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Let f be a probability density on the real line, let n be any positive integer, and assume the condition

(R) that log f is locally integrable with respect to Lebesgue measure. Then either log f is almost

everywhere equal to a polynomial of degree less than n, or the order statistic of n independent and

identically distributed observations from the location±scale parameter model generated by f is

minimal suf®cient. It follows, subject to (R) and n > 3, that a complete suf®cient statistic exists in the

normal case only. Also, for f with (R) in®nitely divisible but not normal, the order statistic is always

minimal suf®cient for the corresponding location±scale parameter model. The proof of the main result

uses a theorem on the harmonic analysis of translation- and dilation-invariant function spaces,

attributable to Leland (1968) and to Schwartz (1947).
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1. Introduction

1.1. Aims

Perhaps the most natural ®rst step in the analysis of a statistical model consists in

determining a minimal suf®cient ó -algebra. Unfortunately, this is not always easy, and

systematic results are rare. The aim of the present paper is to treat the case of independent

and identically distributed (i.i.d.) observations from a location±scale parameter model on the

real line. Here, subject only to a regularity condition (R) discussed in Section 1.2, a complete

analysis is possible. It turns out that the order statistic usually is minimal suf®cient.

Previously, this was known in special cases only.

The main result of the present paper is the implication (i)) (iii) in Theorem 1.1. The

equivalence (ii)) (iii) in Theorem 1.1, due to Dynkin (1951) and Ferguson (1962), is here

merely stated to round off the picture. Corollary 1.2 then shows that several statistically

desirable properties of a location±scale parameter model are equivalent to the normality of

the generating density. In particular, subject to (R), Corollary 1.2 solves a problem of

Ferguson (1962) and generalizes a theorem of Kelker and Matthes (1970). Corollary 1.3

then yields a new probabilistic characterization of the normal distribution via independence.

More detailed remarks on related work are given in Section 1.3.

The proofs of Theorem 1.1 and Corollaries 1.2 and 1.3 are deferred to Section 3. Section
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2 collects auxiliary results, the crucial one being Theorem 2.1, attributable to Leland (1968)

and Schwartz (1947). Lemma 2.3 might be of independent interest, although it is a simple

consequence of basic differential calculus.

1.2. Set-up and results

We assume as known the de®nitions, notation, and basic facts concerning suf®ciency and

minimal suf®ciency, here needed in the dominated case only, as described in Section 1.5 of

Torgensen (1991). Let us just indicate the de®nition of minimal suf®ciency of a statistic

T : (X, A)! (Y, B ) for a statistical model P � (PW : W 2 È) on the measurable space

(X, A), where (Y , B ) in any measurable space: this means that the ó -algebra

ó (T ) :� Tÿ1(B ) generated by T is minimal suf®cient, and this means that ó (T ) is suf®cient

and that for every ó -algebra C �A which is suf®cient for P, we have ó (T ) � C [P ]. The

latter notation means that every element of the ó -algebra on the left-hand side is, up to a P -

nullsets, equal to an element of the right-hand side.

We let B (Rn)sym denote the ó -algebra generated by the order statistic on Rn.

Equivalently, B (Rn)sym is the ó -algebra of all permutation-invariant Borel sets on Rn.

Let f be a probability density with respect to Lebesgue measure ë on the Borel ó -

algebra B (R) on the real line. We consider the location±scale parameter model for n i.i.d.

observations, based on f . This is the family

P n � Rn 3 x 7!
Yn

i�1

1

b
f

xi ÿ a

b

� � ! !
ën : a 2 R, b 2]0, 1[

 !
(1)

of probability measures on (Rn, B (Rn)), where ën denotes n-dimensional Lebesgue measure.

For n � 1, we simply write P in place of P 1. We let X � (X1, . . . , X n) denote the identity

function on Rn.

