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The distribution Má of the mean Ãá of a Dirichlet process on the real line, with parameter á, can be

characterized as the invariant distribution of a real Markov chain Ãn. In this paper we prove that, if á
has ®nite expectation, the rate of convergence (in total variation) of Ãn to Ãá is geometric. Upper

bounds on the rate of convergence are found which seem effective, especially in the case where á has

a support which is not doubly in®nite. We use this to study an approximation procedure for Má, and

evaluate the approximation error in simulating Má using this chain. We include examples for a

comparison with some of the existing procedures for approximating Má, and show that the Markov

chain approximation compares well with other methods.
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1. Introduction

In this paper we investigate the rate of convergence (in total variation) of a particular Markov

chain Ãn to the mean functional Ãá of a Dirichlet process Pá on R with parameter á, and

then show that by drawing from the distributions of Ãn for large n, we can obtain an effective

method of simulating from the distribution Má of Ãá itself.

To de®ne this process, we let á be a ®nite measure on R (endowed with the Borel ó-®eld

B (R)), and write a :� á(R) for the total mass of á. We write á0(:) � á(:)=a for the

probability measure found by normalizing á. The Dirichlet process on (R, B (R)) with

parameter á is then (Ferguson 1973) a random probability measure Pá such that, for any

®nite measurable partition (A1, . . . , Ak) of R, á(A j) . 0, j � 1, . . . , k, the distribution of

(Pá(A1; ù), . . . , Pá(Ak ; ù)) is Dirichlet with parameter (á(A1), . . . , á(Ak)), k > 2.

We write Ãá �
�

xPá(dx) and denote its distribution, and also its distribution function

(df), by Má. Denote the smallest interval containing the support of á by [L, U ],

ÿ1 < L , U <1: that is,

á((ÿ1, L) [ (U , 1)) � 0, (1)

and no smaller closed interval has this property. Of course, if L � ÿ1, the interval is
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denoted by (ÿ1, U ), and analogously if U � �1. Although some integral transforms and

the df itself have been analytically determined (see Cifarelli and Regazzini 1990; Regazzini

et al. 2000), the distribution Má is not easy to evaluate numerically.

In order to simulate effectively from Má, we will demonstrate that we can use a char-

acterization of the law of a Dirichlet process given by Feigin and Tweedie (1989) to develop

a Markov chain Monte Carlo algorithm and that, using this, we can ®nd analytic bounds on

the approximation error. We restrict our attention to Ãá. Note that our results can be applied

to more general linear functionals
�

g(x)Pá(dx) of a Dirichlet process on an arbitrary Polish

space (X , B (X )), g : X ! R, since this random variable has the same distribution as Ãá g ,

where á g(A) � á(gÿ1(A)), A in B (R).

The Markov chain characterization is as follows. Let (Xn, Yn)n>1 be a sequence of

independent and identically distributed vectors, de®ned on some probability space (Ù, F , P),

such that Xn and Yn are independent, with Xn � á0, and Yn � Beta(a, 1), for all n � 1, 2 . . ..
If äx denotes the measure degenerate at x, P0 is any probability on (R, B (R)) and

Pn � (1ÿ Yn)äX n � Yn Pnÿ1, n > 1, (2)

then Feigin and Tweedie (1989) show that fPn, n > 0g is a Markov chain whose invariant

distribution is the law of a Dirichlet process on (R, B (R)) with parameter á. Moreover, if

Ãn :� � xPn(dx), so that

Ãn � (1ÿ Yn)Xn � YnÃnÿ1, n > 1, (3)

then fÃn, n > 0g is a Markov chain with real states, and it is shown in Theorem 2 of Feigin

and Tweedie (1989) that under the condition�
R

log(1� jxj)á0(dx) ,1, (4)

the chain Ãn has invariant distribution Má, the law of Ãá.

One of our goals is to show that, if Pn(x, A) � P(Ãn 2 AjÃ0 � x), then, provided� jxjá0(dx) ,1, we have, for some r, 1,

kPn(x, :)ÿMák, R(x)rn, 8x 2 R: (5)

Hence Má can be estimated by generating from Ãn, with n ®xed, and the approximation

error between the empirical df of a sample from Ãn and the df Má decreases geometrically.

A second goal is then to ®nd estimates of r that can be used to bound that approximation

error.

We wish to approximate the df Má of Ãá, using the empirical distribution of a sample of

size k from the nth-step distribution of the approximating Markov chain Ãn, starting from

an appropriate point x. Denote by M n,x(:) and M n,x
k (:) the df of Ãn and the empirical df of

a sample of size k from the distribution of Ãn given Ã0 � x, respectively. Then we have, for

any ®xed n,

sup
t2R

jM n,x
k (t)ÿMá(t)j < sup

t2R

jM n,x
k (t)ÿM n,x(t)j � sup

t2R

jM n,x(t)ÿMá(t)j:

To handle the ®rst term, we could use (for example) the Dvoretzy±Kiefer±Wolfowitz
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inequality. Indeed, if F is any df on R, and Fk is the empirical distribution of a sample of

size k from F, then this inequality states that

P sup
x

jFk(x)ÿ F(x)j, s���
k
p

� �
> 1ÿ 58eÿ2s2

, s . 0 (6)

(see, for instance, Ser¯ing 1980). Choosing, for example, s � 2:1, we have a probability

greater than 0.99 of the ®rst term being less than 2:1=
���
k
p

, which is within 0.01 for

k � 50 000, and within 0.03 for k � 5000.

