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The discrete-time ®ltering problem can be seen as a dynamic generalization of the classical Bayesian

inference problem. For practical applications it is important to identify ®ltering models that,

analogously to the linear Gaussian model (Kalman ®lter), admit a ®nite-dimensional ®lter or,

equivalently, a ®nite-dimensional family of ®lter-conjugate distributions. Our main purpose here is to

give suf®cient conditions for the existence of ®nite-dimensional ®lters. We use a method, based on the

Laplace transform, which is also constructive.
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1. Introduction

The object of our study are partially observable systems in discrete-time, namely

fX n, Yngn�0,1,..., where fX ng represents the unobservable component, also called a latent

state process, while fYng is the observable component. More precisely, the model is as

follows.

Let I and J be measurable subsets of some ®nite-dimensional real linear spaces with

0 2 J . Consider a probability kernel F(x, dy) from I to J and a sequence fPngn>1 of

transition kernels from I to I together with a probability measure Ð0 on I . Consider a non-

homogeneous Markov chain fX n, Yng with state space I 3 J , initial distribution

Ð0(dx)ä0(dy), where ä0 denotes the point mass at zero, and transition kernel from (x, y)

to (x9, y9), between the times nÿ 1 and n, given by Pn(x, dx9)F(x9, dy9). The marginal

process fX ngn>0 forms a non-homogeneous Markov chain with state space I , initial

distribution Ð0 and kernel Pn, and describes the evolution of the latent state process. On

the other hand, the marginal process fYngn>0, with Y0 � 0, describes the observations and

Yn is, conditionally on Xn, independent of its own past Y0, Y1, . . . , Ynÿ1 and of that of the

latent state process as well.

Given such a partially observable model, we shall consider the ®ltering problem that

consists in determining, for each period n, the conditional distribution of the latent state X n,
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given the past and current observations yn
0 � (y0, . . . , yn). This problem is a natural

dynamic generalization of the classical Bayesian inference problem, where the latter is

obtained as a particular case when PfX 0 � X1 � . . . � Xng � 1 for all n > 1. It can also

be viewed as a generalization of the estimation problem in dynamic linear models (see, for

example, West et al. 1985).

For convenience of presentation we shall consider the case when I , J � R and assume

that all distributions we shall be dealing with are absolutely continuous with respect to

Lebesgue measure. The elements characterizing the partially observable process fX n, Yng
are then: ð0(x), the (initial) density of x0; pn(x9jx), the transition density in period n; and

f (yjx), the observation density. On the other hand, the ®lter solution corresponds, for

n � 1, 2, . . . , to the conditional densities of the latent state, given the observation history

ðn(xjyn
0 ), also called ®ltering densities.

Analogously to what is the main tool in Bayesian statistical inference, namely Bayes's

formula, for a discrete-time ®ltering problem the main tool is the recursive (dynamic) Bayes

formula

ðn(x9jyn
0 ) / f (ynjx9)

�
I

pn(x9jx)ðnÿ1(xjynÿ1
0 ) dx: (1)

To actually perform the computations required in (1), it is important to have partially

observable models admitting so-called ®nite-dimensional ®lters, where, in every period n, the

®lter density ðn(xjyn
0 ) belongs to a same family of densities, parametrized by a ®nite-

dimensional parameter. By analogy with Bayesian statistics and generalizing the situation in

the classical linear Gaussian models (Kalman ®lter model; see, for example, Liptser and

Shiryaev 1977), we give the following de®nition:

De®nition 1.1. Let the pair f f (yjx), ( pn(x9jx)n>1)g be given. Ã :� fãè(x)gè2È is a family of

densities ®lter-conjugate to f f (yjx), ( pn(x9jx)n>1)g if there exists Ö : È 3 J ! È such that,

for all è 2 È, y 2 J , n � 1, 2, . . . ,

f (yjx9)

�
I

pn(x9jx)ãè(x) dx / ãÖ(è, y)(x): (2)

If a ®lter-conjugate family exists for a pair f f (yjx), ( pn(x9jx)n>1)g then, if the initial

density ð0(x) belongs to this ®lter-conjugate family, by (1) and (2) at every step the ®lter

density ðn(xjyn
0 ) also belongs to this family. Furthermore, the updating of the ®lter density

from one step to the next can then be accomplished by a simple transformation of the

indexing parameter è, that is, by the mapping Ö(è, y) : È 3 J ! È.

