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Asymptotic behaviour of the sample
autocovariance and autocorrelation function
of the AR(1) process with ARCH(1) errors
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We consider a stationary AR(1) process with ARCH(1) errors given by the stochastic difference

equation
X, =aX, 1 +/B+AX2_ e, teN,

where the (g,) are independent and identically distributed symmetric random variables. In contrast to
ARCH and GARCH processes, AR(1) processes with ARCH(1) errors are not solutions of linear
stochastic recurrence equations and there is no obvious way to embed them into such equations.
However, we show that they still belong to the class of stationary sequences with regularly varying
finite-dimensional distributions and therefore the theory of Davis and Mikosch can be applied. We
present a complete analysis of the weak limit behaviour of the sample autocovariance and
autocorrelation functions of (X,), (|X,]) and (X %). The results in this paper can be seen as a natural
extension of results for ARCH(1) processes.

Keywords: ARCH model; autoregressive process; extremal index; geometric ergodicity; heavy tails;
multivariate regular variation; point processes; sample autocovariance function; strong mixing

1. Introduction

Over the last two decades, there has been a great deal of interest in modelling real data using
time series models which exhibit features such as long-range dependence, nonlinearity and
heavy tails. Many data sets in econometrics, finance and telecommunications have these
common characteristics. In particular, they appear to be reconcilable with the assumption of
heavy-tailed marginal distributions. Examples are file lengths, the CPU time to complete a
job, the length of on—off cycles in telecommunications, and the log-returns of stock indices,
share prices and exchange rates in finance.

The feature of (non)linearity can be often detected by considering the sample auto-
correlation functions (ACFs) of a time series, their absolute values and squares. By studying
these quantities, many financial time series have been shown to be nonlinear. Indeed, the
sample ACFs of log-returns are typically negligible at almost all lags (at least at lags higher
than 3) whereas the sample ACFs of their corresponding absolute values and squares are
significantly not zero for small lags and have a slow decay to zero when the lag size is
increasing. Linear processes do not capture this behaviour in their ACFs and thus are
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inappropriate models for this type of financial data. In the case of a time series with infinite
second moment of the marginal distribution, (non)linearity can sometimes be recognized
only by examining the sample ACF of the time series. A time series with infinite second
moment which can be represented as a moving average process has the property that the
sample ACF at lag & converges in probability to a constant p(#%), although the mathematical
correlation typically does not exist (Davis and Resnick 1985; 1986). On the other hand, for
many nonlinear heavy-tailed sequences, the sample ACF at lag 4 converges in distribution
to a non-degenerate random variable. Resnick and van den Berg (2000) propose a test for
(non)linearity of a given infinite-variance time series based on subsample stability of the
sample ACF.

The phenomenon of random limits of sample ACFs was first observed in the context of
infinite-variance bilinear processes by Davis and Resnick (1996) and Resnick (1997). Davis
and Mikosch (1998) studied the weak limit behaviour of a large variety of nonlinear pro-
cesses with regularly varying marginal distributions which satisfy a weak mixing condition
and some additional technical assumptions. They showed that the sample autocovariance
function (ACVF) and ACF of such processes with infinite fourth but finite second moment
have a rate of convergence to the true ACVF and ACF that becomes slower the closer the
marginal distributions are to an infinite second moment. In cases of an infinite second
moment, the limits of the sample ACVF and ACF are non-deterministic. Examples which
belong to the framework of Davis and Mikosch (1998) are the autoregressive (AR)
conditionally heteroscedastic processes of order 1 (ARCH(1)), the simple bilinear processes
with light-tailed noise (Basrak ef al. 1999) and the GARCH(1, 1) processes (Mikosch and
Starica 2000). Finally, Davis et al. (1999) embedded the three aforementioned processes
into a larger class of processes which still satisfy the conditions for the theory of Davis and
Mikosch (1998). These processes have in common that they can be described by using
solutions to multivariate linear stochastic recurrence equations; equations of this form have
been considered by Kesten (1973) and Goldie (1991) and include the important family of
the squares of GARCH processes.

