as the solution of the following

minimization problem:

Jn(t̂n, è̂n) < Jn(t, è), 8(t, è) 2 T K� 3 ÈK� ,

where Jn was de®ned in (17). Let ô̂ n � t̂n=n. Then, under Hyptheses 3 and 4, (ô̂n, è̂n)

converges in probability to (ô�, è�).
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Proof. For any 1 < k, k9 < K, for any 1 < j, j9 < K�, for any èk 2 È, set

Sn(Tkj, èk) �
X
t2Tkj

X
s2Tkj

X t Xsb(t ÿ s, èk)ÿ nkj

X�1
u�ÿ1

ã(u, è�j )b(u, èk), (18)

Rn(Tkj, Tk9 j9, èk) �
X
t2Tkj

X
s2Tk9 j9

Xt X sb(t ÿ s, èk): (19)

Here b(u, èk) is the uth Fourier coef®cient of 1= f (:, èk). Then, using equations (13), (14),

(15), (18) and (19), we have

Wn(Tk , èk) �
XK�
j�1

nkj

nk

wè�j (èk)� Sn(Tk , èk)

nk

,

Wn(T�j , è�j ) � wè�j (è
�
j )� Sn(T�j , è�j )

n�j
,

where

Sn(Tk , èk) �
XK�
j�1

Sn(Tkj, èk)�
XK�
j�1

X
j9 6� j

Rn(Tkj, Tkj9, èk), (20)

Sn(T�j , è�j ) �
XK

k�1

Sn(Tkj, è
�
j )�

XK

k�1

X
k96�k

Rn(Tkj, Tk9 j, è
�
j ), (21)

For any (è, è9) 2 È 3 È, set

v(è9, è) � wè(è9)ÿ wè(è): (22)

Observe that v(è9, è) > 0 and v(è9, è) � 0 if and only if è9 � è, under Hypothesis 4(i).

For technical reasons, instead of Jn(t, è) we will use the contrast function Un(t, è)

de®ned by

Un(t, è) � Jn(t, è)ÿ Jn(t�, è�):

Since Jn(ô�, è�) is a constant, (t̂n, è̂n) also minimizes Un(t, è).

Using (22), we can write

Un(t, è) � u(t, è)� en(t, è), (23)

with
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u(t, è) �
XK

k�1

XK�
j�1

nkj

n
v(èk , è�j )

en(t, è) � 1

n

XK

k�1

Sn(Tk , èk)ÿ
XK�
j�1

Sn(T�j , è�j )

24 35: (24)

Equation (23) can be interpreted as a deterministic term u(t, è) plus an error term

en(t, è) which we will refer to as the ¯uctuation. In most change-point problems that

consider only the marginal distribution of the observations (see Lavielle 1999), the

¯uctuation terms en(t, è) can generally be written as a sum of (possibly dependent)

variables. In our case, as we are interested in changes in the spectrum, we must deal with

quadratic forms. However, from (20) and (21) we have that the ¯uctuation term can be

written as a sum of `good' quadratic ¯uctuation terms Sn(Tkj, èk) and Sn(Tkj, è
�
j ) plus

certain remainder cross terms Rn(Tkj, Tkj9, èk) and Rn(Tkj, Tk9 j, è
�
j ) which can be controlled

in probability.

Consistency of (t̂n, è̂n) is then a direct consequence of the following two facts. First, the

following lemma which was shown in Lavielle (1999):

Lemma 3.3. Let v be a function from È 3 È to R such that v(è9, è) > 0 and v(è9, è) � 0 if

and only if è � è9. Then, with the above notation, there exists a constant Cè� . 0 such that,

for any (t, è) 2 T K 3 ÈK,

u(t, è) �
XK

k�1

XK�
j�1

nkj

n
v(èk , è�j ) >

Cè�
n
kt ÿ t�k1,

where kt ÿ t�k � max1< j<K�ÿ1 min1<k<Kÿ1jtk ÿ t�j j.