A ®nite-dimensional ®lter corresponds to having È ®nite-dimensional.

In Bayesian inference it is well known (Barndorff-Nielsen 1978; Barndorff-Nielsen and

Pedersen 1968) that, under regularity assumptions, f f (yjx)g admits a conjugate family of

®nite order if and only if it is an exponential family, and in this case the conjugate family

is also exponential. Correspondingly, for discrete-time ®ltering problems we have (Ferrante

and Runggaldier 1990; Sawitzki 1981) that, under regularity assumptions, f f (yjx),

( pn(x9jx)n>1)g admits a ®nite-dimensional ®lter-conjugate family only if f f (yjx)g is an

exponential family. In this case ðn(xjyn
0 ) is an exponential family as well.
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The purpose of the paper is to study the following problem: given f (yjx) belonging to an

exponential class, determine transition kernels pn(x9jx) such that f f (yjx), ( pn(x9jx)n>1)g
admits a ®nite-dimensional ®lter (a ®nite-dimensional ®lter-conjugate family).

To the best of our knowledge, only necessary conditions on the transition kernels have so

far been obtained (see Ferrante 1993). In this paper we present a method that, in addition to

guaranteeing existence, allows us also to determine the kernels explicitly. Our problem is

thus in a sense the inverse of the usual ®ltering problem where, given an evolution model

for (X n, Yn), one determines the ®lter distribution and its dynamics. In fact, given a model

for Yn, we ®rst choose a family of ®lter distributions, namely the natural conjugate family

(see (6) below). Having assigned the ®lter dynamics, we then determine a model for X n so

that the ®ltering problem for the pair (Xn, Yn) has the solution in the given family. In this

form our problem can also be seen as a ®lter analogue of the Bayesian statistics problem

studied in Bar-Lev et al. (1994). Finally, we mention that a speci®c constructive approach,

allowing ®nite-dimensional ®lters to be obtained in some cases, can be found in Ferrante

and Vidoni (1998) (see also references therein).

2. Main results

Motivated by the necessary conditions for the existence of ®nite-dimensional ®lters as

recalled in Section 1, we specialize to the case where F � fF(x, dy)g constitutes a natural

exponential family (see Diaconis and Ylvisaker 1979) of order 1, that is, where the kernel

F(x, dy) has a density of the form

f (yjx) � a(x)b(y)exy, (3)

in which b(y) is any positive function de®ned on J. Consequently, we let

I :� x 2 R

�����
J

exyb(y) dy ,�1
( )

: (4)

Let, furthermore, M be the subset of points (á, z) in R 3 R such that

ëÿ1(á, z) :�
�

I

[a(x)]áexz dx ,�1: (5)

It then follows immediately that the family

G :� fga,z(x) � ë(á, z)a(x)áexz; (á, z) 2 Mg (6)

is a natural conjugate family of F , that is, for x viewed as a parameter.

We shall make the following assumption:

Assumption 1. The set M contains a rectangle M � A 3 Z such that

· á 2 A) á� 1 2 A,

· z 2 Z, y 2 J ) z� y 2 Z.
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Fix two functions ö : A! A, ø : M ! Z and, given (á0, z0) 2 M as well as a sequence

y1, y2, . . . 2 J , de®ne recursively, for n � 1, 2, . . . ,

án � ö(ánÿ1)� 1, zn � ø(ánÿ1, znÿ1)� yn: (7)

By Assumption 1 we have án 2 A, zn 2 Z, for all n. De®ne, moreover,

ôö,ø(á, z) :� ë(ö(á), ø(á, z))

ë(á, z)
, (8)

with ë as in (5).