The general theory of Davis and Mikosch (1998) could, however, be applied to a
different class of processes with a different structure than studied in Davis et al. (1999).
The present paper addresses the AR processes of order 1 with ARCH(1) errors — or
ARARCH(1, 1) processes for short — which do no fit the above-mentioned framework. The
class of AR (or more generally AR moving average or ARMA) models with ARCH errors
was first proposed by Weiss (1984), who found them to be successful in modelling 13
different US macroeconomic time series. AR models with ARCH errors are the simplest
examples of models which can be written by a random recurrence equation of the form

Xi= s+ 0, teN, (1.1)

where ¢, are independent and identically distributed (i.i.d.) innovations with mean zero, u, is
the conditional expectation of X, (which may or may not depend on ¢) and the volatility o,
describes the change of (conditional) variance. Because of the non-constant conditional
variance, models of the form (1.1) are often referred to as conditionally heteroscedastic
models. Empirical work has confirmed that such models fit many types of financial data (log-
returns, exchange rates, etc.). In this paper, we concentrate on the ARARCH(1, 1) process in



Asymptotic behaviour of the AR(1) process with ARCH(I1) errors 849

order to have a Markov structure and thus make the model analytically tractable. It is defined
by specifying u, and o, as follows:

ur=0aX,; and o7 =p+IX7,, (1.2)

where @ € R and 8, A > 0. Note that for @ = 0 we obtain precisely the ARCH(1) model
introduced by Engle (1982).

There is a double motivation in studying the sample ACVF and ACF of an
ARARCH(1,1) process. First, an ARARCH(1,1) process is a natural mixture of an
AR(1) and an ARCH(1) process. Therefore, the results of this paper can be seen as a
generalization of results for the aforementioned two processes. The weak limit behaviour of
the ARCH(1) process was studied by Davis and Mikosch (1998). For A = 0, the process
defined by (1.1) and (1.2) is an AR(1) process. A summary of results on the asymptotic
theory of the sample ACFs of AR processes can be found, for instance, in Brockwell and
Davis (1991, Sections 7.2 and 13.3) or Embrechts ef al. (1997, Section 7.3). Furthermore,
ARARCH(1, 1) processes are not solutions of linear stochastic recurrence equations and
there is also no obvious way to embed them into such equations. However, we show that
the processes still belong to weakly dependent stationary sequences which have regularly
varying finite-dimensional distributions. One conclusion of this paper is that ARARCH
(1, 1) processes serve as one of the simplest examples of sequences which do not fulfill the
setting of Davis et al. (1999) but to which the theory of Davis and Mikosch (1998) can still
be applied.

The paper is organized as follows. In Section 2 we introduce the ARARCH(1, 1) process
(X;) and consider some of its basic theoretical properties. The weak convergence of some
point processes associated with the sequences (X,), (|X,|) and (X%) is investigated in
Section 3. Finally, in Section 4 we present results concerning the weak convergence of the
sample ACVF and ACF of (X,), (|X,|) and (X?).

2. Preliminaries

We consider an ARARCH(1, 1) model defined by the stochastic difference equation

Xi=aX, 1 +\/B+AX% e, teN, 2.1

where the (g,) are i.i.d. random variables, a € R, 3, A > 0 and the parameters « and 4 satisfy
in addition the inequality

E(log |a + Vie|) < 0, (2.2)

which is a necessary and sufficient condition for the existence and uniqueness of a stationary
distribution. Here ¢ is a generic random variable with the same distribution as &,. Throughout
this paper, we assume the same conditions for € as in Borkovec and Kliippelberg (2001):

Assumption G. ¢ is symmetric with continuous Lebesgue density p(x) and distribution
function H(x). Furthermore, € has full support R, and the second moment of ¢ exists.
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Assumption T.
(a) p(x) = p(x') for every 0 < x <x'.
(b) The lower and upper Matuszewska indices of H are equal, i.e.

log lim sup,_., H(vx)/ H(x)

—co=y:=li
R=Y= I logv

m logliminf,_, ., H(vx)/H(x) -

2.
V—00 log 4

(¢) If y = —oc then, for all 6 > 0, there exist constants q € (0, 1) and xy > 0 such that,
for all x > xy and t > x4,

xtat xtat

— ) =1 -)p— - 2.3
If vy > —oc then, for all 6 > 0, there exist constants xo > 0 and T > 0 such that, for
all x> xy and t> T, (2.3) holds.