Our results will be subject to the regularity assumption

log f is locally integrable with respect to ë: (R)

This implies in particular the condition

f . 0 ë-almost everywhere, (R0)

and we conjecture that Theorem 1.1 and Corollaries 1.2 and 1.3 remain valid with the

somewhat more natural condition (R0) in place of (R). Without assuming (R) or (R0),

however, the theorem and corollaries would be false, as the well-known Counterexample 1.2

shows. Concerning applications to speci®c densities of statistical or probabilistic interest, the

difference between (R) and (R0) appears to be slight.

Theorem 1.1. Let f be a probability density satisfying (R), and let P and P n be de®ned

through (1). Then, for every n 2 N, the following three statements are equivalent:
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(i) The order statistic is not minimal suf®cient for P n.

(ii) P is an exponential family of dimension less than n.

(iii) f � exp p ë-a.e. for some polynomial p of degree less than n.

If (i), (ii) and (iii) are true, then the dimension from (ii) and the degree from (iii) are the

same, say k, k is even and at least 2, and the statistic (
P

Xi, . . . ,
P

X k
i ) is minimal suf®cient.

To prepare for the statements of Corollaries 1.2 and 1.3, let us brie¯y recall some notions

connected with transformation groups, specialized to the present context. For more on

transformation groups and their use in statistics, we refer to Section 1.9 of Pfanzagl (1994)

and to Section 2.1 of Wijsman (1990) as general introductions suitable for our present

needs, and to Ramamoorthi (1990), Sapozhnikov (1998), Helland (1998), and to the

references given therein, for further developments.

The transformation group referred to in what follows is the group of af®ne

transformations on coordinates, G :� fga,b : a 2 R, b 2]0, 1[g, where the transformations

ga,b of Rn are de®ned by

ga,bx :� (ax1 � b, . . . , axn � b) (a 2 R, b 2]0, 1[, x 2 Rn):

We let D denote the ó -algebra of the G-invariant Borel sets. It is well known that D can be

equivalently de®ned as

D :� ó
X1 ÿ Xn

Sn

, . . . ,
X n ÿXn

Sn

� �
, (2)

where Xn :� 1
n

P
X i, Sn :� (1

n

P
(X i ÿ Xn)2)1=2 and 0=0 :� 0, but it is important to keep in

mind that here the choice of Xn and Sn is quite arbitrary: for example, Xn in (2) could be

replaced by the sample median, leading to the same ó -algebra D generated by an essentially

different statistic.

Now let T be a function on Rn, with arbitrary range. T is called equivariant if we have

T (gx) � T (gy) whenever g 2 G and x, y 2 Rn with T (x) � T (y). For example, for any

k 2 N, the statistic (
P

Xi, . . . ,
P

X k
i ) of Theorem 1.1 is easily seen to be equivariant. (This

is no accident: see Proposition 1.9.11 of Pfanzagl, 1994.)

Corollary 1.2. Let f be a probability density satisfying (R), and let P n be de®ned as in (1).

Then, for every n > 3, the following ®ve statements are equivalent.

(i) There exists a ó -algebra C � B (Rn) which is complete and suf®cient for P n.

(ii) There exists aó -algebra C � B (Rn) which is boundedly complete and suf®cient for P n.

(iii) There exists a ó -algebra C � B (Rn) which is suf®cient for P n and independent,

under P n, of the ó -algebra D from (2).

(iv) There exists, for some measurable space (T , A), a suf®cient statistic T : (Rn,

B (Rn))! (T , A) which is equivariant and satis®es, for some ën-nullset N 2 D ,

the implication

x 2 RnnN ) fT (bx1 � a, . . . , bxn � a) : a 2 R, b 2]0, 1]g � T (RnnN ):

(v) f is a normal density.

Minimal suf®cient statistics in location±scale parameter models 1123



Corollary 1.3. Let P be a probability measure on R having a density f satisfying (R). Assume

that for some n > 3 and for some countably generated and Hausdorff measurable space

(T , A), there exists a statistic T : (Rn, B (Rn))! (T , A), with the following properties:

(i) T is equivariant.

(ii) For some ën-nullset N, we have the implication

x 2 RnnN ) the function (a, b) 7! T (bx1 � a, . . . , bxn � a) is injective:

(iii) Under the product measure P
n, T and D are independent.