The second term on the right is obviously less than kPn(x, :)ÿMák, which can be

bounded as in (5) under appropriate circumstances: the goal of the next several sections is

to develop this bound, which will then dictate the distribution from which we will draw the

50 000 or 5000 samples.

A number of other approximation procedures have recently been proposed in the lit-

erature. Muliere and Secchi (1996) suggest a bootstrap procedure, which they call a `proper

Bayesian bootstrap'. Guglielmi (1998) proposes a more `classical' approximation technique:

the df Má of Ãá is approximated by the df of the mean of a different Dirichlet process

whose parameter is supported on a ®nite number of points. This new measure is obtained

from á by a `truncation and discretization' procedure, and the approximation error in the

supremum metric is determined in Guglielmi (1998). In this case, the approximating df is

simple enough to be numerically computed, thanks to the ®niteness of the support. See

Regazzini et al. (2000, Section 6) for an updated version of this approximation technique.

Finally, a method that is somewhat similar to that which we propose is given by Muliere

and Tardella (1998). Rather than using the Markov chain Pn in (2), their technique is based

on a different constructive de®nition of a Dirichlet process by Sethuraman (1994). He shows

that Pá can be viewed, for all ù, as the random probability measureX1
i�1

pi(ù)äXi(ù)(:), (7)

where p1 � 1ÿ Y1, pj � (1ÿ Y j)Y jÿ1 � � � Y1, j > 2, X j and Y j are independent random

variables, with X j � á0 and Y j � Beta(a, 1), for all j. Based on this, Muliere and Tardella

(1998) de®ne a random probability measure På(:, ù) that is the sum of nå(ù) terms in the

series (7) (plus a normalizing random factor), where nå is a random variable. They generate

independent random draws from På(:, ù) and approximate the distribution of a functional of

Pá via the empirical df obtained by taking functionals of the observed På(:, ù). The same

idea of approximating the in®nite series representing a Dirichlet process by a ®nite random

sum appears in Florens and Rolin (1994), where the authors suggest stopping the sum at

some level, ®xed in advance, as well as in Gelfand and Kottas (1999). However, the use of

the random stopping time nå introduces more variability into the algorithm. We note that

Muliere and Tardella (1998) consider z-quantile functionals, as well as linear functionals of

Pá.

This paper is organized as follows. In Section 2 we present some basic de®nitions of the

theory of Markov chains with general state space and the characterization of the law of a

Dirichlet process as the invariant distribution of the Markov chain Pn. Sections 3±4 contain

The law of the mean of a Dirichlet process 575



our main result: the rate of convergence of Ãn and the determination of the approximation

error. Numerical applications are illustrated in Section 5.

2. The approximating Markov chain

We will use results recently developed for Markov chains taking real (and indeed general

state-space) values: for de®nitions not given below, see Nummelin (1984) and Meyn and

Tweedie (1993).

We consider a Markov chain fÖn, n > 0g with state space X , X being a Borel subset

of R, not necessarily countable, endowed with ó-algebra B (R) \X . Such a Markov chain

Ön, with transition probabilities Pn(x, A) � P(Ön 2 AjÖ0 � x), n > 0, is called Harris

ergodic if and only if there exists a probability measure ð on (X , B (R) \X ), called an

invariant or limiting distribution, such that

lim
n!1kPn(x, :)ÿ ðk � 0, 8x 2 X ;

here kP1(:)ÿ P2(:)k � supA2B (R)jP1(A)ÿ P2(A)j denotes the total variation distance between

two probability measures.

A Harris ergodic chain Ön with invariant distribution ð is said to be geometrically

ergodic, or to converge geometrically, if there exist 0 , r, 1 and a non-negative function R

on X with
�

R(x)ð(dx) ,1, such that

kPn(x, :)ÿ ðk < R(x)rn, 8x 2 X :

The chain is said to be uniformly ergodic, or to converge uniformly, if

sup
x

kPn(x, :)ÿ ðk ! 0, n!1,

or, equivalently, if there exist 0 , r, 1 and a positive constant R independent of x, such that

kPn(x, :)ÿ ðk < Rrn, 8x 2 X :

We shall see below that the Feigin±Tweedie chain is, under suitable conditions, either geo-

metrically or even uniformly ergodic. To prove this we need the idea of small sets and drift

functions.

