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If we have a parametric model for the invariant distribution of a Markov chain but cannot or do not

want to use any information about the transition distribution (except, perhaps, that the chain is

reversible), what is the best use we can make of the observations? We determine a lower bound for

the asymptotic variance of regular estimators and show constructively that the bound is attainable. The

results apply to discretely observed diffusions.
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1. Introduction

Let X 0, . . . , X n be observations from a stationary Markov chain. Suppose we have a

parametric model ðW(dx), W 2 È, for the distribution of X i, but no convincing or tractable

model for the transition distribution, say Q(x, dy), of X i given X iÿ1 � x. We want to esti-

mate W.

It is clear that it is not optimal to proceed as if the observations were independent. The

possible transition distributions are constrained by the condition that their invariant

distribution must be in the parametric family ðW, W 2 È. Hence additional information about

W is likely to be obtainable through an estimator of Q. We pose the following questions.

How much information about W is contained in the observations? How can one exploit this

information for estimating W? The answers are surprisingly involved.

The paper is organized as follows. In Theorem 1 (Section 3) we describe the information

about W by determining a lower bound for the asymptotic variance of regular estimators. In

Theorem 2 (Section 4) we show that reversibility of the chain carries no additional

information about W. In Theorem 3 (Section 5) we describe how to construct an ef®cient

estimator if a n1=2-consistent estimator of W and an appropriate estimator of the ef®cient

in¯uence function are available. The construction utilizes the sample splitting techniques of

Schick (2001). Theorem 4 (Section 6) gives an explicit construction of an estimator of the
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ef®cient in¯uence function with the desired properties. Section 7 compares our results with

known results for parametric Markov chain models.

The results apply when we have a parametric model for a stationary continuous-time

stochastic process and observe the process at n� 1 equidistant time points. Then the mar-

ginal distribution of the observations usually follows a tractable parametric model, while the

transition distribution is often intractable. In Section 8 we compare our estimator with

certain estimators based on parametric diffusion models which have been suggested in the

literature. Our estimator has the advantage of being robust against misspeci®cation of the

underlying continuous-time process.

2. Characterization of ef®cient estimators

In this section we introduce some notation and recall a characterization of least dispersed

regular (i.e. ef®cient) estimators for real-valued functionals of Markov chain models. Let

X 0, . . . , X n be observations from a stationary Markov chain on an arbitrary state space S

with countably generated ó -®eld S , with transition distribution Q(x, dy) and invariant

distribution ð(dx).

We will use the following notation. The joint law of two successive observations is

ð
 Q(dx, dy) � ð(dx)Q(x, dy):

For a suitably integrable function f (x), write

(Qf )(x) �
�

Q(x, dy) f (y), ð f �
�
ð(dx) f (x):

For a function k(x, y) of two arguments, we write

(Qk)(x) �
�

Q(x, dy)k(x, y): (2:1)

For j > 2, let Q j k � Q jÿ1Qk, so that (Q j k)(X0) � E[k(X jÿ1, X j)jX0]. This differs from the

application of the j-step transition measure Q j to k in the sense of (2.1), which would give

E[k(X 0, X j)jX 0].

It will later be convenient to write functions f (x) of one argument as functions of two

arguments,

(Lf )(x, y) � f (x), (Rf )(x, y) � f (y):

Here L and R stand for `left' and `right'.

For a measure í, let L2(í) be the space of í-square integrable functions, and L2,0(í) the

subspace of functions with í-integral 0. Let k f k � (ð f 2)1=2 denote the norm of a function

f in L2(ð), and kKk � supfkKf k : k f k � 1g the corresponding operator norm of a kernel

K(x, dy). Write J (x, dy) � åx(dy) for the identity kernel, and Ð(x, dy) � ð(dy) for the

stationary projection. We have

ÐQ � QÐ � Ð: (2:2)

244 M. Kessler, A. Schick and W. Wefelmeyer



The following assumption will be in force throughout.

Assumption 1. The chain ful®ls kQÿÐk, 1.

We introduce a local model around Q by perturbing Q as follows. As local parameter

space we take

H � fh 2 L2(ð
 Q): Qh � 0g: (2:3)

For h 2 H, we set

Qnh(x, dy) � Q(x, dy)[1� nÿ1=2 hn(x, y)], (2:4)

with

hn � hn ÿ LQhn and hn � h1(2jhj<n1=8): (2:5)

We have used the truncated and centred version hn of h because Qnh(x, dy) must be a

probability measure.

Write Pn and Pnh for the joint distribution of (X 0, . . . , X n) under the transition dis-

tribution Q and Qnh, respectively. Under Assumption 1, we have a nonparametric version of

local asymptotic normality,

log
dPnh

dPn

(X0, . . . , X n) � log
dðnh

dð
(X 0)�

Xn

i�1

log[1� nÿ1=2 hn(X iÿ1, X i)]

� nÿ1=2
Xn

i�1

h(X iÿ1, X i)ÿ 1

2
ð
 Qh2 � oPn

(1) (2:6)

and

nÿ1=2
Xn

i�1

h(X iÿ1, X i)) (ð
 Qh2)1=2 � N , (2:7)

where N is standard normal. A parametric version of local asymptotic normality for Markov

chains was ®rst given in Roussas (1965); a nonparametric version in Penev (1991). Local

asymptotic normality for Markov step processes and Hellinger differentiable Qnh in the sense

of HoÈpfner et al. (1990), and hence for Qnh as in (2.4), is proved in HoÈpfner (1993a; 1993b).

He starts the chain at a ®xed value X 0 � x0, so that log dðnh=dð(X 0) vanishes. We consider a

stationary chain, for which log dðnh=dð(X 0) is negligible because the invariant distribution ð
depends continuously on the transition distribution; see Kartashov (1996).

So far we have looked at the full nonparametric model of all (suf®ciently regular)

transition distributions. Consider now a submodel, described by a family Q of transition

distributions on S . Suppose Q contains the transition distribution Q ®xed above. The local

model is now obtained by perturbing Q within the family Q . In regular cases, the local

parameter space will then run through a linear subspace H0 of H . For Qnh to lie exactly in

Q , the construction (2.4) and (2.5) will have to be modi®ed slightly. For the models

considered below, we will omit the (tedious) details.
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Consider a real-valued functional t on Q . This is called differentiable at Q with gradient

g if g 2 H and

n1=2[t(Qnh)ÿ t(Q)]! ð
 Q (hg) for h 2 H0: (2:8)

The canonical gradient is the projection g0 of g onto H0.