Then P is normal and ó (T ) � ó (Xn, Sn)[ën].

Here `A Hausdorff' means `if s, t 2 T are different, then s 2 A and t =2 A for some

A 2A'. In the presence of the assumption `A countably generated', this is equivalent to

`ftg 2A for every t 2 T '.

1.3. Examples and remarks

Example 1.1. In®nitely divisible and stable distributions. Let f be an in®ntely divisible

density on R satisfying (R), and let P n be de®ned as in (1). Then either f is normal, or the

statistic is minimal suf®cient for P n, for every n 2 N.

This follows easily from Theorem 1.1: it suf®ces to observe that a density of the form

f � exp p, with p a polynomial of degree at least 4, is too light-tailed to be in®nitely

divisible. Compare, for example, Steutel (1974).

The result just proved applies in particular to most stable distributions on R. Suppose

that P is a stable distribution and neither normal nor with support bounded to one side. It is

well known that then P has a Lebesgue density f which is continuous (by integrability of

the corresponding characteristic function) and everywhere positive (see, for example,

Zolotarev, 1986, p. 134, Theorem 2.7.6). Hence f satis®es (R), and it follows that the order

statistic is minimal suf®cient for P n. Except when f is a Cauchy density, this seems to be a

case where it would be dif®cult to compute a minimal suf®cient ó -algebra directly via the

usual approach, using formula (16) below.

Counterexample 1.2. Uniform distributions. Without assumption (R) or its putative substitute

(R0), a counterexample in the case n > 3 for the implication (i) ) (iii) in Theorem 1.1, and

also for the implication (i)) (v) in Corollary 1.2, would be given by the uniform density

f � 1[0,1]. To see this, recall that C :� ó (min X i, max Xi) is complete and suf®cient in this

case, and hence also minimal suf®cient. Since we do not have C � B (Rn)[P n], by n > 3

and Corollary 2.4 (below) applied to, say, G :� fx 2 Rn : 0 , x1 , . . . , xn , 1g, it follows

that the order statistic is not minimal suf®cient.

Without (R) or (R0), the uniform distribution would also be a counterexample to

Corollary 1.3: take T :� (min X i, max Xi). To check the validity of assumption (iii) in this

case, one can use Basu's theorem as in the proof of Corollary 1.3 given in Section 3.
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Remark 1.1. As already indicated, the equivalence (ii) Û (iii) in Theorem 1.1 is due to

Dynkin (1961) and Ferguson (1962), under stronger and weaker regularity conditions,

respectively. Related works, yielding descriptions of the possible forms of exponential

families generated by transformation groups, see Borges and Pfanzagl (1965), Maksimov

(1967), Engert (1970), Sapozhnikhov (1970), Roy (1975), and Rukhin (1975; 1981).

Remark 1.2. Some readers might suspect that the implication (i) ) (iii) of Theorem 1.1,

stated to be the main result of this paper, could easily be deduced from results available in

the statistical literature, perhaps under stronger regularity assumptions on the density f.

Indeed, Rukhin (1975, p. 153) says, after generalizing results of Dynkin (1961): `Thus

distributions (I) are characterized by property of existence of nontrivial suf®cient statistics

within the class of all continuous and positive densities.' Specialized to the present context,

the `distributions (I)' are those of our Theorem 1.1(iii), so that Rukhin's claim might appear

to yield our implication (i) ) (iii). This is, however, not the case: The de®nition of