A set C is called small if there exist n0 > 1, å. 0 and a probability measure j on

(R, B (R)) such that

Pn0 (x, A) > åj(A), 8A 2 B (R), 8x 2 C:

The chain Ön satis®es the geometric Foster±Lyapunov drift condition if there exist a

function V : R 7! [1, 1), a small set C and constants b ,1, 0 , ë, 1, such that, for all x

in X ,

PV (x) :�
�

P(x, dy)V (y) < ëV (x)� bI C(x): (8)
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When (8) holds then the chain is known to be geometrically ergodic (see Meyn and Tweedie,

1993, Chapter 15).

Finally, we say that a real-valued chain Ön is stochastically monotone if x 7! P

(Ön , sjÖ0 � x) is a non-increasing function for any n > 1 and any s 2 R.

The key results for the chain Ãn are the following.

Theorem 1. (i) The chain Ãn is a stochastically monotone Markov chain.

(ii) If (4) holds, then the chain is Harris ergodic with limiting distribution Má.

(iii) If, further,

EjX1j �
�

R

jxjá0(dx) ,1, (9)

then Ãn is geometrically ergodic.

(iv) If the support of á is bounded then the chain is uniformly ergodic.

Proof. (i) We ®rst prove that Ãn is stochastically monotone. We will let P(z, A) :�
P(Ãn 2 AjÃnÿ1 � z), z 2 R, A 2 B (R) denote the transition kernel of Ãn, and choose any

z1 , z2, s 2 R. Then

P(z1, (ÿ1, s)) � P(Ã1 , sjÃ0 � z1) � P((1ÿ Y1)X1 � Y1z1 , s)

> P((1ÿ Y1)X1 � Y1z2 , s) � P(z2, (ÿ1, s)):

(ii) Next we consider the Harris ergodicity of the chain. This was proved by Feigin and

Tweedie (1989) under (4). It is not obvious from their proof, however, that the limiting

measure is Má, and we now clarify this. As in (1) of Feigin and Tweedie (1989), Pá

satis®es the distributional equality

Pá � (1ÿ Y )äX � YPá,

where X � á0, Y � Beta(a, 1). Taking expectations, we have

Ãá � (1ÿ Y )X � YÃá (10)

also. From (10) it is immediate that the law of Ãá is invariant for the chain Ãn, and the

uniqueness of this invariant measure for a Harris ergodic chain then shows that the limit is

Má as required.

(iii) Next, we turn to the question of geometric ergodicity. Under (9), we shall show

that Ãn satis®es the Foster±Lyapunov condition for V (x) � 1� jxj. Note ®rst that

PV (x) � E[1� j(1ÿ Y1)X1 � Y1xj]
< 1� E(1ÿ Y1)EjX1j � jxjEY1

� 1� EjX1j
a� 1

� a

a� 1
jxj:

Therefore, we must ®nd a set C such that
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1� EjX1j
a� 1

� a

a� 1
jxj < ë(1� jxj)� bI C(x): (11)

Now, if C � [ÿK(ë), K(ë)], where

K(ë) :� 1ÿ ë� EjX1j=(a� 1)

ëÿ a=(a� 1)
, (12)

then (11) holds for all

ë 2 a

a� 1
, 1

� �
, b > 1ÿ ë� EjX1j

a� 1
: (13)

To show that the chain is geometrically ergodic we need to establish that the set C �
[ÿK(ë), K(ë)] is small. This is essentially used in proving Harris ergodicity in Feigin and

Tweedie (1989): they rely on the fact that Ãn is weak Feller with Lebesgue measure as its

irreducibility measure, so all compact sets are test sets for the drift conditions from Tweedie

(1975).

However, to establish analytic upper bounds on the rate of convergence, we need a

constructive proof of the fact that compact sets are small, and we need the actual values in

the minorization. We carry out this step in the next section.

(iv) Finally, we show that the chain is essentially uniformly ergodic when the support of

á is bounded. Since K(ë)!1 for ë! a=(a� 1), in this case it is possible to choose ë
such that C � [ÿK(ë), K(ë)] � [L, U ], where [L, U ] is the support of á as in (1).

Moreover, by construction, if the chain Ãn starts from x 2 C � [L, U ], it can never leave

C; in fact any superset of [L, U ] is absorbing, from (3). Since we have that such bounded

intervals are small, if we restrict the chain to this absorbing set the whole space is small.

We therefore have from Chapter 15 of Meyn and Tweedie (1993) that on this absorbing set

the chain is uniformly ergodic. h

Remark. To conclude this section, we observe that the choice of the function V is linked to

condition (9). Indeed, if we consider V (x) � 1� jxj as test function in the Foster±Lyapunov

condition, (9) must be assumed; conversely, if we assume (9), then the most `natural' test

function is exactly 1� jxj.
It is not known if (Ãn)n is still geometrically ergodic if, instead of (9), one assumes only

(4). We conjecture that in this case the chain is no longer geometrically ergodic.