Let Tn be an estimator of t(Q). We call Tn asymptotically linear at t(Q) with in¯uence

function h if h 2 H and

n1=2[Tn ÿ t(Q)] � nÿ1=2
Xn

i�1

h(X iÿ1, X i)� oPn
(1):

We call Tn regular at Q with limit L if

n1=2[T n ÿ t(Qnh)]) L under Pnh for h 2 H0:

The convolution theorem of HaÂjek (1970) in the version of Pfanzagl and Wefelmeyer (1982,

Theorem 9.3.1) ± see Bickel et al. (1993, p. 63, Theorem 2) ± says that if Tn is regular, then

nÿ1=2
Xn

i�1

g0(X iÿ1, X i), n1=2[Tn ÿ t(Q)]ÿ nÿ1=2
Xn

i�1

g0(X iÿ1, X i)

( )
) f(ð
 Qg2

0)1=2 � N , Mg under Pn,

with N standard normal and M independent of N . In particular,

L � (ð
 Qg2
0)1=2 � N � M in distribution:

The estimator Tn is (asymptotically) least dispersed if

L � (ð
 Qg2
0)1=2 � N in distribution: (2:9)

By the convolution theorem, Tn is least dispersed among all regular estimators for t(Q) if and

only if it is asymptotically linear with in¯uence function equal to the canonical gradient,

n1=2[Tn ÿ t(Q)] � nÿ1=2
Xn

i�1

g0(X iÿ1, X i)� oPn
(1): (2:10)

3. The information in the marginal law

As in Section 2, let X0, . . . , X n be observations from a stationary Markov chain on an

arbitrary state space S with countably generated ó -®eld S . Suppose we have a parametric

model fðô: ô 2 Èg for the invariant distribution, and that the transition distribution is

unspeci®ed otherwise.

We consider two submodels of the full nonparametric model. The ®rst, Q �, consists of

all transition distributions with invariant distribution in the family fðô: ô 2 Èg. The second,

Q rev
� , consists of all transition distributions which ful®l the additional restriction that the

chain is reversible. The models are semiparametric, or rather nonparametric with a par-
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ametric family of restrictions. (In Section 7 we will also discuss models described by a

parametric family of transition distributions.) We are interested in estimating ô.

For simplicity we take È to be one-dimensional and open. We ®x a parameter W. In the

following, we will often suppress this parameter in the notation. In particular, we will write

ð for ðW. In this and the next section, the following additional assumption will be in force.

We need it to determine a lower bound for the asymptotic variance of estimators of W. It is

the usual condition in the independently and identically distributed (i.i.d.) case.

Assumption 2. For ô 2 È, the invariant distribution ðô has positive density pô with respect

to ì, and the map ô 7! pô is Hellinger differentiable at W: There is a function l 2 L2,0(ð),

the Hellinger derivative, such that

ì[ p1=2
ô ÿ p

1=2

W ÿ 1
2
(ôÿ W)l p

1=2

W ]2 � o[(ôÿ W)2]: (3:1)

Also, ðl 2 . 0.

Fix a transition distribution Q with invariant distribution ð � ðW. The local model around

Q is obtained by perturbing Q as in (2.4), subject to the restriction that the invariant

distributions are in the family fðô: ô 2 Èg. The restriction entails a restriction on the local

parameter h of the perturbed transition distribution Qnh. To determine the restriction, we

consider the invariant distribution of Qnh. By Kartashov (1985a; 1985b; 1996), the transition

distribution Qnh has a unique invariant distribution ðnh which admits the following per-

turbation expansion: for h 2 H and f 2 L2(ð),

n1=2(ðnh f ÿ ð f )! ð
 Q (h � RUf ), (3:2)

where U is the kernel

U �
X1
j�0

(Q j ÿÐ) on L2(ð): (3:3)

Since Qh � 0, we may centre RUf ,

ð
 Q (h � RUf ) � ð
 Q(h � Af ), (3:4)

where

A � RU ÿ LQU �
X1
j�0

(RQ j ÿ LQ j�1) on L2(ð): (3:5)

The operator A maps L2(ð) into H ,

(Af )(x, y) �
X1
j�0

[(Q j f )(y)ÿ (Q j�1 f )(x)]:

We will need the adjoint of A in the inner product (3.4). This is expressed in terms of

the reversed chain, with transition distribution Q(y, dx) de®ned by

ð(dx)Q(x, dy) � ð(dy)Q(y, dx): (3:6)
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For a function h(x, y) of two arguments, we will follow the convention that the transition

distribution of the reversed chain acts on h from right to left, i.e. on the ®rst argument of h,

(Qh)(y) �
�

Q(y, dx)h(x, y):

For j > 2, let Q j h � Q jÿ1Qh. Introduce

V �
X1
j�1

(Q j ÿ ð
 Q) on L2(ð
 Q):

For f 2 L2(ð) and h 2 H,

ð
 Q (h � Af ) � ð(V h � f ): (3:7)

This is Lemma 1 of Greenwood and Wefelmeyer (1999), specialized to functions of one

argument. With (3.4) and (3.7), the perturbation expansion (3.2) is

n1=2(ðnh f ÿ ð f )! ð(V h � f ): (3:8)

So far, we have not used the restriction that the invariant distributions are in the

parametric family fðô: ô 2 Èg. Hellinger differentiability (3.1) of the invariant distribution

implies, for all bounded functions f and u 2 R,

n1=2(ðW�nÿ1=2 u f ÿ ð f )! uð(l f ): (3:9)

Comparing with (3.8), we obtain a restriction on the local parameter h, namely V h � ul if

Qnh has invariant distribution ðW�nÿ1=2 u n
with un ! u. Hence the local parameter space of Q �

at Q is

H� �
[
u2R

Hu,

with

Hu � fh 2 H : V h � ul g:
We turn to the problem of determining a lower bound for the variance of estimators for the

parameter ô. According to Section 2, the bound is expressed in terms of the canonical

gradient. Consider ô as a functional on Q �, de®ned by t(Q) � ô if Q has invariant

distribution ðô. Then

n1=2[t(Qnh)ÿ t(Q)] � n1=2(W� nÿ1=2uÿ W)� o(1)! u for h 2 Hu:

By de®nition (2.8), a gradient g 2 H is determined by

ð
 Q (hg) � u for h 2 Hu: (3:10)

The canonical gradient will turn out to be of the form Af with f 2 L2(ð). The following

simple characterization will be useful.