`nontriviality' of a suf®cient statistic T adopted by Dynkin (1951) and Rukhin (1975) is a

priori more exclusive than the condition `not ó (T ) � B (Rn)sym[ën]' corresponding to our

condition (i). To see this, let us look at the corresponding situation for location parameter

models. In that case, the `distributions (I)' are those with density f � exp p, where now p

is an exponential polynomial: p(x) �Pë2Ë
PK(ë)

k�0 x k exp(ëx) for some ®nite Ë � C and

®nite-valued K. On the other hand, as is observed by Torgersen (1965, p. 18), and density f

of the form f � f1 f2 with f1 a normal density and f2 1-periodic admits as a suf®cient

statistic the pair consisting of
P

Xi and of the order statistic of the fractional parts of the

X i. It is easy to see that, for such an f, the order statistic of the X i is not minimal

suf®cient for sample size n > 2 and that, for a suitable choice of a continuous and positive

f2, the function log p is not an exponential polynomial. This shows that the perhaps

expected location parameter analogue of our location±scale parameter implication (i) )
(iii) is not valid. This does not contradict the claim of Rukhin (1975), due to his more

exclusive de®nition of `nontriviality' of a suf®cient statistic: according to the de®nitions

adopted by Dynkin and Rukhin, the suf®cient statistic given above for the Torgersen

example is trivial; compare the de®nition of `trivial' in Dynkin (1951, p. 22).

Remark 1.3. Some readers might wonder why, in our proof of Theorem 1.1 in Section 3, we

prove the equivalence (i) Û (iii) directly, that is, without referring to condition (ii). Of

course, this renders our contribution independent of the Dynkin±Ferguson theorem (ii) Û
(iii), but the true reasons for our approach are the following.

First, it is not possible to prove (i) ) (ii) without somehow exploiting the location±scale

parameter structure of P . To see this, observe that the best theorems available yielding

exponentiality of P as a conclusion from the existence of a suf®cient reduction beyond the

order statistic in the model P n need dimensionality and regularity assumptions concerning

a suf®cient statistic, such as one-dimensionality and local Lipschitz continutity in the

theorem of Hipp (1974) referring to models not necessarily involving a group structure, and

one-dimensionality, continuity and equivariance in the theorems of Pfanzagl (1972) and

Hipp (1975) referring to transformation models. Leaving aside the fact that at least two-

dimensional analogues of these theorems would be needed in the present situation, it is still
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not a priori clear that similar assumptions are a consequence of (i). Indeed, the Torgersen

example mentioned in Remark 1.2 shows that the implication (i) ) (ii) is false in the

analogous location parameter situation.

Second, it is not possible to prove (ii) ) (i) without again using the location±scale

structure of P . To see this, observe that there exist one-parameter exponential families P
with continuous Lebesgue densities such that, for every sample size n, the order statistic is

minimal suf®cient for the corresponding model P n for n independent observations. Such

families P have been constructed in Theorem 2.3 of Mattner (1999b).

For these reasons, our approach of proving (i) Û (iii) directly appears natural to us.

Remark 1.4. Subject to assumption (R), the implication (iv) ) (v) of Corollary 1.2 solves the

problem posed by Ferguson (1962, p. 997).

Remark 1.5. Subject to assumption (R), the implication (iv) ) (v) of Corollary 1.2

generalizes Theorem 3 of Kelker and Matthes (1970), who assume from the beginning that

T � (Xn, S2
n), and also that n > 4. Similarly, again subject to assumption (R), Corollary 1.3

generalizes the lemma of Kelker and Matthes (1970, p. 1088). Bondesson (1975) generalizes

that lemma in another direction.

Remark 1.6. Another reasonably large class of models, for which minimal suf®cient ó -

algebras have been computed for the corresponding models of independent observations, is

the class of all convex models; see Mattner (2000).

2. Auxiliary facts

The following known theorem is the crucial tool for our proof of the implication (i) ) (iii)

of Theorem 1.1.

Theorem 2.1. Every translation- and dilation-invariant closed subspace H of C (R) is either

the entire space or, for some integer k, the set of polynomial functions of degree at most k.

Here C (R) denotes the set of all continuous functions on R, `function' is to be read as

`K-valued function' with either K � R or K � C throughout, `subspace' refers to the K-

vector space structure of C (R), `closed' refers to uniform convergence on compact sets, and

to say that H is translation- and dilation-invariant means that (x 7! h(ax� b)) 2H
whenever h 2H , a 2]0, 1[, b 2 R.

There exist at least two different proofs of the theorem. Let us ®rst observe that the two

cases K � R and K � C are easily reduced to each other.