There exists a wide class of distributions which satisfy these assumptions. Examples are
the normal distribution, the Laplace distribution and the Student ¢ distribution. Assumption
T is needed to determine the tail of the stationary distribution. For further details
concerning these assumptions and for examples, we refer to Borkovec and Kliippelberg
(2001). Note that the process (X;) is evidently a homogeneous Markov chain with state
space R equipped with the Borel o-algebra. We will write P.(-), E,(-) to denote
probabilities and expectations computed under the assumption that Xy = x. Moreover,
P'(x, -) denotes the #-step transition probability of (X,), that is, P/(x, -) = P(X; € :|Xo = x)
for every x = 0, t € N. The next theorem gathers together some results on (X,). The proofs
can be found in Borkovec and Kliippelberg (2001). Subjects of interest are the existence
(and uniqueness) of a stationary distribution, the tail behaviour of the stationary distribution
and the geometric ergodicity. A real-valued Markov chain (X;) is called geometrically
ergodic if (X,) has a unique stationary distribution s and there exists a p € (0, 1) such that,
for every x € R,

o '|P'(x, ) — | — 0, as n — oo,
where ||| denotes total variation of signed measures on B((—o0, 00)).
Theorem 2.1. Consider the process (X ;) in (2.1) with (&) satisfying Assumption G and with
parameters o and 1 satisfying (2.2). Then the following assertions hold:

(@) (X,) is geometrically ergodic with unique stationary distribution 7w. In particular,
(X,) is strongly mixing with geometric rate of convergence ¢ x(h), h =0, that is,
there exists a constant C > 0 such that, for every h =0,

sup |P(A N B) — P(A)P(B)| := px(h) < Cp. (2.4)

A€0 (X,,5<0),BEG (X ,,5=h)

The stationary distribution 7 is continuous and symmetric.
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(b) Let F(x) = P(X > x), x =0, be the right tail of the stationary distribution function,
and suppose that Assumption T also holds. Then

F(x) ~ex7", X — 00, (2.5)

where

o L E(alX]|+ VB +AXel" — [(a+ Ve X||*) 2.6)

2 E(la + Ve[ log|a + Vie|)

and x is given as the unique positive solution to

E(|la + Ve[ = 1. (2.7)

Furthermore, the unique positive solution «k is less than 2 if and only if
a® + AE(e?) > 1.

Remark 2.2. (a) Note that E(|a + \/I£|K) is a function of x, a and A. It can be shown that for
fixed A, the exponent x is decreasing in |a|. This means that the tails of the distribution of X
become heavier as |a| increases. In particular, for o # 0 the ARARCH(1,1) process has
heavier tails than the ARCH(1) process.

(b) The strong mixing property automatically implies that the sequence (X;) satisfies the
condition A(a,). The condition .A(a,) is a mixing condition frequently used in connection
with point process theory and was introduced by Davis and Hsing (1995). See (3.8) for the
definition.

(c) The argument for the symmetry of the stationary distribution is very simple. Since the
Markov chain has a unique stationary distribution the Markov chain with the same
transition probabilities and initial condition Xy =0 converges in distribution to the
stationary distribution. However, using the recursive definition of this Markov chain, one
can write down a representation of the distribution explicitly. It is an infinite series of
conditionally independent variables which has a symmetric distribution.

Throughout the remainder of this paper, we always assume that X, ~ 7, that is, the
ARARCH(1,1) process is stationary. Note that, because of the symmetry and con-
tinuity of X, and ¢ for every 7€ N sign (X,) and |X,| are independent and
P(sign(X,) = 1) = P(sign(X,) = —1) = 1.