Lemma 1. Let f 2 L2(ð). Then Af is a gradient for W if and only if ð(l f ) � 1.
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Proof. We have V h � ul for h 2 Hu. By (3.7),

ð
 Q(h � Af ) � ð(V h � f ) � uð(l f ):

Hence (3.10) holds for g � Af if and only if ð(l f ) � 1. h

The canonical gradient, say g�, is the projection of an arbitrary gradient into H�. In

particular, V g� � ul for some u. Does the class of gradients in Lemma 1 contain the

canonical gradient? This is the case if we can ®nd f 2 L2(ð) such that V Af � ul , with u

determined by ð(l f ) � 1. A suf®cient condition is invertibility of VA. To calculate VA, we

introduce an operator V analogous to V ,

V �
X1
j�1

(Q j ÿ ð
 Q) on L2(ð
 Q):

In accordance with our convention, the restrictions of V and V to functions of one variable

are VR and V L, or

V �
X1
j�1

(Q j ÿÐ), V �
X1
j�1

(Q j ÿÐ) on L2(ð):

We have

VA � J ÿÐ� V � V on L2(ð): (3:11)

This is Lemma 2 of Greenwood and Wefelmeyer (1999), specialized to functions of one

argument.

Lemma 2. The operator VA is invertible on L2,0(ð), and

(VA)ÿ1 � (J ÿ Q)(J ÿ QQ)ÿ1(J ÿ Q)

�
X1
j�0

(J ÿ Q)(QQ) j(J ÿ Q) on L2,0(ð):

Proof. On L2,0(ð),

V �
X1
j�1

Q j � Q(J ÿ Q)ÿ1, V �
X1
j�1

Q j � (J ÿ Q)ÿ1Q:

With relation (3.11), we ®nd that on L2,0(ð)
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VA � J � V � V

� J � Q(J ÿ Q)ÿ1 � (J ÿ Q)ÿ1Q

� (J ÿ Q)ÿ1[(J ÿ Q)(J ÿ Q)� Q(J ÿ Q)� (J ÿ Q)Q](J ÿ Q)ÿ1

� (J ÿ Q)ÿ1(J ÿ QQ)(J ÿ Q)ÿ1:

Now use the fact that Q and Q, viewed as operators on L2,0(ð), have norms less than 1 in

view of Assumption 1. Actually, both norms equal kQÿÐk. Hence VA is invertible on

L2,0(ð), and the inverse has the asserted form. h

Theorem 1. The canonical gradient for W is

g� � [ð(l e�)]ÿ1 Ae�, with e� � (VA)ÿ1l :

We have

ð
 Q(Ae�)2 � ð(l e�), (3:12)

ð
 Qg2

� � [ð(l e�)]ÿ1: (3:13)

Proof. By Lemma 2, the operator VA is invertible on L2,0(ð). The function e� ful®ls

V Ae� � l , hence Ae� 2 H1 � H�. Furthermore, g� � [ð(l e�)]ÿ1 Ae� is a gradient by

Lemma 1. Finally, (3.12) follows from the fact that V is the adjoint of A, and implies

(3.13). h

By (2.9), a least dispersed regular estimator for W in Q � has asymptotic variance

ð
 Qg2� . The inverse, ð(l e�), may therefore be called the information about W contained

in the marginal laws of the Markov chain.

Remark 1. Suppose the observations X0, . . . , X n happen to be i.i.d. Then the best estimator

is the maximum likelihood estimator. It solves
Pn

i�1l ô(X i) � 0. Theorem 1 implies an

in®nitesimal robustness property of the maximum likelihood estimator against Markovian

departures from independence: we have Q � Ð, Q � Ð and V � V � 0 on L2(ð), so that, by

(3.11), VA � J and (VA)ÿ1 � J on L2,0(ð). By Theorem 1, the canonical gradient for W is

g� � (ðl 2)ÿ1 Rl . By (2.10), an estimator Ŵn is least dispersed and regular for W in the model

Q � if and only if

n1=2(Ŵn ÿ W) � (ðl 2)ÿ1 nÿ1=2
Xn

i�1

l (X i)� oPn
(1):

Under appropriate regularity conditions, the maximum likelihood estimator has this stochastic

approximation. For a related robustness result in fully nonparametric Markov chain models,

see Penev (1993).
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4. The information for reversible chains

In this section we show that reversibility of the Markov chain carries no additional

information about the parameter of the invariant distribution. (A related result is proved in

Greenwood and Wefelmeyer 1999: in a nonparametric Markov chain model, reversibility

carries no information about functionals of the invariant distribution.) Nevertheless, the

canonical gradient simpli®es for reversible chains.

Consider the model Q rev
� of all reversible transition distributions in Q �,
Q rev
� � fQ 2 Q �: Q(x, dy) � Q(x, dy)g:

Then ð
 Q is symmetric in the two components. To translate this property into a property of

local parameters, we extend some results of Section 3; see also Greenwood and Wefelmeyer

(1999, Section 3).

The perturbation expansion (3.2) generalizes immediately to functions of two arguments:

for h 2 H and k 2 L2(ð
 Q),

n1=2(ðnh 
 Qnh k ÿ ð
 Qk)! ð
 Q(h � Ak), (4:1)

where

A � I2 ÿ LQ� AQ on L2(ð
 Q), (4:2)

with I2 the identity on L2(ð
 Q). Note that A maps L2(ð
 Q) onto H . The adjoint of this

extended operator is obtained from (3.7): for h 2 H and k 2 L2(ð
 Q),

ð
 Q(h � Ak) � ð
 Q(Bh � k), (4:3)

where

B � I2 � LV on H : (4:4)

If Q and Qnh are reversible, then ð
 Q and ðnh 
 Qnh are symmetric. The perturbation

expansion (4.1) and relation (4.3) imply that Bh is symmetric. Hence the local parameter

space of Q rev
� is

H rev
� � fh 2 H�: Bh symmetricg:

The canonical gradient g� � [ð(l e�)]ÿ1 Ae� is of the form Af with f 2 L2(ð). We show

that such functions ful®l the additional property of H rev
� , namely that BAf is symmetric. We

have

BA � I2 ÿ ð
 Q� RV � LV on L2(ð
 Q):

This is Lemma 2 of Greenwood and Wefelmeyer (1999). We rewrite BA for functions of one

argument. We have QR � Q and QL � J . Similarly, QR � J and QL � Q. Hence VL � U

and V R � U, where

U �
X1
j�0

(Q j ÿÐ) on L2(ð) (4:5)
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is de®ned by analogy with (3.3). We obtain BAR � BAL � RU � LU on L2(ð) and may

write, without ambiguity,

BA � RU � LU on L2(ð): (4:6)

In particular, if the chain is reversible, Q � Q, then BAf is symmetric for f 2 L2(ð).