For K � R, the theorem is contained in Theorem A of Leland (1968): apply Leland's

Theorem A to the set of all restrictions fhjU : h 2H, U � R openg.
Alternatively, the theorem for K � C can easily be deduced from the following deep

result of Schwartz (1947): every translation-invariant closed subspace H of C (R) is the

closed span of the set of exponential monomials it includes, fx 7! x keëx : ë 2 Ë, k 2 N0,

1126 L. Mattner



k < K(ë)g, where, unless H � C (R), the set Ë � C is discrete and K is N0-valued. Here

we have put N0 :� f0g [N.

We will also need the following lemma on independence.

Lemma 2.2. Let (X, A, P) be a probability space and let C , D be independent sub-ó-

algebras of A. If E is another sub-ó-algebra with

E � ó (C , D ) [P], (3)

E independent of D, (4)

C � E [P], (5)

then E � C [P].

Remark 2.1. Simple examples show that one cannot in general conclude that E � C [P] if

any one of conditions (3)±(5) is omitted.

Proof. Under the assumptions stated, let E 2 E . By (3), the indicator 1E is almost

everywhere equal to any version of the conditional expectation P(Ejó (C , D )). The latter

equivalence class contains P(EjC ), as can be seen by using the independence of

ó (E, C ) � E [P] and D , and by applying a standard property of conditional expectation

(see Williams 1991, p. 88, property (k)). Hence there is a C 2 C with E � C[P]. h

We next turn to a comparison of differentially generated ó-algebras. For proving

rigorously that certain ó -algebras are not equivalent modulo null sets, it appears worthwhile

to state the following simple facts.

Lemma 2.3. Let n, m1, m2 2 N and let G � Rn be open. For i 2 f1, 2g, let f i : G! Rmi be

continuously differentiable functions, and put

pi :� maxfrank f 9i(x) : x 2 Gg:
If ó ( f1) � ó ( f2)[ën], then p1 < p2.

Corollary 2.4. Let k, n 2 N with k , n, let G � Rn be open, and let f : G ! Rk be

continuously differentiable. Then we do not have ó ( f ) � B (G)[ën].

Triviality 2.5. Let n, m 2 N, let G � Rn be open, and let f : G! Rm be continuous. If

ó ( f ) � fÆ, Gg[ën], then f is constant.

We remark that Corollary 2.4 becomes false if `continuously differentiable' is replaced by

`continuous'. This follows from a famous theorem of Denny (1964). An alternative proof of

Denny's theorem is given in Mattner (1999b).

Proof of Triviality 2.5. If f is not constant, then we can choose a, b 2 f (G) and U, V � Rm
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open and disjoint with a 2 U , b 2 V . Then f ÿ1(U ), f ÿ1(V ) 2 ó ( f ) are non-empty and open

in Rn, hence of positive Lebesgue measure, and disjoint. It follows that we do not have

f ÿ1(U ) 2 fÆ, Gg[ën]. h

Proof of Corollary 2.4. Apply the lemma to f1 � the identity on G and f2 � f . h

Proof of Lemma 2.3. Let us assume, with the aim of arriving at a contradiction, that

ó ( f1) � ó ( f2) [ën] (6)

and that

p1 . p2: (7)

Let us put I :�]ÿ 1, 1[. By the rank theorem (see DieudonneÂ, 1960, Section 10.3), there

exist open sets U � G, V � Rm1 and C 1-diffeomorphisms u : U ! I n and v : I m1 ! V , such

that

f1jU � v � ð � u, (8)

where ð : I n ! I m1 is given by

ð(x1, . . . , xn) � (x1, . . . , x p1
, 0, . . . , 0|����{z����}

m1ÿ p1

) ((x1, . . . , xn) 2 I n): (9)

If we replace G by U and the f i by their restrictions f ijU , then p2 might decrease, but (6) and

(7) clearly remain valid. Hence we may assume that U � G in what follows. Since v is in

particular a Borel isomorphism of I m1 onto the Borel set V , we have ó (v � ð � u) � ó (ð � u),

and hence may assume that v is the identity, so that

f1 � ð � u: (10)