Theorem 2.1. Suppose that, for all á 2 A, Ká : I 3 I ! R� is a kernel satisfying�
I

Ká(x, x9) exz dx � ôö,ø(á, z)ex9ø(á,z), for all x9 2 I , z 2 Z: (9)

Then:

(i) pá(x9jx) :� ([a(x9)]ö(á)=[a(x)]á)Ká(x, x9) is a transition kernel from I to I for all

á 2 A.

(ii) If the initial distribution Ð0 has a density gá0,z0
2 G ( for some (á0, z0) 2 M),

y1, y2, . . . are the actual observations and (án, zn) are as in (7) then, letting

pn(x9jx) � pá nÿ1
(x9jx), (10)

the family G in (6), which is the natural conjugate family of F , is a ®lter-conjugate family

according to De®nition 1.1. Thus, for all x 2 I and for all n > 1,

ðn(xjyn
1 ) � gá n,z n

(x): (11)

Proof. (i) We must show that�
I

pá(x9jx) dx9 � 1, 8á 2 A, 8x 2 I , (12)

or, equivalently, �
I

[a(x9)]ö(á) Ká(x, x9) dx9 � [a(x)]á, 8x 2 I : (13)

By (9) and the de®nitions of ë in (5) and of ô in (8), the Laplace transform of the left-hand

side of (13) is given by�
I

�
I

[a(x9)]ö(á) Ká(x, x9) dx9

� �
ezx dx � ëÿ1(á, z): (14)

Equation (13) now follows from the uniqueness of the inverse of the Laplace transform.

(ii) From the form of F and G (see (3) and (6)), and having put (see (10)) pn � pá nÿ1
,

it immediately follows that G is ®lter-conjugate in the sense of De®nition 1.1. Indeed,

relation (2) holds with È � M , è � (á, z), Ö(á, z) � (ö(á)� 1, ø(á, z)� y), ãè � gá,z.

214 W.J. Runggaldier and F. Spizzichino



Relation (11) then follows immediately by induction on n � 0, 1, . . . , taking into account

the dynamic Bayes formula (1) (see also the comment after De®nition 1.1). h

The process Èn :� (án, Z n), where án and Z n satisfy (7) with the random sequence

Y1, Y2, . . . replacing a speci®c realization y1, y2, . . . , will be called (see Van Schuppen

1979) a ®lter process. This process depends on the choice of the functions ö and ø which

(see Bather 1965) we shall also call connecting functions.

Given the family F and, therefore, its natural conjugate family G , every choice of the

connecting functions determines a speci®c sequence of transition densities pn � pá nÿ1

according to Theorem 2.1. Notice that this implies that the Markov chain fX ng is in

general non-homogeneous. Note also that there may not exist for every choice of the

connecting functions a solution of the crucial equation (9). The solvability of (9) hinges

upon suf®cient conditions on the connecting functions such that the right-hand side in (9) is

indeed the Laplace transform of a positive measure for any á 2 A, x9 2 I . In what follows

we study the solvability of (9) in each of the two special cases (a) ø(á, z) � c(á)z, (b)

I � [0, �1). The peculiarity of these two cases stems from the following fact. The kernels

Ká(x, x9) in the left-hand side of (9) can be obtained by means of a convolution integral,

having applied the inverse Laplace transform separately to each of the two factors ô(á, z)

and expfø(á, z)x9g in the right-hand side of (9). The two special cases allow the

invertibility of the second factor expfø(á, z)x9g to be studied more easily.

For case (a) we have:

Proposition 2.2. Given ö(á) and c(á), assume that, for all á 2 A, we can ®nd vá :

R! [0, �1) satisfying the following conditions:

(i) Denoting Vv :� fx 2 Rjv(x) . 0g, we have Vvá � c(á) . I � I :
(ii)

�
Vvá

vá(x)exz dx � ôö,ø(á, z), for all á 2 A, z 2 Z.

Then, for all á 2 A,

Ká(x, x9) � vá(xÿ c(á)x9) (15)

satis®es equation (9).