Second, if Hypotheses 3 and 4 are satis®ed, the ¯uctuation term en(t, è) converges to 0,

uniformly in (t, è). Indeed, using (20), (21) and (24), we remark that, by Lemma 2.4, en(t,è)

can be decomposed as a ®nite sum of terms that converge to 0, uniformly in (t, è).

For any ä. 0, let us de®ne T K,ä � ft 2 T K ; kt ÿ t�k1. näg. Thus, using Lemma 3.3,

for any ä. 0, we have,

P(kô̂n ÿ ô�k1. ä) < P inf
è2ÈK

min
t2T K,ä

Un(t, è) , 0
� �

< P sup
è2ÈK

max
t2T K,ä

jen(t, è)j. inf
è2ÈK

min
t2T K,ä

u(t, è)
� �

< P sup
è2ÈK

max
t2T K,ä

jen(t, è)j. Cè�ä
� �

: (25)

Thus, the right-hand side of (25) goes to 0 as n!1, and ô̂n converges to ô�.
Since the estimated change-point sequence converges to the true change-point sequence,
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è̂n(T̂n, j)ÿ è̂n(T�j ) converges to 0 in probability. Using the fact that è̂n(T�j ) converges to è�j ,

we conclude that è̂n, j � è̂n(T̂n, j) converges to è�j in probability. h

3.2.3. The rate of convergence

Once the consistency has been established, we can give bounds for the rate of convergence.

Theorem 3.4. Assume that Hypotheses 3 and 4 are satis®ed. For any 1 < j < K, let

h�j � h(è�j ) � max(2ÿ 2ç(è�j )ÿ 2á(è�j ), 1). Then, the sequences ft̂n, j ÿ t�j g and

f
������������
n2ÿh�j

p
kè̂n, j ÿ è�j kg are uniformly tight in probability:

(i) lim
ä!1

lim
n!1P(jt̂n, j ÿ t�j j > ä) � 0;

(ii) lim
ä!1

lim
n!1P(

������������
n2ÿh�j

p
kè̂n, j ÿ è�j k > ä) � 0:

Remark. Theorem 3.4 states that the rate of convergence of the estimated change-point

sequence ô̂n is nÿ1 under very general conditions. Furthermore, this rate does not depend on

the dependence structure of the process. On the other hand, the fact that the change-point

instants must be estimated does not affect the rate of convergence of è̂n: the rate is still the

rate of the Whittle estimate, computed with the true change-points.

Proof. By Theorem 3.2, for big enough n, the estimated change-point must belong to a

contiguous time segment. Thus, without any loss of generality, we consider the case of a

unique change-point t�, and we show that P(t̂ n ÿ t� > ä) goes to 0 when ä and n go to 1
(the case P(t�n ÿ t̂ > ä) is obviously identical).

Since there is only one change-point, we have T�1 � f1, 2, . . . , t�g and T�2 �
ft� � 1, . . . , ng. For any 1 < t < n, set T1 � f1, 2, . . . , tg and T2 � ft � 1, . . . , ng.

Assume that 1 < t� < t < n. We then have T11 � T�1 , T12 � ft� � 1, . . . , tg and T22 �
T2. Also n11 � t�, n12 � t ÿ t� and n22 � nÿ t.

For any 1 < t < n, let è̂n(T1) and è̂n(T2) be the values of è1 and è2 that minimize

Wn(T1, è1) and Wn(T2, è2). Thus, t̂n is the value of t that minimizes

Jn(t) � Jn(t, è̂n(T1), è̂n(T2)) � n1

n
Wn(T1, è̂n(T1))� n2

n
Wn(T2, è̂n(T2)),

with n1 � t and n2 � nÿ t. For any t� < t < n, we have

Jn(t) � n11

n
Wn(T11, è̂n(T1))� n12

n
Wn(T12, è̂n(T1))

� Rn(T11, T12, è̂n(T1))

n
� n22

n
Wn(T22, è̂n(T2)) (26)
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Jn(t�) � n11

n
Wn(T11, è̂n(T�1 ))� n12

n
Wn(T12, è̂n(T�2 ))