To support this conjecture, we note that when (9) does not hold we can no longer use

V (x) � 1� jxj as the test function in the geometric Foster±Lyapunov condition. The natural

test function under (4) is V (x) � 1� log(1� jxj): but for this function, (8) typically does

not hold. Indeed, a necessary condition for (8) to hold is

PV (x) < ëV (x)� B, for some 0 , ë, 1 and B ,1 (14)

(see Meyn and Tweedie, 1993, Lemma 15.2.8). But when V (x) � 1� log(1� jxj), (14) is

equivalent to assuming that

E log
1� j(1ÿ Y1)X1 � Y1xj

(1� jxj)ë
� �
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is uniformly bounded in x. If, say, the support of á0 is R�, a � 1 and x . 0, then

E log
1� j(1ÿ Y1)X1 � Y1xj

(1� jxj)ë
� �

�
�1

0

dA0(x1)

�1

0

log(1� x1 � y1(xÿ x1)) dy1 ÿ ë log(1� x)

>

�1
0

(1� x) log(1� x)

x
ÿ 1

� �
dA0(x1)ÿ ë log(1� x)

� 1

x
� 1ÿ ë

� �
log(1� x)ÿ 1! �1, as x! �1,

where A0 denotes the distribution function corresponding to á0. Since, for any given V , (8) is

a suf®cient but not necessary condition for geometric ergodicity, this does not show that the

chain is not geometrically ergodic, but it does indicate that proving such ergodicity is not

straightforward.

3. The structure of small sets

The goal in this section is to prove directly that bounded intervals are small, and to actually

estimate the constants in the minorization for these sets.

We will write K for K(ë) given by (12), and C � [ÿK, K]. Since Ã1 � (1ÿ Y1)

X1 � Y1Ã0 � Y1(Ã0 ÿ X1)� X1 and Y1 has density with respect to the Lebesgue measure on

R, then the conditional distribution of Ã1, given Ã0 � x, also has a density. More precisely,

for any x, A 2 B (R),

P(x, A) � á0(fxg)äx(A)� (1ÿ á0(fxg))P(Y1(xÿ X1)� X1 2 AjX1 6� x)

> äP(Y1(xÿ X1)� X1 2 AjX1 6� x),

where

0 , ä � 1ÿ supá0(fxg) < 1, (15)

the supremum being taken on the set of all discontinuity points of A0. Now the density of

(1ÿ Y1)X1 � Y1x, given X1 � x1 and X1 6� x, is

f Y 1

zÿ x1

xÿ x1

� �
1

jxÿ x1j ,

where f Y 1
denotes the density of Y1. Thus the conditional density p(x, z) for Ã1, given

Ã0 � x and X1 6� x, is
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p(x, z) �
�

Rÿfxg
a

zÿ x1

xÿ x1

� �aÿ1 1

jxÿ x1j I (0,1)

zÿ x1

xÿ x1

� �
dA0(x1)

�
�

(ÿ1,x)

a
zÿ x1

xÿ x1

� �aÿ1 1

xÿ x1

I (0,1)

zÿ x1

xÿ x1

� �
dA0(x1)

�
�

(x,1)

a
x1 ÿ z

x1 ÿ x

� �aÿ1 1

x1 ÿ x
I (0,1)

x1 ÿ z

x1 ÿ x

� �
dA0(x1) (16)

�

�
(ÿ1,z)

a
(zÿ x1)aÿ1

(xÿ x1)a
dA0(x1), if z , x,

�
(z,1)

a
(x1 ÿ z)aÿ1

(x1 ÿ x)a
dA0(x1), if z . x:

8>>>>><>>>>>:
We now ®nd the density of a minorizing measure by computing inf x2C p(x, z).

By the mean value theorem and Lebesgue dominated convergence theorem, if x . z,

@

@x
p(x, z) � ÿa

�
(ÿ1,z)

a
(zÿ x1)aÿ1

(xÿ x1)a

1

xÿ x1

dA0(x1) .ÿ1

and, for x , z,

@

@x
p(x, z) � a

�
(z,1)

a
(x1 ÿ z)aÿ1

(x1 ÿ x)a

1

x1 ÿ x
dA0(x1) ,1,

so that @ p(x, z)=@x is positive for x , z and negative for x . z. Thus

p(x, z) > min( p(ÿK, z), p(K, z)) �: p0(z):

Therefore, for all x 2 C and all A, we have

P(x, A) > ä

�
A

p(x, z) dz > äå0

�
A

p0(z) dz=å0 (17)

provided

å0 :�
�

min( p(ÿK, z), p(K, z)) dz

�
�

D

p(ÿK, z) dz�
�

Dc

p(K, z) dz . 0

where D :� fz : p(ÿK, z) < p(K, z)g. (This construction is similar to that of Rosenthal

1995, Lemma 6(b).)

To show that å0 . 0, choose any z 2 (L, U ). Since z , U , by de®nition á0(z, 1) . 0, and

since z . L, by de®nition á0(ÿ1, z) . 0; and so p(ÿK, z) . 0 and p(K, z) . 0. Hence

p0(z) . 0 on (L, U ), and so å0 . 0 as required.
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This proves directly that the set C is small, satisfying the minorizing equation with n � 1

and

å � äå0 � [1ÿ supá0(fxg)]
�

min( p(ÿK, z), p(K, z)) dz

� �
: (18)

4. Rates of convergence

We use the minorization above to establish rates of convergence of Ãn. We ®nd rates in three

separate cases, when we can apply uniform ergodicity, stochastic monotonicity and general

rates. In this section we speci®cally use Pn(x, :) � P(Ãn 2 :jÃ0 � x), x 2 R, to denote the

transition law of Ãn.