Theorem 2. Let Q � Q. Then the canonical gradient for W in model Q rev
� equals the can-

onical gradient g� � [ð(l e�)]ÿ1 Ae� for W in model Q �. We have ð
 Qg2� � [ð(l e�)]ÿ1

and

e� � l � 2
X1
j�1

(ÿ1) jQ jl ,

ð(l e�) � ðl 2 � 2
X1
j�1

(ÿ1) jð(l � Q jl ),

Ae� � Rl � (R� L)
X1
j�1

(ÿ1) jQ jl :

Proof. By (4.6),

Bg� � [ð(l e�)]ÿ1 BAe� � [ð(l e�)]ÿ1(RUe� � LU e�):
Since Q � Q, we have U � U , and Bg� is symmetric. Hence g� 2 H rev

� . This shows that

g� is canonical in the model Q rev
� . Finally, on L2,0(ð) we have (VA)ÿ1 � (J ÿ Q)(J � Q)ÿ1,

A � (Rÿ LQ)(J ÿ Q)ÿ1 and A(VA)ÿ1 � (Rÿ LQ)(J � Q)ÿ1. Now expand (J � Q)ÿ1 as a

series to get the desired formulae. h

5. Construction of ef®cient estimators

In this section we construct least dispersed regular estimators for W. We need a stronger

version of Assumption 2, namely continuous Hellinger differentiability of ô! pô at W.

Assumption 3. For ô 2 È, the invariant distribution ðô has positive density pô with respect

to ì. The function ô! pô is Hellinger differentiable with derivative l ô in a neighbourhood

of W, and

ì(l ô p1=2
ô ÿ l W p

1=2

W )2 ! 0 for ô! W: (5:1)

Also, ðWl 2
W . 0.

By Theorem 1 and (2.10), an estimator Ŵn is least dispersed and regular for W if and

only if
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n1=2(Ŵn ÿ W) � [ð(l e�)]ÿ1 nÿ1=2
Xn

i�1

(Ae�)(X iÿ1, X i)� oPn
(1): (5:2)

We will construct such an estimator as a one-step estimator, improving an initial estimator.

As usual, the initial estimator will be a discretized and n1=2-consistent estimator ~Wn; see

Bickel et al. (1993). Such a discretized estimator can be treated as a deterministic sequence

in the proof.

From Meyn and Tweedie (1993, Section 17.4) we obtain the following martingale

approximation, which goes back to Gordin (1969); see also Gordin and LifsÏic (1978). For

f 2 L2(ð),

Xn

i�1

[ f (X i)ÿ ð f ] �
Xn

i�1

(Af )(X iÿ1, X i)� (Vf )(X 0)ÿ (Vf )(X n): (5:3)

In particular,

nÿ1=2
Xn

i�1

e�(X i) � nÿ1=2
Xn

i�1

(Ae�)(X iÿ1, X i)� oPn
(1): (5:4)

Our construction of the ef®cient estimator will therefore involve an estimator for e�, and not

for Ae�.
We also rely on the sample splitting techniques of Schick (2001). For simplicity we use

his 2-split, which picks two blocks X1 � (X0, . . . , X mn
) and X2 � (X nÿm n

, . . . , X n). We

need that

nÿ 2mn !1 and nÿ1=2(nÿ 2mn)! 0:

With en(x, ~Wn, X0, . . . Xn) denoting an estimator of e�(x), our estimator has the form

Ŵn � 1

2
~Wn �

1

mn

Xmn

i�1

em n
(X i, ~Wn, X2)ÿ ð~Wn

emn
(�, ~Wn, X2)

ð~Wn
[em n

(�, ~Wn, X2)l ~Wn
]

0BBB@
1CCCA

� 1

2
~Wn �

1

m n

Xn

i�nÿm n�1

emn
(Xi, ~Wn, X1)ÿ ð~Wn

em n
(�, ~Wn, X1)

ð~Wn
[em n

(�, ~Wn, X1)l ~Wn
]

0BBBB@
1CCCCA: (5:5)

Call a sequence Wn in È local if n1=2(Wn ÿ W) is bounded.

Theorem 3. Let Assumptions 1 and 3 hold. Suppose that for every local sequence Wn,
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sup
x

jen(x, Wn, X 0, . . . , X n)j � oPn
(n1=2), (5:6)

�
ð(dx)[en(x, Wn, X 0, . . . , X n)ÿ e�(x)]2 � oPn

(1): (5:7)

Then the one-step estimator Ŵn de®ned in (5.5) satis®es the stochastic expansion (5.2) and is

therefore a least dispersed regular estimator for W.

Proof. Since the initial estimator ~Wn is discretized, it suf®ces to prove the stochastic

expansion (5.4) with local sequences Wn replacing ~Wn in the de®nition (5.5) of Ŵn. Fix a local

sequence Wn. Because of the sample splitting, we only need to show expansion (5.4) for the

`estimator'

Wn �

1

n

Xn

i�1

~en(X i)ÿ ðWn
(~en)

ðWn
(~enl Wn

)
,

with ~en(x) � en(x, Wn, ~X) and ~X an independent copy of (X 0, . . . , X n); see Schick (2001). It

suf®ces to show that

ðWn
(~enl Wn

) � ð(e�l W)� oPn
(1), (5:8)

ðW n
(~en)ÿ ð(~en) � (Wn ÿ W)ð(e�l W)� oPn

(nÿ1=2), (5:9)

nÿ1=2
Xn

i�1

[~en(X i)ÿ ð(~en)] � nÿ1=2
Xn

i�1

(A~en)(X iÿ1, X i)� oPn
(1), (5:10)

nÿ1=2
Xn

i�1

(A~en)(X iÿ1, X i) � nÿ1=2
Xn

i�1

(Ae�)(X iÿ1, X i)� oPn
(1): (5:11)

It follows from (5.6) and Hellinger differentiability at W that

ì[~en( p
1=2

Wn
ÿ p

1=2

W )]2 � oPn
(1): (5:12)