� Rn(T11, T12, è̂n(T�2 ))

n
� n22

n
Wn(T22, è̂n(T�2 )): (27)

Since ô̂n converges to ô� in probability, there exists a positive sequence (mn) such that

mn ! �1 and mn=n! 0, and such that P(t̂n ÿ t�. mn)! 0, when n! �1. Write

T n,ä � ft 2 Z, t� � ä, t , t� � mng. Part (i) will follow if we show that

lim
ä!1

lim
n!1 P min

t2T n,ä

Jn(t)ÿ Jn(t�) , 0
� �

� 0: (28)

We will establish (28) by studying each one of the terms obtained from the decompositions of

Jn(t�) and Jn(t�) proposed in (26) and (27):

(a) Wn(T11, è̂n(T�1 )) < Wn(T11, è̂n(T1)). Indeed, è̂n(T�1 ) minimizes Wn(T�1 , è1), where

T�1 � T11.

(b) Wn(T12, è̂n(T1))ÿ Wn(T12, è̂n(T�2 )) converges to v(è�1 , è�2 ), uniformly on T n,ä.

Indeed, è̂n(Ti) converges uniformly on T n,ä to è�i , i � 1, 2. Thus, by Lemma 2.4,

Wn(T12, è̂n(Ti)) converges uniformly to wè�2 (è�i ).

(c) Rn(T11, T12, è̂n(T1))=n12 and Rn(T22, T12, è̂n(T�2 ))=n12 converge to 0, uniformly on

T n,ä. This is a direct application of Lemma 2.4.

(d) (n22=n12)(Wn(T22, è̂n(T2))ÿ Wn(T22, è̂n(T�2 ))) converges to 0, uniformly over T n,ä. To

see this, write

jWn(T22, è̂n(T2))ÿ Wn(T22, è̂n(T�2 ))j < 1
2
kè̂n(T2))ÿ è̂n(T�2 ))k2 sup

è2È
j@2

è2 Wn(T22, è)j: (29)

Since @èWn(T2, è̂n(T2)) � @èWn(T�2 , è̂n(T�2 )) � 0, there exists ~è 2 È such that

n22(è̂n(T�2 )ÿ è̂n(T2))
@2

@è2
Wn(T2, ~è)

� n12

@

@è
Wn(T12, è̂n(T�2 ))� 1

n12

@

@è
Rn(T12, T22, è̂n(T�2 ))

� �
� 0,

and (n22=n12)(è̂n(T�2 )ÿ è̂n(T2)) � oP(1), uniformly on T n,ä, again by Lemma 2.4.

Set C� � v(è�1 , è�2 )supè2Èj@2
è2 Wn(T�2 , è)j. Then, the proof of (28) is achieved by

observing that

P min
t2T n,ä

Jn(t)ÿ Jn(t�) , 0
� �

< P
n22

n12

kè̂n(T2)ÿ è̂n(T�2 )k2 . C�=3

� �
� P(Rn(T11, T12, è̂n(T1))=n12 . C�=3)� P(Rn(T11, T12, è̂n(T1))=n12 . C�=3):

Part (ii) follows directly. Indeed since the error nk,k�1 � t̂k ÿ t�k � OP (1), we deduce that

è̂n(T̂k)ÿ è̂n(T�k ) � OP(nÿ1). Thus, both è̂n(T̂k) and è̂n(T�k ) converge to è�j at the rate of

n1ÿh�j =2 by Lemma 3.1. h
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3.3. Estimation of the number of change-points

The results presented in this subsection are straightforward extensions of similar results

already obtained in different contexts by Lavielle (1999) and Lavielle and Moulines (1999).

We denote by K� the true unknown number of segments, which is assumed to be bounded by

a ®nite constant. First, we can remark that Theorem 3.2 can be generalized to the case

K > K�.