4.1. Uniform ergodicity for á with ®nite support

If the support of á0 is bounded (so that ÿ1, L , U ,1), then when the chain Ãn starts

from x 2 [L, U ], we can take the state space to be [L, U ] itself, which is small with å
de®ned as in (18) by

å � [1ÿ supá0(fxg)]
�

min( p(L, z), p(U , z)) dz

� �
: (19)

It follows from Theorem 16.2.4 in Meyn and Tweedie (1993) that

kPn(x, :)ÿMák < (1ÿ å)n, x 2 [L, U ]: (20)

Note that there is an error in their statement, since they use a different de®nition of total

variation distance, and hence their result should have a factor of 2 multiplying (1ÿ å)n.

The bound above may be poor if the set [L, U ] is large, leading to small å. In this case

the next case will also apply, and may give better bounds than the uniform ones above,

especially for small initial values.

4.2. Geometric ergodicity: `one-sided' á and stochastic montonicity

Suppose that the interval [L, U ] is ®nite on one side or the other: for convenience, assume

that ÿ1, L. Then the set [L, 1) is again absorbing and we can restrict attention to this set.

We will use the drift condition (11) and also the stochastic monotonicity of Theorem 1(i).

We take C � [L, K], where K is de®ned by (12) and ë, b are de®ned by (13), and apply

results of Roberts and Tweedie (2000) to the chain Ãn in this case. Take d � 1� K(ë), and

å as de®ned in (18). We de®ne
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J � d � ëÿ1(bÿ å), ç � log(J=(1ÿ å))

log ëÿ1
,

æ(x) � V (x)Má((ÿ1, x])�
�

(x,1)

V (z)Má(dz), î(x) � log æ(x)

log ëÿ1
: (21)

With these values we have the following result.

Theorem 2. Suppose EjX1j,1 and Ã0 � x 2 [L, 1).

(i) If J , 1, then for n . î(x)� ç(1ÿ å)=(ëç ÿ (1ÿ å)),

kPn(x, :)ÿMák < æ(x)
å

1ÿ J
ën;

(ii) If J > 1, and r � (1ÿ å)ç
ÿ1

, for n . î(x)� ç(1ÿ å)=å,

kPn(x, :)ÿMák < æ(x)log r=log ë eå(nÿ î(x)� ç)

ç
rn:

(iii) If J > 1, then for any 1 .ù. r � (1ÿ å)ç
ÿ1

,

kPn(x, :)ÿMák <
[1ÿ (1ÿ å)=ù]ùÿî(x)

1ÿ (1ÿ å)ùÿç
ùn:

Proof. (i) and (ii) are a direct corollary of Theorem 2.2 in Roberts and Tweedie (2000). For

(iii), we can use the same method of proof as in that theorem, but use (33) of Roberts and

Tweedie (1999) rather than Theorem 5.1 of Roberts and Tweedie (1999). h

A number of remarks can be made about this result. Firstly, æ(x) is generally unknown,

even if it can bounded by

æ(x) < V (x)�
�

R

V (z)Má(dz) < V (x)� b

1ÿ ë
,1,

as noted by Roberts and Tweedie (2000). This bound is often very rough as the examples

below show: in many cases it might be better to estimate æ(x) by

Z
(m)
V � V (x)

1

m

Xm

i�1

I (ÿ1,x](Ãi)� 1

m

Xm

i�1

I (x,�1)(Ãi)(1� jÃij)

for m big enough, using the law of large numbers for Markov chains.

Secondly, we observe that the convergence of Pn(x, :) to Má is uniform for those initial

x such that V (x) < R, R being any positive constant, since

(i9) if J , 1, then for n . ~î� ç(1ÿ å)=(ëç ÿ (1ÿ å)), where ~î � log(R� b=(1 ÿ
ë))=log ëÿ1,

kPn(x, :)ÿMá(:)k < R� b

1ÿ ë

� �
å

1ÿ J
ën;
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(ii9) if J > 1, r � (1ÿ å)ç
ÿ1

, then, for n . ~î� ç(1ÿ å)=å,

kPn(x, :)ÿMá(:)k < R� b

1ÿ ë

� �log r=log ë
eå(n� ç)

ç
rn; (22)

both (i9) and (ii9) imply supx<R9kPn(x, :)ÿMá(:)k ! 0, n!1, for any R9. A similar result

holds for the uniform version of (iii).

The result (ii9) implies that the chain Ãn is `almost' geometric at rate r, and of course is

geometric at any rate slower than r.

Thirdly, note that the bound (ii) or (22) is very tight if å is very small; but the values of

n for which the bound holds are correspondingly large, of the order of åÿ1.