We conclude from (5.7) and (5.12) that

ì(~en p
1=2

Wn
ÿ e� p

1=2

W )2 < 2ì[~en( p
1=2

Wn
ÿ p

1=2

W )]2 � 2ð(~en ÿ e�)2 � oPn
(1):

It follows from this and (5.1) that

ðWn
(~enl Wn

) � ì(~en p
1=2

Wn
l Wn

p
1=2

Wn
) � ì(e� p

1=2

W l W p
1=2

W )� oPn
(1),

which yields (5.8). Similarly, one veri®es that

ì(~enl W pW) � ì(e�l W pW)� oPn
(1):

Thus (5.9) follows if we show that

ìf~en[ pWn
ÿ pW ÿ (Wn ÿ W)l W pW]g � oPn

(nÿ1=2):
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To see this, write the left-hand side as

ìf~en( p
1=2

Wn
� p

1=2

W )[ p
1=2

Wn
ÿ p

1=2

W ÿ 1
2
(Wn ÿ W)l W p

1=2

W ]g � ì[~en( p
1=2

Wn
ÿ p

1=2

W )(Wn ÿ W) 1
2
l W p

1=2

W ]:

Now apply the Cauchy±Schwarz inequality to both terms and then use (5.12) and Hellinger

differentiability at W to conclude the desired result.

To prove relation (5.10), note ®rst that by (5.7),

ð[(V ~en)2]! ð[(Ve�)2]:

Hence, for å. 0, the conditional Markov inequality yields

max
i

P(j(V ~en)(X i)j. ån1=2) < E
ð[(V ~en)2]

nå2
^ 1

� �
! 0:

Relation (5.10) now follows from the martingale approximation (5.3).

We verify relation (5.11) with the aid of Theorem 3.2 in Schick (2001). We have�
Q(x, dy)[(A~en)(x, y)ÿ (Ae�)(x, y)] � 0

and

ð
 Q(A~en ÿ Ae�)2 < kAk2 � ð(~en ÿ e�)2 ! 0

by (5.7) and since A is a bounded operator. Then by the remark immediately following the

proof of his Theorem 3.2 (Schick 2001, p. 42) the conditions of the theorem hold, and (5.11)

follows. h

Remark 2. Let en be an estimator that satis®es condition (5.7) of Theorem 3. Then the est-

imator en � (ÿBn) _ en ^ Bn satis®es (5.7) for every sequence of positive numbers Bn

tending to in®nity. This truncated estimator also satis®es (5.6) if Bn � o(n1=2). Consequently,

only condition (5.7) poses any dif®culties.

6. Estimation of e�

The results of the previous section show that one can construct an ef®cient estimator of W if

one can construct an estimate en of e� which satis®es (5.7). We shall now construct such an

estimator en under the assumption that we can choose appropriate orthonormal bases for the

spaces L2,0(ðô). More precisely, for each ô 2 È let fø j,ô: j > 1g be an orthonormal basis for

L2,0(ðô). We require the following additional properties of these functions.

(A1) For every j > 1,

ì(ø j,ô p1=2
ô ÿ ø j,W p

1=2

W )2 ! 0 for ô! W:

(A2) There are positive numbers á, â and C1 such that, for all positive integers k and

all ô close to W,
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Xk

j�1

kø j,ô ÿ ø j,Wk2 < C1 kájôÿ Wj2â:

(A3) There are positive numbers ã and C2 such that, for all positive integers k and all

ô close to W, Xk

j�1

ðô(ø
4
j,ô) < C2 kã:

Remark 3. Let us mention that such functions ø j,ô can easily be constructed if the state space

is the real line R and the dominating measure ì is the Lebesgue measure. In this case, each

ðô possesses a continuous distribution function Fô. This allows us to choose ø j,ô � ö j � Fô,

where fö j: j > 1g is an orthonormal basis for L2,0(ë), with ë the Lebesgue measure on

[0, 1]. We may choose the trigonometric basis

ö2kÿ1(x) �
���
2
p

sin[2kð(xÿ 1
2
)],

ö2k(x) �
���
2
p

cos[2kð(xÿ 1
2
)], for 0 < x < 1 and k > 1:

Since jö jj <
���
2
p

for all j > 1, condition (A3) holds with C2 � 4 and ã � 1, while condition

(A1) follows from Hellinger differentiability of the map ô 7! pô at ô � W. It follows from the

Cauchy±Schwarz inequality and from Hellinger differentiability at W that

jFô(x)ÿ FW(x)j < ì(jpô ÿ pWj) < 2[ì(j p1=2
ô ÿ p

1=2

W j2)]1=2 � O(jôÿ Wj) as ô! W:

Since jö9jj <
���
8
p

ð j for j > 1, condition (A2) holds with á � 3 and â � 1.

Let I k denote the k 3 k identity matrix, and introduce vectors

Øk,ô � (ø1,ô, . . . , øk,ô)
T and bk,ô � ðô(l ôØk,ô):

Theorem 4. Suppose that Assumptions 1 and 3 hold, and that conditions (A1)±(A3) are

satis®ed for certain á, â, ã. Let k n be a sequence of positive integers such that

k n !1, ká
n nÿâ ! 0, k1�ã

n nÿ1 ! 0:

Then condition (5.7) holds for the sequence of estimators

en(x, Wn, X 0, . . . , X n) � bT
k n,Wn

(I k n
ÿ ÂT

n)(I k n
ÿ Ân ÂT

n)ÿ1(I k n
ÿ Ân)Øk,Wn

with

Ân � 1

n

Xn

i�1

Øk n,Wn
(X j)Ø

T
k n,Wn

(X jÿ1):

To prove this theorem, we shall rely on the following two approximation results.
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Proposition 1. Let fø j: j $ 1g be an orthonormal basis of L2,0(ð). Let Ãk denote the

projection in L2,0(ð) onto the linear span of fø1, . . . , økg, and set Qk � Ãk Q, Qk � Ãk Q,

e� ,k �
X1
j�0

Ãk(J ÿ Q)(Qk Qk) jÃk(J ÿ Q)Ãk l W, k > 1:

Then

ke�,k ÿ e�k ! 0 as k !1: (6:1)