Lemma 3.5. Let (t̂n, è̂n) be the estimate of (t, è), obtained by minimizing Jn(t, è) de®ned in

(17), over T K 3 ÈK. Let ô̂n � t̂n=n. Then, under Hypotheses 3 and 4, max1< j<K�ÿ1

min1<k<Kÿ1jô̂n,k ÿ ô�j j converges in probability to 0 when n!1, if K > K�.

Lemma 3.5 means that, even if the number of segments is ®xed to a value K greater than the

true value K�, a subfamily (ô̂n,kj
, 1 < j < K� ÿ 1) of ô̂n still converges to the true

con®guration ô� under the hypothesis of Theorem 3.2.

We will estimate the number of segments K� together with (t�, è�) by minimizing the

penalized contrast function

~Jn(K, t, è) � 1

n

XK

k�1

nk Wn(Tk , èk)� ân K: (30)

A convenient choice for the sequence (ân) will ensure the convergence of the estimate.

Theorem 3.6. Assume that Hypotheses 3 and 4 hold. Let a� � max1< j<K� h�j and let (ân) be

a positive sequence such that

ân !
n!1 0; na�ÿ2â2

n !n!1�1:

Then, the minimum penalized contrast estimator (K̂n, t̂n, è̂n) obtained by minimizing the

function ~Jn(K, ô, è), de®ned in (30), over f1, 2, . . . , Kg3 ôK 3 ÈK converges in probability

to (K�, ô�, è�) if K > K�.

Proof. We will show that P(K̂n 6� K�) goes to 0 when n!1.

For any K , K�, we have

P(K̂n � K) < P inf
è2ÈK

min
t2ôK

~Jn(K, t, è) , ~Jn(K�, t�, è�)
� �

< P inf
è21K

min
t2T K

(u(t, è)� en(t, è)) , ân(K� ÿ K)
� �

:

Let Ä�ô � min1< j<K�(ô
�
j ÿ ô�jÿ1). From Lemma 3.3, u(t, è) > Cè�Ä

�
ô =2 . 0. On the other

hand, en(t, è) converges to 0 uniformly on T K 3 ÈK . We use the condition ân ! 0 to

conclude that limn!1P(K̂n , K�) � 0.

We now have to show that limn!1P(K̂n . K�) � 0. From Lemma 3.5, we know that a

subfamily of ô̂n converges to ô�. Then we have to show that the penalty term allows us to

suppress any spurious change-point in any segment of the true con®guration. Thus, without
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loss of generality, we shall consider a particular con®guration t� with only one segment and

show that the probability of detecting a change-point goes to 0 as n!1. Let è� be the

true value of è and let T� � f1, 2, . . . , ng. For any K > 2 and for any (t, è) 2 ÈK 3 T K,

let

Un(t, è) �
XK

k�1

nk

n
Wn(Tk , èk)ÿ Wn(T�, è�):

Then

P(K̂n � K) < P inf
è2ÈK

min
t2T K

Un(t, è)� (K ÿ 1)ân , 0
� �

:

We can easily verify that

nUn(t, è) �
XK

k�1

(nkv(èk , è�)� Sn(Tk , èk)ÿ Sn(Tk , è�))ÿ
XK

k�1

X
k96�k

Rn(Tk , Tk9, è
�):

For any 1 < k < K,

jSn(Tk , èk)ÿ Sn(Tk , è�)j < kèk ÿ è�k
���� @@è Sn(Tk , è�)

����� kèk ÿ è�k2

2

����sup
è2È

@2

@è2
Sn(Tk , è)

����:
Using Lemma 2.2, we have that, for any 1 < k, k9 < K,

P max
t2T K

���� @@è Sn(Tk , è�)
����. nân

 !
< C2

n2ÿh�

â2
n

,

P max
t2T K

����Rn(Tk , Tk9, è
�)
����. nân

 !
< 2C2

n2ÿh�

â2
n

:

Since na�ÿ2â2
n ! �1, these two probabilities go to 0 when n!1. Thus, it remains to

check that, for any 1 < k < K,

lim
n!1 P inf

èk2ÈK

min
t2T K

nkv(èk , è�)� kèk ÿ è�k2sup
è2È

@2

@è2
Sn(Tk , è)