Proof. We have�
I

Ká(x, x9)exz dx �
�

I\fV vá�c(á)x9g
vá(xÿ c(á)x9)exz dx

�
�

I\fVvá�c(á)x9gÿc(á)x9

vá(î) expf(î� c(á)x9)zg dî

� expfc(á)x9 . zg
�

I\fVvá�c(á)x9gÿc(á)x9

vá(î)eîz dî:

Now, from condition (i), I \ fV vá � c(á)x9g � V vá � c(á)x9, for any x9 2 I, whence I \
fV vá � c(á)x9g ÿ c(á)x9 � V vá (see also Spizzichino 1990, Lemma 2.2).
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The proposition then follows by condition (ii) and by taking into account that, in the case

ø(á, z) � c(á)z, the right-hand side of equation (9) is just ôö,ø(á, z)ex9c(á)z. h

For case (b), since I � [0, �1), we assume Z � (ÿ1, 0], ø(á, 0) � 0, for all á 2 A,

and use the notation (where, for simplicity we drop, the subscripts ö and ø from ~ô)

~ø(á, z) :� ÿø(á, ÿz), ~ô(á, z) :� ë(ö(á), ~ø(á, z))

ë(á, ÿz)
:

Proposition 2.3. Let ö(á) and ~ø(á, z) be such that:

(i) for all á 2 A, ~ø(á, z) possesses partial derivatives ~ø(n)(á, z) of all orders with

respect to z and the partial derivative ~ø(1)(á, z) is completely monotone, that is,

(ÿ1)n�1 ~ø(n)(á, z) > 0, n > 1;

(ii) ~ô(á, z) possesses partial derivatives ~ô(n)(á, z) of all orders with respect to z, for all

á 2 A, and, for some C . 0,

0 <
(ÿ1)n~ô(n)(á, z)

n!
< C:

Then, for all á 2 A, there exists a probability measure Pá over [0, �1) and a bounded

function vá, such that

Ká(x, x9) �
�1

0

vá(xÿ u)Px9�
á (du) (16)

satis®es equation (9), where Pr� denotes the rth convolution power of P.

Proof. It is a well-known result (see Feller 1970, Ch. 13) that condition (i), together with

ø(á, 0) � 0, characterizes expfÿ ~ø(á, t)g as the Laplace transform of an in®nitely divisible

probability distribution Pá over [0, �1). Then, under (i),

expfÿ ~ø(á, z) . x9g � expfø(á, ÿz) . x9g
is the Laplace transform of the probability distribution (Pá)x9�.

On the other hand (Feller 1970, Ch. 13), (ii) is a necessary and suf®cient condition for
~ô(á, z) to be the ordinary Laplace transform of a non-negative bounded function vá :

[0, �1)! (0, �1). Then, for all á 2 A and for all z 2 Z, the Laplace transform of the

function Ká(x, x9) de®ned by (16) is given by the product ~ô(á, z) � expfø(á, z) . x9g, that is,

equation (9) holds. h

When both cases (a) and (b) hold simultaneously, one can obviously obtain the kernels

Ká(x, x9) (for a given choice of the functions ö and c) by means of either Proposition 2.2

or Proposition 2.3. In this case, conditions (i) in Proposition 2.2 is trivially satis®ed for any

function vá vanishing outside (0, �1). Condition (ii) in the same Proposition holds (with

Z � (ÿ1, 0]) if and only if ~ô(á, z) is completely monotone (Feller 1970, Ch. 13).
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Furthermore, condition (i) in Proposition 2.3 is trivially veri®ed in that ~ø(á, z) � c(á) . z

and, indeed, Pá is then the Dirac measure with mass concentrated in c(á).