Proof. Keep in mind that Q and Q, viewed as operators on L2,0(ð), have norms equal to

kQÿÐk which is less than 1 by Assumption 1, and that kaÿ Ãk ak ! 0 as k !1, for

every a 2 L2,0(ð). Thus the desired result follows from the identity

e� ÿ e�,k � (J ÿ Ãk)e� �
X1
j�1

Ãk(J ÿ Q)[(QQ) j ÿ (Qk Qk) j](J ÿ Q)l W

�
X1
j�0

Ãk(J ÿ Q)(Qk Qk) j(J ÿ Ãk)(J ÿ Q)l W

�
X1
j�0

Ãk(J ÿ Q)(Qk Qk) jÃk(J ÿ Q)(J ÿ Ãk)l W

and the expansionX1
j�1

[(QQ) j ÿ (Qk Qk) j] �
X1
i�0

(Qk Qk)i[(Qÿ Qk)Q� Qk(Qÿ Qk)]
X1
j�0

(QQ) j,

valid on L2,0(ð). Here we have used C j ÿ Dj �P jÿ1
i�0 Di(C ÿ D)C jÿiÿ1 for operators C and

D and positive integers j. h

Proposition 2. Suppose that conditions (A1) and (A2) hold for certain á, â. For k > 1 and

ô 2 È, de®ne

e� ,k,ô � bT
k,ô(I k ÿ AT

k,ô)(I k ÿ Ak,ôAT
k,ô)
ÿ1(I k ÿ Ak,ô)Øk,ô,

with Ak,ô � ð(QØk,ô �ØT
k,ô) and QØk,ô � (Qø1,ô, . . . , Qøk,ô)

T. Then

ke�,k n,Wn
ÿ e�k ! 0

for all local sequences Wn, and for every sequence k n of positive integers satisfying

k n !1, ká
n nÿâ ! 0: (6:2)

Proof. Fix a sequence k n satisfying (6.2), and a local sequence Wn. We shall ®rst show that

ke�,k n,Wn
ÿ e�,k n

, Wk ! 0: (6:3)
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Write jvj2 for the Euclidean norm of a vector v, and jM j� for the spectral norm of a matrix

M . Then jM j2� is the largest eigenvalue of MT M . It is now easy to see that (6.3) follows if

we show that

sup
k

jbk,Wj2 ,1, jbk n,Wn
ÿ bk n,Wj2 ! 0,

sup
k

jAk,Wj�, 1, jAk n,Wn
ÿ Ak n

, W j� ! 0,

(6:4)

(6:5)

ð(jØk n,Wn
ÿØk n

, W j22)! 0: (6:6)

Of course, relation (6.6) follows from condition (A2) and assumption (6.2). From assumption

(5.1) we obtain that ðWn
(l 2

Wn
)! ðW(l 2

W). This is equivalent toX1
j�1

[ðWn
(l Wn

ø j,Wn
)]2 !

X1
j�1

[ð(l Wø j,W)]2:

Moreover, by condition (A1) and assumption (5.1) we have ðWn
(l Wn

ø j,Wn
)! ðW(l Wø j,W) for

all j > 1. Hence X1
j�1

[ðWn
(l Wn

ø j,Wn
)ÿ ðW(l Wø j,W)]2 ! 0:

Relation (6.4) follows from this and jbk,Wj22 < ð(l 2
W). The spectral norm of a k 3 k matrix M

can be expressed as

jM j� � supfjuT Mvj : u, v 2 Rk , juj2 � jvj2 � 1g:
This representation is particularly helpful when dealing with a matrix of the form

M � ð(QÖ �ØT) with Ö and Ø in Lk
2,0(ð). In this case one ®nds, with the aid of the

Cauchy±Schwarz inequality, that

juTð(QÖ �ØT)vj � jð(Q(uTÖ) � vTØ)j < kQÿÐk kuTÖkkvTØk2,

juT(ð(QÖ �ÖT)ÿ ð(QØ �ØT))vj < kuT(ÖÿØ)kkvTÖk � kuTØkkvT(ÖÿØ)k:
From the ®rst inequality we obtain jAk,Wj� < kQÿÐj, 1 and hence the ®rst part of relation

(6.5). The second inequality and relation (6.6) imply the second part of relation (6.5). This

concludes the proof of (6.3).

Now we show that e�,k,W coincides with e�,k of Proposition 1 if we take ø j � ø j,W.

Indeed, for this choice of orthonormal basis, we ®nd that Ãk l W � bT
k,WØk,W, and that for

each a 2 Rk we have Qk(aTØk,W) � aT Ak,WØk,W and Qk(aTØk,W) � aT AT
k,WØk,W. In the last

step we have used the fact that ð(QØk,W �ØT
k,W) � ð[Øk,W(QØk,W)T] � AT

k,W. Using the

above and the fact that jAk,Wj�, 1, it is now easy to see that

e�,k �
X1
j�0

bT
k,W(I k ÿ AT

k,W)(Ak,WAT
k,W) j(I k ÿ Ak,W)Øk,W:

This simpli®es to e� ,k,W. Thus the desired result follows from (6.3) and Proposition 1. h
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Proof of Theorem 4. Note that E(Ân) � Ak n,Wn
. It follows from the arguments in Proposition

2 that it suf®ces to show that jÂn ÿ E(Ân)j� � oPn
(1). We shall prove the stronger property

EjÂn ÿ E(Ân)j22 ! 0.

By Assumption 1, there exists a ®nite constant c such that, for all h 2 L2(ð
 Q ),

E
1

n

Xn

i�1

h(X iÿ1, X i)ÿ E[h(X0, X 1)]

( )2

<
c

n
E[h2(X 0, X 1)]:

From this, the Cauchy±Schwarz inequality, condition (A3) and the properties of k n,

EjÂn ÿ E(Ân)j22 <
c

n

Xk n

i�1

Xk n

j�1

E[ø2
i,Wn

(X 1)ø2
j,Wn

(X0)] <
ck n

n

Xk n

i�1

ð(ø4
i,Wn

)! 0:

h

Remark 4. In the reversible case we have Ak � AT
k . This allows us to replace Ân by the

symmetrized estimate 1
2
(Ân � ÂT

n).

7. Comparison with parametric results

Our results apply in particular to the situation in which we have a parametric model for the

transition distributions, say fQô: ô 2 Èg. The estimator in Section 5 does not use the model

except through the associated family of invariant distributions fðô: ô 2 Èg. In this section,

we compare known results for such parametric models with our results. For the sake of

brevity, we keep the discussion heuristic and do not reproduce the regularity conditions given

in the literature.