( )
� nân , 0

 !
� 0:

Since È is compact and from the de®nition of v, there exist C . 0 and ÄÈ ,1 such that, for

any (è, è9) 2 È 3 È, ÄÈ > v(è, è9) > Ckèÿ è9k2. This yields

P inf
èk2ÈK

min
t2T K

nkv(èk , è�)� kèk ÿ è�k2sup
è2È

@2

@è2
Sn(Tk , è)

( )
� nân , 0

 !
< Pn,1 � Pn,2,

where
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Pn,1 � P sup
è2ÈK

max
n h�=2<nk <n

���� @2

@è2

Sn(Tk , è)

nk

����. C

 !

Pn,2 � P sup
è2ÈK

max
nk<nh�=2

ÄÈ

���� @2

@è2
Sn(Tk , è)

����. nân

 !

� P sup
è2ÈK

max
nk<nh�=2

ÄÈ

���� @2

@è2

Sn(Tk , è)

nh�=2

����. �����������������
n2ÿh�â2

n

q !
:

We use Lemma 2.2 and the fact that na�ÿ2â2
n ! �1 to conclude that both Pn,1 and Pn,2 go

to 0 when n!1. h

3.4. A numerical experiment

We assume that X is a Gaussian ARIMA(0, d, 0) process. That is, X is solution of the

equation

(1ÿ B)d Xn � ån,

where B is the shift operator de®ned by B(Xn) � Xnÿ1, and where å is a Gaussian white

noise. Furthermore, we assume that an unknown number of changes affect the parameter d.

We simulated a series X � (X t, 1 < t < 2000) with the following values of d : d � 0:25 for

t 2 [1, 500]; d � 0:4 for t 2 [501, 1000]; d � 0:15 for t 2 [1001, 2000]. The variance of the

white noise remains constant: ó 2
å � 1. A realization of this process is displayed Figure 1(a).

The estimated con®guration of change-points t̂n is obtained by minimizing the function
~Jn(K, ô, è) de®ned in (30).

A histogram of t̂n obtained with 100 realizations of X and ân � 8 is displayed in Figure

1(b). We point out that two changes were well detected 83 times (K̂n � 3), one false alarm

occurred 13 times (K̂n � 4), 2 false alarms occurred twice (K̂n � 5) and the ®rst change

was not detected twice (K̂n � 2).

4. Semi-parametric estimation in presence of change-points

4.1. The model and the estimate

Using the same methodology, we are also able to address a semi-parametric change-point

problem. Speci®cally make the following assumption:

Hypothesis 5.

(i) There exist K� covariance functions ã�1 , ã�2 , . . . , ã�
K� such that

EXs Xt � ã�j (t ÿ s) if t�jÿ1 � 1 < s < t < t�j :
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(ii) There exist a G . 0 and a ã. 0 such that

EX s X t < G(t ÿ s)ÿã if there exists 1 < j < K� ÿ 1 such that s < t�j , t:

(iii) There exists a k. 0 such that, for any (t, s, t9, s9) 2 Z4,

jcum(X t, X s, Xt9, Xs9)j < kjE(X t Xs)E(Xt9 X s9)j:
Denote by f �j the spectral density of X in segment j of the true con®guration t�. We

assume that the changes affect the spectrum of the process over certain previously speci®ed

frequency bands [ëi, ëi�1], i � 1, . . . , N .

For the sake of simplicity, we assume here that the changes affect the spectrum on a

unique frequency band [0, ë]. The method we develop can be extended directly to the case

of several frequency bands, as will be done below with an application to real data.

Let

F�j (ë) �
�ë

0

f �j (ì)) dì:

Figure 1. An example with several change-points. (a) The simulated series X : changes are present at

t�1 � 500 and t�2 � 1000. (b) Histogram of the estimated change-point instants t̂n.
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We assume the following hypothesis is satis®ed by (F�j (ë)) and (ã�j ):

Hypothesis 6.