3. Examples

Example 1. As an example of the application of Proposition 2.2 (case (a)), consider the

observation model

Yn � Xn � Wn (17)

with Wnf g independent and identically distributed standard Gaussian, so that F is de®ned by

f (yjx) � 1������
2ð
p exp ÿ x2

2

� �
exp ÿ y2

2

� �
expfÿxyg, (18)

whence a(x) � expfÿx2=2g and the natural conjugate family is that of the Gaussian den-

sities. We therefore take I � J � R, A � (0, �1), Z � R, which trivially ensures the

validity of Assumption 1.

We now choose the (non-negative) function ö(á) arbitrarily and put ø(á, z) � c(á) . z,

with c(�) : A! R an arbitrary function satisfying (see (20) below)

jc(á)j,
����������
ö(á)

á

r
: (19)

With such a choice, we have ë(á, z) � (á=2ð)1=2 expfÿz2=2ág, whence

ôö,ø(á, z) �
����������
ö(á)

á

r
expfÿ1

2
Q(á) . z2g,

having put

Q(á) :� ö(á)ÿ ác2(á)

áö(á)
, (20)

which is positive by (19). It is thus easily seen that

vá(x) :� 1������
2ð
p

�������������
ö(á)

áQ(á)

s
exp ÿ x2

2Q(á)

( )
(21)

satis®es condition (ii) of Proposition 2.2, whereas condition (i) is trivially satis®ed in that

I � R. Then Ká(x, x9) :� vá(xÿ c(á)x9) satis®es equation (9) and from Theorem 2.1 we

obtain, as the corresponding transition kernel,

pá(x9jx) � [a(x9)]ö(á)

aá(x)
vá(xÿ c(á)x9)

�
�������������������
ö(á)

2ðáQ(á)

s
exp ÿ x92

2
ö(á)� c2(á)

Q(á)

 !( )
exp ÿ x2

2

1

Q(á)
ÿ á

� �( )
exp

x . x9 . c(á)

Q(á)

� �
:
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Taking into account the de®nition of Q(á) in (20), after some manipulations we obtain

that pá(x9jx) coincides with the density function of a Gaussian distribution with mean value

(ác(á)=ö(á))x and variance áQ(á)=ö(á), which corresponds to a state-evolution model of

the form

X n�1 � C(án)Xn � ó (án)Vn�1 (22)

with

C(án) � ánc(án)

ö(án)
, ó (án) �

������������������
ánQ(án)

ö(án)

s
,

where fVng are independent and identically distributed standard Gaussian random variables.

The ®ltering distribution at time n is ðn � gá n,z n
, which coincides with the Gaussian

density having mean and variance respectively given by

mn � zn

án

, s2
n �

1

án

: (23)

As a special case note that, letting, for some positive constants C and ó ,

c(á) � C

áó 2 � C2
, ö(á) � á

áó 2 � C2
,

relation (22) becomes

X n�1 � CX n � óVn�1,

which, together with the observation model (17), gives the classical linear Gaussian ®ltering

model (in its time-homogeneous form). The corresponding evolution of the ®lter is then given

by

án � ánÿ1

ánÿ1ó 2 � C2
� 1, zn � C

ánÿ1ó 2 � C2
. znÿ1 � yn,

which corresponds to the familiar Kalman ®lter, where (see Liptser and Shiryaev 1977)

mn � C . mnÿ1 � (ó 2 � C2s2
nÿ1)yn

1� ó 2 � C2s2
nÿ1

, s2
n �

ó 2 � C2s2
nÿ1

1� ó 2 � C2s2
nÿ1

:

The above results can be generalized (see D'Ambrosio et al. 1998) to partially observable

models of the form

X n�1 � an(Y n
0 )X n � bn(Y n

0 )Vn�1,

Yn � çn(Y n
0 )X n � æn(Y n

0 )W n,
(24)

which are known from the literature as conditionally Gaussian models (see Liptser and

Shiryaev 1977).