Further, ó (ð � u) does not change if we replace m1 by p1, so that (9) is replaced by

ð(x1, . . . , xn) � (x1, . . . , x p1
) ((x1, . . . , xn) 2 I n): (11)

Now assume for a moment that p1 , n, and put

g :� ((x1, . . . , xn) 7! (x p1�1, . . . , xn)) � u: (12)

By (6), we have ó (( f1, g)) � ó (( f2, g))[ën]. Further, from (10), (11) and (12), we have rank

( f1, g)9 � n in G, while, using (7), we obtain rank ( f2, g)9 < p2 � (nÿ p1) , n. Hence, by

going from f1 and f2 to ( f1, g) and ( f2, g), we arrive at (6) and (7) with p1 � n.

Thus we may assume that p1 � n for the rest of this proof. Then f1 � u is a C 1-

diffeomorphism, so that

ó ( f1) � B (G): (13)

By now applying the rank theorem to f2, and by repeating the arguments that led to (10), we

may assume that

f2 � ð � u,

where the new function u : G! I n is again a C 1-diffeomorphism, and now
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ð(x1, . . . , xn) � (x1, . . . , x p2
) ((x1, . . . , xn) 2 I n): (14)

In view of (13), assumption (6) now reads ó ( f2) � B (G)[ën]. Since the C 1-diffeomorphism

u transforms ën-nullsets into ën-nullsets (see, for example, Lemma 7.25 of Rudin, 1987), it

follows that ó ( f2 � uÿ1) � B (I n)[ën]. Since f2 � uÿ1 � ð from (14), we deduce ± using

well-known facts given as Theorem II.5.2(i) in Heyer (1982) and Theorem 1.5.1(ii) in

Torgersen (1991) ± the existence of a Borel function h : I p2 ! I with

h(x1, . . . , x p2
) � xn for ën-a:e: x 2 I n:

Using p2 , n and
�

I xn dxn � 0, we derive

0 ,

�
I n

x2
n dx1 . . . dxn �

�
I nÿ1

h(x1, . . . , x p2
)

�
I

xn dxn

� �
dx1, . . . dxnÿ1 � 0,

a contradiction proving our claim. h

3. Proofs of the main results

Proof of Theorem 1.1. Let us ®x n 2 N. We begin with the proof of (i) ) (iii). By

assumption (R), we have in particular (R0), and hence may assume without loss of generality

that

f . 0 everywhere: (15)

By Bahadur's version of a theorem of Lehmann and ScheffeÂ (see Torgersen, 1991, p. 69), the

ó -algebra

C 0 :� ó x 7!

Yn

i�1

1

b
f

xi ÿ a

b

� �
Yn

i�1

f (xi)

: a 2 R, b 2]0, 1[

8>>>><>>>>:

9>>>>=>>>>;

0BBBB@
1CCCCA (16)

is minimal suf®cient for P n. Let us put

g :� log f : (17)

It is then easy to check that

C 0 � ó x 7!
Xn

i�1

g
xi ÿ a

b
ÿ y

� �
ÿ g

xi ÿ c

d
ÿ y

� �� �
: a, c, y 2 R, b, d 2]0, 1[

( ) !
:

(18)

Now let j : R! R be continuous with compact support, let h : R! R be the convolution of

g with j,

h(x) �
�

R

g(xÿ y)j(y) dy (x 2 R), (19)
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which is a well-de®ned continuous function thanks to assumption (R), and consider the ó-

algebra

C 1 :� ó x 7!
Xn

i�1

h
xi ÿ a

b

� �
ÿ h

xi ÿ c

d

� �� �
: a, c 2 R, b, d 2]0, 1[

( ) !
: (20)

One might think that necessarily C 1 � C 0, since the functions H generating C 1 as in (20)

are of the form

H(x) �
�

R

G(x, y)j(y) dy, x 2 Rn (21)

with functions G(:, y) generating C 0 as in (18). From this, however, the wanted inclusion