4.3. Geometric and other rates: á with doubly in®nite support

When á has support which is unbounded on both sides, we cannot use the stochastic

monotonicity results and we turn to the results of Roberts and Tweedie (1999). There are two

different approaches given in that paper.

First, we can use the results of Theorems 5.1 and 5.2 of Roberts and Tweedie (1999). As

they show, we can construct a bivariate test function, h(x, y) � [V (x)� V (y)]=2, which

satis®es the drift condition (for the bivariate kernel denoted P2 and the test set C2 �
C 3 C)

P2 h < ë2 h� b2 I C2,

where

ë2 � ë� b

2(1� d)
, b2 � b(1� 2d)

2� 2d
: (23)

For ë2 , 1, we require d � 1� K(ë) . b=(2(1ÿ ë))ÿ 1. The de®nition of K(ë) shows that if

we choose ë close enough to the minimal value a=(a� 1) then this can always be achieved,

although the resulting set C may get to be somewhat large and this might result in å
becoming unacceptably small.

With these values we now construct

J2 � d � ëÿ1
2 (b2 ÿ å), ç2 � log(J2)ÿ log(1ÿ å)

log ëÿ1
2

æ2(x) � V (x)�
�

V (z)Má(dz)=2, î2(x) � log æ2(x)

log ëÿ1
2

: (24)

Following Roberts and Tweedie (1999), let n9 � nÿ æ2(x) and de®ne â̂n as

â̂n � ëÿ1
2 , J2 , 1;

(1ÿ å)ÿ1=ç2 (1� ç2=n9)ÿ1=ç2 , J2 > 1:

�
As a corollary of Theorem 5.1 and of (33) in Roberts and Tweedie (1999) we then have the

following general bounds.
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Theorem 3. Suppose EjX1j,1.

(i) If J2 , 1, then for n . î2(x)� ç2(1ÿ å)=[ëç2

2 ÿ (1ÿ å)],

kPn(x, :)ÿMák < æ2(x)
1ÿ ë2(1ÿ å)

1ÿ J2

ën
2 :

(ii) If J2 > 1, then for n . î2(x)� ç2(1ÿ å)=å,

kPn(x, :)ÿMák < (1ÿ â̂n(1ÿ å))(1� n9=ç2)( â̂n)ÿn9:

(iii) If J2 > 1, then, for any 1 .ù. r � (1ÿ å)ç
ÿ1
2 ,

kPn(x, :)ÿMák <
[1ÿ (1ÿ å)=ù]ùÿî2(x)

1ÿ (1ÿ å)ùÿç2
ùn:

Note again that in these bounds we need the value æ2(x) (which is notationally somewhat

hidden by the use of n9). This can be bounded, again inef®ciently in many contexts, by

(V (x)� b=(1ÿ ë))=2; alternatively, it could be estimated by the law of large numbers using

the sum (V (x)�Pn
1 V (Ãi)=n).

As a second approach, from Theorem 4.2 of Roberts and Tweedie (1999), we have, using

the constants in (21), the following result.

Theorem 4. The partial sums of the transition laws Pn converge to Má with a bound given

by

knÿ1
Xn

1

Pm(x, :)ÿMák < nÿ1 2� log V (x)� log
b

1ÿ ë

� �
� 2

å
log

J

1ÿ å

� �" #
=log ëÿ1

( )
:

(25)

Although this is not a bound on geometric convergence, it still serves the purpose from the

point of simulations. If we set n large enough that the right-hand side of (25) is small enough

to meet our approximation criteria, then we can draw from the distribution nÿ1
Pn

1 Pm(x, :) by

®rst drawing a value of m uniformly in the range f1, 2, . . . , ng and then drawing from the

resultant distribution Pm(x, :). This two-stage sampling procedure then has the error of

approximation in (25). Often, this shows that we need a smaller n than is indicated by the

geometric bounds.

5. Applications

Here we give some examples of the approximation of the df Má(t) by M n,x
k (t), selecting a

suitable n, once the approximation error has been ®xed. We consider examples mainly from

Muliere and Tardella (1998) and Guglielmi (1998), in order to compare the bounds obtained

with their results.

Example 1. Let á0 � U (0, 1), so that the support of á0 is the interval [0, 1], and suppose

that a � 1. In this case EjX1j � EX1 � 1
2
, K(ë) � (1ÿ ë� 1

4
)=(ëÿ 1

2
).
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If we choose ë < 7
8
, then K(ë) > 1, so that the whole interval [0, 1] is small. Thus Ãn,

starting from any x in [0, 1], is uniformly ergodic with rate of convergence bounded by

r � 1ÿ å, where

å �
�

D

p(0, z) dz�
�

Dc

p(1, z) dz �
�1

1=2

(ÿlog z) dz�
�1=2

0

(ÿlog(1ÿ z)) dz � 1ÿ log 2:

For instance, if n > 13, supxkPn(x, :)ÿMák < 0:009, while if n > 38, supxkPn(x, :)
ÿMák < 10ÿ6. If we simulate a sample of size k � 10 000 from Ãn, then sup t2RjM n,x

k (t)

ÿM n,x(t)j, 0:021 with probability almost one for any n, as in Section 1. Hence, with high

probability,

sup
t2R

jM n,x
k (t)ÿMá(t)j, 0:03

for any n > 13. The same approximation error was achieved in Guglielmi (1998), who

considered, as an approximating function, the df Má r of the mean of a Dirichlet process

with parameter equal to a discrete measure with r � 1001 points of mass. In Figure 1 we plot

the empirical df for n � 13, x � 0, and both k � 500 and k � 5000, respectively, together

with the exact df. The convergence, even for this low value of n, is clear. If we plot the

empirical df for k � 10 000, then this is visually indistinguishable from the exact df.