As before, we assume that È is one-dimensional and that the ðô have positive densities

pô with respect to ì. Then Qô(x, dy) has density, qô(x, y), say, with respect to ì(dy), for

(ð-almost) all x in the state space S.

Write mô(x, y) � _qô(x, y)=qô(x, y) for the logarithmic derivative, with respect to the

parameter ô, of qô(x, y). As before, we will omit the parameter if it equals the true par-

ameter W. A perturbation of the transition distribution at ô � W is of the form

QW�nÿ1=2 u(x, dy) �: Q(x, dy)[1� nÿ1=2um(x, y)]: (7:1)

Hence the local parameter space at W is the linear span, say Hpar, of m. Here par stands for

`parametric'.

The perturbation expansion (3.8), applied to Qnh � QW�nÿ1=2 u, with approximation (7.1),

gives

n1=2(ðW�nÿ1=2 u f ÿ ð f )! uð(V m � f ):

Comparing with (3.9), we obtain

l � V m: (7:2)
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The canonical gradient for the parameter, viewed as a functional t(Qô) � ô of the

transition distribution, is of the form gpar � upar m, with u determined by (2.8),

n1=2[t(QW�nÿ1=2 u)ÿ t(Q)] � n1=2(W� nÿ1=2uÿ W) � u�! uparu � ð
 Qm2:

Hence

gpar � (ð
 Qm2)ÿ1 m,

and the lower bound for the asymptotic variance of regular estimators is

ð
 Qg2
par � (ð
 Qm2)ÿ1:

An ef®cient estimator for the parameter is the maximum likelihood estimator. This is a

solution in ô of the estimating equationXn

i�1

mô(X iÿ1, X i) � 0:

Of course, the canonical gradient gpar is also obtained as projection onto Hpar of the

gradient g� � [ð(l e�)]ÿ1 Ae�, with e� � (VA)ÿ1l , which is canonical for the larger model

Q � of all transition distributions with invariant distribution in fðô : ô 2 Èg; see Theorem

1. To show that the projection of g� is gpar, we note ®rst that (3.7) and (7.2) imply

ð
 Q(m � Ae�) � ð(V m � e�) � ð(l e�),
so that ð
 Q(mg�) � 1. We also have ð
 Q(mgpar) � 1 and therefore ð 

Q[m(g� ÿ gpar)] �, i.e. gpar is the projection of g� onto Hpar.

The last orthogonality property implies that, as expected, the asymptotic variance of the

maximum likelihood estimator is never larger than that of the ef®cient estimator in the

larger model Q �. The variance reduction can be considerable. An extreme case would be

that the transition distributions Qô all have the same invariant distribution. Then the

invariant distribution contains no information at all about the parameter. We had to exclude

this case in Sections 3±6, through the assumption that ðl 2 . 0.

The maximum likelihood estimator is only feasible if the transition distributions Qô are

tractable. Kessler (2000) restricts attention to estimators which are solutions ô � W f
n of

estimating equations of the form Xn

i�1

f ô(X i) � 0, (7:3)

with f ô 2 L2,0(ðô). A Taylor expansion shows that W f
n admits a stochastic expansion

n1=2(W f
n ÿ W) � ÿ(ð _f )ÿ1 nÿ1=2

Xn

i�1

f (X i)� oPn
(1): (7:4)

For regularity conditions we refer to Sùrensen (1999). Here _f is the derivative, with respect

to the parameter, of f ô at ô � W; we suppress the index W. Differentiating ðô f ô � 0 under the
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integral, we obtain ÿð _f � ð(l f ). Together with the martingale approximation (5.3), we can

write the stochastic expansion as

n1=2(W f
n ÿ W) � [ð(l f )]ÿ1 nÿ1=2

Xn

i�1

(Af )(X iÿ1, X i)� oPn
(1): (7:5)

Hence W f
n has asymptotic variance

[ð(l f )]ÿ2 � ð
 Q (Af )2: (7:6)

The asymptotic variance is minimized for the estimator We�
n obtained from the estimating

equation (7.3) with

f � e� � (VA)ÿ1l :

To prove this, we note ®rst that by (7.6) and (3.12), the asymptotic variance of We�
n is

[ð(l e�)]ÿ2 � ð
 Q(Ae�)2 � [ð(l e�)]ÿ1:

Now write

ð(l f ) � ð(V Ae� � f ) � ð
 Q (Ae� � Af ): (7:7)

The Cauchy±Schwarz inequality and (3.12) give

[ð(l f )]2 < ð
 Q(Ae�)2 � ð
 Q(Af )2 � ð(l e�) � ð
 Q(Af )2:

We arrive at the inequality between the asymptotic variances of W f
n and We�

n :

[ð(l f )]ÿ2 � ð
 Q(Af )2 > [ð(l e�)]ÿ1:

A different characterization of the optimal in¯uence function is given in Kessler (2000):

the corresponding in¯uence function is closest to the in¯uence function (ð 

Qm2)ÿ1 m � gpar of the maximum likelihood estimator among all in¯uence functions

[ð(l f )]ÿ1 Af of estimators W f
n with f ô 2 L2,0(ðô). We have just shown that the optimal

in¯uence function is Ae�. Indeed, Ae� is the projection of m into the space

fAf : f 2 L2(ð)g. This follows from (7.7) and

ð
 Q (m � Af ) � ð(V m � f ) � ð(l f ):

The estimating equations (7.3) contain the estimator which would be the maximum

likelihood estimator if the observations were independent, the solution Wl
n ofXn

i�1

l ô(X i) � 0:

The asymptotic variance of Wl
n is, using (3.7),

(ðl 2)ÿ2 � ð
 Q(Al )2 � (ðl 2)ÿ2 � ð(l � VAl ):

This is larger than the asymptotic variance of We�
n since by the Cauchy±Schwarz inequality

and (3.12),

(ðl 2)2 � [ð(l � V Ae�)]2 < ð
 Q (Al )2 � ð
 Q(Ae�)2 � ð
 Q (Al )2 � ð(l e�):
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To calculate the maximum likelihood estimator, the logarithmic derivative mô of the

transition distribution Qô must be tractable. To calculate the estimator We�
n , the function

e� � (VA)ÿ1l must be tractable. The estimator Wl
n requires only the logarithmic derivative

l ô of the invariant distribution ðô.