(i) For any 1 < j < K� ÿ 1, F�j (ë) 6� F�j�1(ë).

(ii) There exist á1 . 0, . . . , áK� . 0 and a constant C . 0 such that, for any u . 0 and

any 1 < j < K�,
jã�j (u)j < Cuÿá j :

For any con®guration of change-points t 2 T K , and for any 1 < k < K, set

F̂n(Tk , ë) �
�ë

0

In(Tk , ì) dì,

where In(Tk , :) was de®ned in (13) as the periodogram computed over segment k of t. We

know that F̂n(T�j , ë) converges almost surely to F�j (ë) when n!1, for any 1 < j < K�.
Then it is quite natural to de®ne a contrast function based on this estimate, for detecting

jumps in (F�j (ë)). Indeed, we shall estimate t� by minimizing the contrast function Jn

de®ned by

Jn(t) � ÿ 1

n

XK

k�1

nkF̂2
n(Tk , ë), (31)

when the number of change-points is not estimated. On the other hand, K� and t� can be

estimated simultaneously by minimizing the penalized contrast function

~Jn(K, t) � ÿ 1

n

XK

k�1

nkF̂2
n(Tk , ë)� ân K, (32)

where conditions over the sequence ân will be given below. Since ë is a known ®xed value, it

can be treated as a constant, and the dependence of Jn and ~Jn with respect to ë is omitted.

In a parametric context, a lower bound for the length of the estimated segments was not

required. In the nonparametric setting, however, consistent estimators will be found if

minimization of the contrast functions proposed in (31) and (32) are carried out over the set

T K,Ä n
de®ned by

T K,Än
� ft 2 T K , tk ÿ tkÿ1 > Äng,

where Än must be chosen according to the rate of convergence of (F̂n(Tk , ë)).

The following theorem summarizes the properties of these two estimates:

Theorem 4.1. Assume that Hypotheses 5 and 6 hold. Let h�j � max(2ÿ 2á�j , 1) for any

1 < j < K�, and let a� � max1< j<K� h�j . Also let (Än) be a positive sequence such that

n1ÿh�Än !1 as n!1.

(i) Let t̂n be the estimate of the change-point sequence, obtained as the solution of the

following minimiziation problem:
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Jn(t̂n) < Jn(t), 8t 2 T K�,Än
,

where Jn was de®ned in (31). Then, jt̂n, j ÿ t�j j � OP (1) for any 1 < j < K� ÿ 1.

(ii) Let (ân) be positive sequence such that

ân !
n!1 0; na�ÿ2â2

n !
n!1�1:

Then the minimum penalized contrast estimator (K̂n, t̂n=n) obtained by minimizing the

function ( ~Jn(K, t), de®ned in (32), over f1, 2, . . . , Kg3 T K,Ä n
converges in probability

to (K�, ô�) if K > K�.

Proof. We shall show (i) ®rst. For any t � (tk , 1 < k < K ÿ 1), set

Sn(Tk) � nkF̂n(Tk , ë)ÿ
XK�
j�1

nkj F
�
j (ë):

Then, the estimate t̂n minimizes

Un(t) � Jn(t)ÿ Jn(t�)
� u(t)� en(t)� çn(t),

where

u(t) �
XK

k�1

XK�
j�1

nkj

nk

(F�k (ë)ÿ F�j (ë))2,

en(t) � 2

n

XK�
j�1

F�j (ë)Sn(T�j )ÿ 2

n

XK

k�1

XK�
j�1

nkj

nk

F�j (ë)

0@ 1ASn(Tk), (33)

çn(t) � 1

n

XK�
j�1

S2
n(T�j )

n�j
ÿ 1

n

XK

k�1

S2
n(Tk)

nk

: (34)