Figure 2 displays the trace plot of Ãn for three randomly generated initial values; the plot

shows that for different initial values the convergence is essentially immediate.

Suppose now, on the other hand, that a � 50. In this case [0, 1] is still small, but now

å � 0:33 3 10ÿ16, which would imply choosing n greater than about 0:14 3 1018 in order to

guarantee that supxkPn(x, :)ÿMák < 0:01 using (20).

However, we can choose ë such that K(ë) is less than 1 and P(x, A) > åì(A \ (K, 1]),

for all x 2 [0, K], ì being the Lebesgue measure on the real line, and å � �min

( p(0, z), p(K, z)) dz. Moreover, estimating æ(0) by Z m
V , with, say, m � 106, we found that

the best bound in Theorem 2(ii) was obtained for ë � 0:999, b � 0:011, å �
0:574 135 3 10ÿ11, giving supx2[0,1]kPn(x, :)ÿMák < 0:01 for n greater than about

0:62 3 1015. In this case we obtain an improvement using Theorem 2 over (20), even

though neither set of values is of practical use.

In Figure 3(a) we give the trace plot of Ãn for ®ve randomly generated intial values;

observe that in this case the convergence seems to happen at about n � 150. Thus, in spite

of the fact that n above is very large, simulating the corresponding Markov chain is very

easy, and the actual convergence seems to be very much faster than any of these theoretical

upper bounds. Figure 3(b) shows the histogram of 5000 values from Ã150.

For a � 100, Theorem 2 gives n much greater than before in the bounds, but a trace plot

shows that the convergence actually seems to occur at about n � 250.

Example 2. Next we consider an example from Muliere and Tardella (1998) when the

parameter is á�P2
i�1äxi, x1 � 0:05, x2 � 0:1, á being the uniform distribution on (0, 1), so

the the parameter is not a continuous distribution. This measure is the `posterior' parameter

of a Dirichlet process, after two observations, since, as is well know, the posterior distribution
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of Pá given X1, X2 is still the distribution of a Dirichlet process, now with parameter

á�P2
i�1äX i.

We have computed the bound in Theorem 2(ii) with å � äå90, ä � 1ÿ 1=a, a � 3, and

å0 > å90, where

å90 :�
�x1

0

p(K, z) dz�
�1

K=(K�1)

p(0, z) dz, K , 1,

å90 :�
�x1

0

p(1, z) dz�
�1

1=2

p(0, z) dz, K > 1,

since å90 is easier to compute than å0.

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

0.0 0.2 0.4 0.6 0.8 1.0
x

Figure 1. Empirical dfs of Ã13 from Ã0 � 0 for k � 500 (´ ´ ´), k � 5000 (± ± ±) and exact df (ÐÐ)

of Ãá, when á � U (0, 1).
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If ë is less than 0.903, then K is greater than 1, and the whole space [0, 1] is small; in

this case å � 0:005 062, so that we obtain a uniform error less than 0.01 when n > 908.

On the other hand, for ë � 0:95 and b � 0:104 17, å is equal to 0.018 001; now, Theorem

2(ii) gives the same error for n > 4061 (estimating æ(0) by Z m
V , m � 106). In this case the

bounds in Theorem 2 (and 3 and 4) are not as good as the uniform ergodicity bounds in

(20), even though we have improved the value of å.

Example 3. Finally, let á0 be a standard normal distribution, and let a � 10. If ë � 0:98, then

d is greater than b=(2(1ÿ ë))ÿ 1 and, de®ning ë2 and b2 as in (23), and b � 0:0926, we

obtain

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

0 10 20 30 40 50
n

G
am

m
a 

(n
)

Figure 2. Trace plot of Ãn for three randomly generated initial values, when á � U (0, 1).
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å � å0 �
�0

ÿ1
p(K, z) dz�

��1
0

p(ÿK, z) dz

�
�0

ÿ1
dz

� z

ÿ1
a

(zÿ x1)aÿ1

(K ÿ x1)a
dA0(x1)�

��1
0

dz

��1
z

a
(x1 ÿ z)aÿ1

(x1 � K)a
dA0(x1) � 1:089 3 10ÿ3:

We apply Theorem 3(ii), estimating æ(0) by Z m
V , to obtain an error less than 0.01 for

n > 1 012 555.