C 1 � C 0 does not follow, since H from (21) need not be measurable with respect to

ó (fG(:, y) : y 2 Rg) ± see Mattner (1999a, Section 2.1) for a counterexample. On the other

hand, it is true that the function H from (21) is ën-almost everywhere equal to a

ó (fG(:, y) : y 2 Rg)-measurable function ± this follows from Theoem 3.1 of Mattner

(1999a), using the product measurability of G with respect to B (Rn)
B (R). Hence we can

conclude that

C 1 � C 0[ën]: (22)

Now assume (i). This means that we do not have C 0 � B (Rn)sym[ën]. In view of (22) and of

C 0, C 1 � B (Rn)sym, we obtain the strict inclusion

C 1 6� B (Rn)sym: (23)

By the continuity of h from (19), the ó -algebra C 1 is countably generated. Using a theorem

of Blackwell (see Dellacherie and Meyer, 1975, p. 80), we deduce the existence of x, y 2 Rn

satisfying

x is not a permutation of y: (24)

andXn

i�1

h
xi ÿ a

b

� �
ÿ h

xi ÿ c

d

� �� �
�
Xn

i�1

h
yi ÿ a

b

� �
ÿ h

yi ÿ c

d

� �� �
,

(a, c 2 R, b, d 2 ]0, 1[): (25)

Let us consider

H :� fH 2 C (R) : (25) holds with H in place of hg:
Obviously, H is a translation- and dilation-invariant closed subspace of C (R). Further, H
does not contain every monomial x, . . . , x n, for otherwise we could insert these monomials

into (25) and take a � c � 0 and b 6� d to deduce
Pn

i�1xk
i �

Pn
i�1 yk

i for k � 1, . . . , n,

which is well known to contradict (24). Hence, by Theorem 2.1, there is an integer

m < nÿ 1 such that H consists of the polynomials of degree at most m. Thus, in particular,

h is such a polynomial. Since this is true for every choice of j in the de®nition (19) of h, it
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follows that g is ë-almost everywhere equal to a polynomial of degree at most nÿ 1, so that

(iii) is true.

We now prove that in case (iii) the degree k of p satis®es the claim that k is even and at

least 2 and (
P

X i, . . . ,
P

X k
i ) is minimal suf®cient. That k must be even and at least 2

follows from integrability of f � exp p.

To prove minimal suf®ciency of T :� (
P

Xi, . . . ,
P

X k
i ), we may use formula (16),

which here yields the minimal suf®cient ó -algebra

C � ó (fP(:, a, b) : a 2 R, b 2]0, 1]g),
where

P(x, a, b) :�
Xn

i�1

p
xi ÿ a

b

� �
ÿ p(xi)

� �
, (x 2 Rn, a 2 R, b 2]0, 1[):

Obviously, C � ó (T ). To prove ó (T ) � C , consider for c 2 R the difference operator Äc

de®ned on functions

F: Rn ! R by (Äc F)(x) � F(x1 � c, . . . , xn � c)ÿ F(x1, . . . , xn):

For m > 1, we clearly have Äm
c

P
p(X i) 2 span fP(:, a, 1) : a 2 Rg. Since Äkÿ1

c

P
p(Xi) �

á1

P
Xi � á2 with á1 6� 0, it follows that

P
X i is C -measurable. In the case k > 3, we then

use Äkÿ2
a

P
p(X i) � â1

P
X 2

i � â2

P
X i � â3 with â1 6� 0 to deduce C -measurability ofP

X 2
i . Continuing in this way, we arrive at the C -measurability of (

P
X i, . . . ,

P
X kÿ1

i ). To

®nally prove C -measurability of
P

X k
i , we observe that P(:, 0, 1)ÿ P(:, 0, 2) �

ã1

P
X k

i � ã2

P
X kÿ1

i � . . . ãk�1 with ã1 6� 0.

To prove that (iii) ) (i), begin by assuming (iii). Then, by what has already been proved,

T :� (
P

X i, . . . ,
P

X k
i ) is minimal suf®cient for P n. Put G :� fx 2 R : x1 , x2 , . . . , xng.