The arguments used for the consistency of t̂n in a parametric framework still apply. First,

from Lemma 3.3, there exists a constant Cè� . 0 such that, for any con®guration t 2 T K ,

u(t, è) > Cè� nÿ1kt ÿ t�k1. Second, if Hypotheses 5 and 6 are satis®ed, the ¯uctuations

en(t) and çn(t) converge to 0, uniformly over T K�,Ä n
. Indeed let (bë(u), u 2 Z) be the

sequence de®ned by

bë(0) � ë, bë(u) � sin ëu

u
, u 6� 0:

Then, the decomposition of Sn proposed in (20) and (21) still holds:

Sn(Tk) �
XK�
j�1

Sn(Tkj)�
XK�
j�1

X
j9 6� j

Rn(Tkj, Tkj9),
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where

Sn(Tkj) �
X
t2Tkj

X
s2Tkj

X t X sbë(t ÿ s)ÿ nkj F
�
j (ë),

Rn(Tkj, Tkj9) �
X
t2Tkj

X
s2Tkj9

Xt Xsbë(t ÿ s):

Since jbë(u)j < juÿ1j for any u . 0, Lemma 2.2 holds with â � 1: there exists a constant CS

such that, for any 1 < k < K�, for any n . 0 and for any ä. 0,

P max
1< t kÿ1<n

max
t kÿ1�1< t k<n

Sn(Tk)

n
> ä

� �
< CS

nh�ÿ2

ä2
:

We deduce from (33) that en(t) converges to 0 when n!1, uniformly over T K�. On the

other hand, again by Lemma 2.2, we have that, for any 1 < k < K�, for any n . 0 and for

any ä. 0,

P max
1< t kÿ1<nÿÄn

max
t kÿ1�Ä n< t k <n

S2
n(Tk)

n(tk ÿ tkÿ1)
> ä

 !
< CS

nh�ÿ1

äÄn

:

Since n1ÿh�Än !1, we deduce from (34) that çn(t) converges to 0 when n!1,

uniformly over T K�,Än
.

Once the consistency of t̂n has been established, we can assume that çn(t̂n) is negligible

with respect to en(t̂n) when n!1. Then, a slight adaptation of the proof of Theorem 3.4

achieves the proof of (i).

The proof of Theorem 3.6 can also be easily adapted in order to prove (ii). h

Remark. In many applications h� � 1, and then it is enough to require that Än !1 as

n!1 to ensure the consistency of ô̂n.

4.2. Application to EEG analysis

It is well known that the EEG recordings are non-stationary signals (see Biscay et al. 1995).

Epileptogenic transients are among the phenomena that make the EEG non-stationary. The

spectral characteristics of the observed series change abruptly at some random instants, and

the detection of such changes is a crucial step for the interpretation of the recorded brain

electrical activity.

The following frequency bands of brain activity are conventionally observed: delta (1.5±

3.5 Hz), theta (3.5±7.5 Hz), alpha (7.5±12.5 Hz), and beta (12.5±19.5 Hz).

In a more general framework, assume that the spectral measure of the observed process

changes over some previously chosen frequency bands ([ë l, ë l�1], 0 < l < L). Write

ë � (ë l, 0 < l < L), and de®ne the vector
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F�j (ë) �
�ë l�1

ë l

f �j (ì) dì

 !
,

for any 1 < j < K�. We assume that Hypothesis 6 is satis®ed: F�j (ë) 6� F�j�1(ë) for any

1 < j < K� ÿ 1. For any con®guration of change-points t 2 T K , and for any 1 < k < K, we

also de®ne

F̂n(Tk , ë) �
�ë l�1

ë l

In(Tk , ì) dì

 !
:

Since F̂n(Tk , ë) is a vector, F̂2
n(Tk , ë) is replaced by kF̂n(Tk , ë)k2 in (31) and (32).

We present in Figure 2 the segmentation of two EEG recordings. We display the

observed series together with the estimated change-point times (marked by vertical lines),

and also the estimated spectral measure F̂n(Tk , ë).

Figure 2. Segmentation of EEG recordings. (a) Segmentation of theta activity (3.5±7.5 Hz). (b)

Segmentation of alpha activity (7.5±12.5 Hz). (c), (d) The estimated spectral distributions computed in

the estimated segments.
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