In this case the guaranteed convergence is after a relatively reasonable number of

iterations, but again the trace plot of Ãn for ®ve randomly generated initial values (Figure 4)

shows that convergence seems to occur after a very much smaller number of iterations.

n

G
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m
a 

(n
)

0 100 200 300 400 500
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0

0.35 0.40 0.45 0.50 0.55 0.60

0
2

4
6

8
10

x

(a) (b)

Figure 3. (a) Trace plot of Ãn for ®ve randomly generated initial values and (b) histogram of 5000

values from Ã150, when á � 50U (0, 1).
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6. Conclusions

In this paper we suggest a new approximation procedure for the distribution of the mean

functional of a Dirichlet process, since this distribution is dif®cult to handle even though an

analytic expression is known. This Markov chain Monte Carlo procedure is essentially based

on simulating draws from random variables that belong to a Markov chain converging (in

total variation distance) to the mean functional, and seems to be very easy to implement. We

need only draw n independent couples of random variables (Xi, Yi) and to compute Ãn

recursively by (3); this step has to be repeated k times to obtain the approximating function

(i.e. the empirical distribution from Ãn), and so we can either use many short runs or

subsample one long run at steps of size n, where n is chosen to meet the preset

approximation criteria.

Because of the Markovian nature of the algorithm, we can ®nd analytic upper bounds on

the number of iterations needed in setting these approximation criteria. In all the cases that

2
1
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2

1
2

2

0 1000 2000 3000 4000 5000
n

G
am

m
a 

(n
)

Figure 4. Trace plot of Ãn for ®ve randomly generated initial values when á � 10N (0, 1).
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we examined the upper bounds seemed rather conservative, compared with an assessment of

trace plots to consider convergence, but in several of the examples they were still very

effective, although in other cases they were rather larger than can be used in practice.

The examples considered show that the larger a becomes, the bigger n must be in order

to obtain the same approximation error. This remark could be anticipated from (3), since, if

a is large, Yn is very close to 1 (its mean is about 1 and its variance is very small), so that

Ãn is very close to Ãnÿ1 and the chain does not move enough to enable rapid convergence.

A different approximation scheme, proposed in Muliere and Tardella (1998), relies also

on simulation using draws from the distribution of the random vector (Xn, Yn) as does ours,

but, contrary to our method, the number of draws is determined by a random stopping rule

(therefore introducing into the simulation one more variable compared to our procedure).

Observe that Muliere and Tardella (1998) provide bounds in terms of the Prohorov distance

between the mean functionals, and the corresponding computational effort grows (on

average) linearly with a � á(R). Here a much stronger distance, the total variation, can be

guaranteed, thus justifying the need for more complex theoretical results to obtain ®ner

upper bounds, although, not unreasonably given the strength of the metric, the

computational effort appears to grow faster than linearly with a, as is also attested in

Guglielmi (1998) and Regazzini et al. (2000).

The two approximations, together with that proposed by Florens and Rolin (1994), are

strongly connected, as pointed out by one of the referees. Indeed, when truncating the series

representation (7) to a ®nite index n,Xn

i�1

pi(ù)äX i(ù)(:), (26)

one obtains a random measure that does not sum to one, whose remaining mass is Rn(ù) �
1ÿPn

1�1 pi(ù) �Qn
i�1 Yi(ù). Here the random probability measure Pn, as de®ned in (2),

assigns this mass to a distribution äx0
degenerate at some ®xed point x0, while Florens and

Rolin (1994) use the random measure (26) scaled by 1ÿ Rn(ù), that is,Xn

i�1

pi(ù)äX i(ù)(:)

1ÿ Rn(ù),

as an approximating random probability measure. On the other hand, Muliere and Tardella

(1998) de®ne n by a random rule and assign the remaining mass Rn to äX 0 (ù), where X0(ù) is

a random point. Hence, all these approximations will provide similar random quantities if the

same n is used, although the features of the techniques are different.

Our approximation procedure also seems numerically more ef®cient than that in

Guglielmi (1998) and Regazzini et al. (2000), where a `classical' approximation method is

proposed, involving no simulation and considering, as the approximation error, the distance

in the LeÂvy metric between the exact df and the df corresponding to a discrete parameter

measure. For the examples considered here, we found that the execution times do not differ

too much when the support of á is bounded and a is relatively small (for instance, when a

has the same order of magnitude as 1). When a increases, the simulation procedure

590 A. Guglielmi and R.L. Tweedie



proposed here results in a larger index n of the random variable Ãn from which we generate

the empirical distribution, but the increase in execution time is not striking. Conversely, if a

increases, the `classical' procedure brings an addition in the number of points in the support

of the approximating parameter, yielding a much longer execution time.

The stochastic monotonicity of the chain should enable use of the Propp±Wilson `perfect

sampling' algorithm, and this has been sketched out in the case of á having bounded sup-

port in Guglielmi et al. (2000). In further work we shall explore whether the approach of

Corcoran and Tweedie (2001) can be exploited when á has unbounded support.

Overall the Markov chain Monte Carlo procedure appears to provide a simply im-

plemented procedure that has the highly desirable property that in general we can guar-

antee the order of approximation using Markov chain theory.
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