Example 2. We now turn to an application of Proposition 2.3, considering the case when

I � [0, �1) and the connecting function ø(á, z) is nonlinear. We start from an observation

model de®ned by
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f (yjx) � 1

Ã(c)
xc ycÿ1 expfÿy . xg, y . 0, c . 0, (25)

and, since this implies a(x) � xc, the natural conjugate family G is the family of gamma

distributions

gá,z(x) / xcá expfzxg, á 2 A � [0, �1), z 2 Z � (ÿ1, 0):

As a possible function ~ø(á, z) satisfying condition (i) of Proposition 2.3, we take

~ø(á, z) � (ÿ2z)1=2:

With this choice, letting for simplicity c � 1 and putting ö(á) � 2áÿ 1, we have

~ôö,ø(á, z) � Ã(á� 1)

Ã(2á)
2á(ÿz)ÿ1 (26)

(details of the calculations here and below can be found in D'Ambrosio et al. 1998). This

shows that condition (ii) of Proposition 2.3 is satis®ed as well.

The kernels Ká(x, x9) are then given by (16), where the measure Pá does not depend on

á and is the in®nitely divisible distribution admitting the Laplace transform expfÿ(2t)1=2g,
namely it is the stable distribution with characteristic exponent 1

2
. On the other hand, vá

must be the inverse Laplace transform of ~ô in (26), which gives vá(î) � Ã(á� 1)=
Ã(2á)2á1fî. 0g and therefore (see Feller 1970, p. 173)

Ká(x, x9) �
�1

0

vá(xÿ u)Px9�
á (du)

� Ã(á� 1)

Ã(2á)
. 2á
�x

0

1������
2ð
p x9

u3=2
. exp ÿ (x9)2

2u

� �
du

� Ã(á� 1)

Ã(2á)
2á�1 1ÿÖ

����
x9

x

r !" #
, (27)

where Ö is the standard Gaussian distribution function. By Theorem 2.1, and recalling that

we have put c � 1, ö(á) � 2áÿ 1,

pá(x9jx) � (x9)2áÿ1

xá
Ká(x, x9) � Ã(á� 1)

Ã(2á)

2á�1(x9)2áÿ1

xá
1ÿÖ

����
x9

x

r !" #
: (28)

An example, involving the same observation model (25) but with a linear connecting

function ø(á, z) � c(á) . z and leading to a transition density pá(x9jx) of the beta type can

be found in D'Ambrosio et al. (1998, Section 4.2.1). This latter result is therefore an

example where both cases (a) and (b) hold simultaneously.

We remark, ®nally, that completely different observation models may lead to the same

®lter-conjugate family and thus to the same possible families of transition densities pá(x9jx).

In D'Ambrosio et al. (1998, Remark 4.1) an example is given of an observation model,

different from (25), leading also to transition densities pá(x9jx) of the beta type.
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4. Additional remarks

Our attention focuses on the case when the ®lter-conjugate family coincides with the family

G in (6), which is the natural conjugate of F given by the densities in (3). This simpli®es

the treatment of the main problem. In particular, it implies that the prediction densities,

namely those given by

qá,z(�) �
�

I

pn(�jx)gá,z(x) dx, (29)

also belong to the family G . This is, however, by no means the only possible case where one

can obtain ®nite-dimensional ®lters (see Bather 1965; Spizzichino 1990). On the other hand,

our approach leads to a workable methodology, namely one that is based on the use of the

inverse Laplace transform.

In our treatment the role of the two parameters á and z in the conjugate family G is not

symmetrical. In fact, z plays the role of the argument in the Laplace transform. Note,

however, that we have chosen natural exponential families of distributions for the

observations, namely f (yjx) / a(x)ex� y (see (3)); all our results can straightforwardly be

extended to generalized exponential families of the form f (yjx) / a(x)eq(x)� y. This would

allow the roles of á and z in the conjugate family G to be reversed. In fact, putting

~a(x) :� expfq(x)g, ~q(x) :� logfa(x)g, one has equality of the familes fgá,z(x) /
a(x)áez�q(x)g and f ~gá,z(x) / ~a(x)zeá� ~q(x)g. As a consequence, for each model admitting a

®nite-dimensional ®lter one can construct a dual model with the same property. An example

can be found in D'Ambrosio et al. (1998, Section 4.3).
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