If the order statistic were minimal suf®cient too, then we would have in particular

ó (T jG) � B (G)[ën]. Since k , n and since T jG is continuously differentiable, this would

contradict Corollary 2.4.

The proof that (ii) Û (iii) and that the dimension equals the degree is due to Dynkin

(1951) and Ferguson (1962); see Theorem 4 of the latter. h

Proof of Corollary 1.2. (v) ) (i) It is well known that (Xn, S2
n) is complete suf®cient for P n

if f is normal.

(i) ) (ii) Trivial.

(iii) ) (ii) This follows from Basu's theorem (Theorem 1 in Basu 1982) since D is

ancillary.

(iii) ) (v) Here we use the assumptions (R) and n > 3. To avoid treating two cases

separately, let us ®rst observe that Theorem 1.1 always yields a k 2 f2, . . . , ng such that

T :� (
P

X i, . . . ,
P

X k
i ) is minimal suf®cient: if theorem 1.1(i) is false, we take k � n and

use ó (T ) � B (Rn)sym.

If k � 2, then f is normal.

If k . 2, then the statistic
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U :�
Xn

i�1

X i ÿ Xn

Sn

� �3

� h
X

X i,
X

X 2
i ,
X

X 3
i

 !
,

for some measurable function h : R3 ! R,is D -measurable and T -measurable. By Corollary

1.2(iii) and by minimal suf®ciency of T, this implies that U is P n-independent of itself.

Hence U � c[ën] for some c 2 R. Since n > 3, this is impossible. To prove rigorously the

impossibility claimed, we may compute that U (1, 0, . . . , 0) . 0 and hence U (ÿ1, 0, . . . ,

0) , 0, and apply Triviality 2.5 to G :� fSn . 0g and f � U jG.

(v) ) (iv) Take T :� (Xn, Sn) and N :� fSn � 0g.
(iv) ) (iii) Apply Corollary 1.9.15 to Proposition 1.9.11 of Pfanzagl (1994). h

Proof of Corollary 1.3. Let P n be de®ned as in (1). Let us put ~N :�
N [ fx 2 Rn : Sn(x) � 0g, with N as in assumption (ii). Then, since n > 2, ~N is a ën-

nullset. Using assumption (ii), the statistic

U :� T ,
X 1 ÿ Xn

Sn

, . . .
X n ÿ Xn

Sn

� �
is easily seen to be injective on Rnn ~N . Hence, using the assumptions on (T , A) and again

the theorem of Blackwell (Dellacherie and Meyer, 1975, p. 80), we conclude that

ó (U j(Rnn ~N)) � B (Rnn ~N ). Since ~N is a nullset, U is, in particular, suf®cient for P n.

By assumption (iii), T is independent of D under P
n. To deduce independence also

under P n, we argue as follows. Fix g 2 G for the moment. By the equivariance assumption

(i), the functions T and x 7! T (gx) generate the same partition on Rn. By the assumptions

on (T , A) and once more using Blackwell's theorem, it follows that the two functions

generate the same ó -algebra. It follows that ó (T ) is G-invariant (in the sense of `B 2 ó (T ),

g 2 G ) gB 2 ó (T )'). Since D is trivially G-invariant, and since P n is generated from

P
n via G, we do indeed obtain the independence of T and D under P n.

This independence, taken together with the suf®ciency of U and the ancillarity of D ,

yields, by Theorem 3 of Basu (1982), that T alone is already suf®cient for P n. Hence

Corollary 1.2(iii) holds with C � ó (T ), so that P must be normal.

Thus we know that (Xn, Sn) is minimal suf®cient for P n, for example from Theorem 1.1.

With C :� ó (Xn, Sn) and E :� ó (T ), suf®ciency of E yields C � E [P n]. Now an

application of Lemma 2.2, to P :� P
n, C and E as just de®ned, and D from (2), yields

ó (T ) � ó (Xn, Sn)[P
n], which is equivalent to the ®nal claim. h
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