The estimator Ŵn introduced in Theorem 3 has the same asymptotic variance as We�
n . It

does not however, require knowledge of Qô. Hence it is adaptive in the sense that whatever

the model for the transition distributions, it is asymptotically as good as the estimator We�
n ,

which, in turn, is optimal among solutions of estimating equations
Pn

i�1 f ô(X i) � 0 in the

model fQô: ô 2 Èg. To put it another way, even though We�
n requires knowledge of Qô, it

does not exploit any of the information about ô in the model fQô: ô 2 Èg.
(Analogous results hold for quasi-likelihood models, which are de®ned by parametric

models for the conditional mean and variance of a Markov chain. The maximum quasi-

likelihood estimator requires knowledge of the conditional variance but does not extract any

information from it. Furthermore, one can construct an estimator which is asymptotically as

good but does not use the model for the conditional variance; see Wefelmeyer 1996. This

estimator thus has an adaptivity property analogous to Ŵn.)

8. Discretely observed diffusions

Consider a stationary version of the diffusion process X de®ned by the stochastic differential

equation

dX t � bW(X t)dt � óW(X t)dBt, (8:1)

where B is Brownian motion. For simplicity, we assume again that W is one-dimensional.

Suppose we observe the process at n equidistant time points t0 � 0, . . . , tn � nÄ. The

observations X t1
, . . . , X t n

form a stationary and reversible Markov chain. Its transition

distribution QW(x, dy) is dif®cult to calculate, in general, but its invariant distribution ðW(dx)

is that of the diffusion process and can be given explicitly: the Lebesgue density of ðW is

pW(x) � [CWsW(x)óW(x)2]ÿ1,

with

sW(x) � exp ÿ2

�x

0

bW(y)

óW(y)2
dy

� �
and norming constant

CW �
�

[sW(x)óW(x)2]ÿ1dx:

Estimation of W was ®rst studied for the case when Ä tends to zero with n tending to in®nity;

see Le Breton (1976), Florens-Zmirou (1989), Genon-Catalot and Jacod (1993) and Kessler

(1997). For comparison with our results we must assume that Ä is ®xed. For ®xed Ä, a

computer-intensive approximate maximum likelihood estimator based on numerical

approximation of the transition density was developed in Pedersen (1995a; 1995b). By
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now there is a considerable literature on simpler, inef®cient, estimators. Here we restrict

attention to estimators for which the asymptotic variance can be calculated explicitly. These

are based on two types of estimating equation:Xn

i�1

fW(X ti
) � 0 (8:2)

with ðW fW � 0, see (7.3); and martingale estimating equationsXn

i�1

fW(X tiÿ1
, X ti

) � 0 (8:3)

with QW fW � 0.

The ®rst type was discussed in Section 7 in the context of general parametric Markov

chain models. For fW(x) � l W(x) � _pW(x)=pW(x), we obtain what would be the maximum

likelihood estimator if the observations were i.i.d. This estimator is not ef®cient. Kessler

(2000) shows that the estimator We�
n based on fW � e� de®ned in Theorem 2 is optimal

among solutions of (8.2). If the diffusion model is correct, the estimator Ŵn introduced in

Theorem 3 is asymptotically as good as We�
n . By Theorem 2, the asymptotic variance of Ŵn

(and hence of We�
n ) is [ðW(l We�)]ÿ1, with

ðW(l We�) � ðWl W
2 � 2

X1
j�1

(ÿ1) jðW(l W � QW
jl W):

However, We�
n depends on QW through VA. Hence, if the diffusion model is misspeci®ed, then

We�
n will, in general, be inconsistent, while our estimator remains consistent as long as the

model for ðW is correct.

For solutions W f
n of the second type of estimating equation, (8.3), we obtain a stochastic

approximation similar to (7.4),

n1=2(W f
n ÿ W) � (ðW 
 QW _fW)ÿ1 nÿ1=2

Xn

i�1

fW(X tiÿ1
, X ti

)� oPnW (1): (8:4)

Hence W f
n is asymptotically normal with variance

(ðW 
 QW
_fW)ÿ2ðW 
 QW f 2

W: (8:5)

If we take fW(x, y) � mW(x, y), the logarithmic derivative of the transition density, then

(8.3) gives the maximum likelihood estimator, which is ef®cient if the diffusion model is

correct, and in general better than our estimator Ŵn. But, as noted, mW is often not tractable.

The maximum likelihood estimator exploits the parametric diffusion model fully. Other

choices of fW use less information about the model. A simple class of estimating equation

are the quasi-likelihood estimating equations, based on parametric models for certain

conditional moments. These are also called polynomial estimating equations. The simplest

is the linear estimating equation, with

fW(x, y) � wW(x)[yÿ aW(x)], (8:6)
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where wW(x) is some weight function, and aW(x) � � QW(x, dy)y is the conditional mean of

X ti
given X tiÿ1

� x. In many cases the conditional mean cannot be written explicitly and

must be calculated numerically. This is, however, easier than calculating the maximum

likelihood estimator. The asymptotic variance (8.5) with fW as in (8.6) is minimized for

wW(x) � _aW(x)=vW(x), where vW(x) � � QW(x, dy)[yÿ aW(x)]2 is the conditional variance of

X ti
given X tiÿ1

� x. For this choice of wW, the asymptotic variance is [ðW( _aW
2=vW)]ÿ1. We

refer to Bibby and Sùrensen (1995), and for generalizations to polynomial estimating

equations to Kessler (1995) and Bibby and Sùrensen (1996), and to the reviews of Bibby and

Sùrensen (1997) and Sùrensen (1997). For quasi-likelihood models, see also Wefelmeyer

(1996).

Another class of martingale estimating equations is introduced by Kessler and Sùrensen

(1999). The generator of the diffusion process (8.1) is

LW � 1

2
óW(x)2 d2

dx2
� bW(x)

d

dx
:

An eigenfunction jW(x) with eigenvalue ëW solves LWjW(x) � ÿëWjW(x). We have

(QWjW)(x) � eÿëWÄjW(x) and obtain martingale estimating equations (8.3) with

fW(x, y) � wW(x)[jW(y)ÿ eÿëWÄjW(x)]: (8:7)

Kessler and Sùrensen (1999) obtain optimal linear combinations of a ®nite number of such

estimating equations.

From the form of the asymptotic variances we see that none of the estimators in this

section, excepting the (intractable) maximum likelihood estimator, is always superior to our

estimator. Some are simpler to calculate than ours, though none is straightforward. Unlike

our estimator, they break down if certain features of the diffusion model are misspeci®ed.
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