It appears that the Markov chains which we define next will be relevant to the
investigation of the limit behaviour of the sample ACVF and ACF of the stationary
processes (X,), (|X;|) and (X?): let (¥,) and (X,) be Markov chains given by the random

recurrence equations
Y, =aY, 1 +/AY? e, teN, (2.8)

X, =laX 1 +\/B+AX2 &|,  teN, 2.9)

and
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respectively, where the constants o € R, 8, 1 > 0 and the sequence (g,) are the same as
in (2.1), (&) < (¢/), Yo = Xo almost surely and Xy = |X,| almost surely.

A classical random walk argument shows that, due to (2.2), ¥; — 0 a.s. as t — oo. Thus,
under our assumptions, the Markov chain (Y,) has (in contrast to (X,)) only a degenerate
stationary distribution. Nevertheless, we will see in the proof of Proposition 3.1 that (X,)
and (Y,) are related in the sense that the sequences (X, ..., X,,) and (Yp, ..., Yy,), m € N
arbitrary, are both jointly regularly varying with the same index x > 0 and the same well-
specified spectral measure Pg; that is, there exists a sequence (a,) such that

Xoy ooy X
( 0’ B ) 63)
|(X0, MR ] Xm)|

(YOJ tet Ym)
(Yo, -+, Y
for every t >0 and B € Z(™) with Pg(0B) =0, where . denotes the unit sphere in

R™*1 with respect to the norm |-|. )
The next lemma shows that (|X;|) and (X,) have the same distribution.

n—oo

lim nP<|(X0, vy X)) > tay,

= lim nP<|(Y0, ey Y| > tay, € B) =t "Pg(B),
n—oo

Lemma 2.3. Let Xo ~ 7. Then, under P x| ign(x,) (|X,|)$ (X,). More precisely, for every
teNy and Ay, ..., A; € B([0, 00)),

P xylsigncxo) ([ Xo| € Ao, ..., |Xi| € A1) = Py, signxo)(|Xo| € 4o, X1 € 41, ..., X, € 4))

=Py (Xo € Ao, X1 €Ay, ..., X, € 4)).

Proof. Because of the symmetry and continuity of X, and ¢, for every ¢ € Ny, |X,| and
sign(.X;) are independent and

Px, | sign(o) (SI80(X ) = 1) = Py, | sign(x)(sign(X,) = —1) = 1. (2.10)
Suppose next that we even have
sign(X,) is independent of | X,|, | X/—1], |Xi—2|, --., | Xol, t e Np. (2.11)
By the symmetry of € and (2.11), we then conclude that, for every t € N, xq, ..., x,-; =0
and 4 € B([0, c0)),
Pl signxo) ([ X | € AN X ] = xim1, -, [Xo| = x0)

= Py, |signx)(| X € A||X 1| = x21) = P<Otxt_1 +1/B+Ax2_ & € A)

and, in particular,
Pix, sign(xo) ([ X ] € Al X 1| = x21) = P(X, € A|X,\=xi1); (2.12)

that is, supposing assumption (2.11) holds, the processes (|.X,|) and (X,) are Markov chains
with the same transition kernel and the same stationary distribution. Since sign(Xy) is
symmetric and independent of | X,|, the statement follows.
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It remains to show (2.11). We use complete induction for the proof. The base case r =0
is fulfilled due to the assumption that X, is symmetric. Now choose arbitrary z € N. Using
the base case of the induction and the independence of | X, || and sign(X,_;), we obtain
that, for every 4; € B([0, o)), i=0,1, ..., ¢,

Py sign(xo) (| X0l € Ao, -, | Xi1| € A1, |X4| € 4y, sign(X,) = 1)
= E| x| sign(x0) (1 {| X0 e o, | X _1]€4 (1}
X Py sign(xo) (@)X - 1[51gn(X (1) + /B + AX 1P, > 0, |X,| € 4]
(Xl oo [ X0l [Xo])
= E\x,|,sign(x0)(L{| X0l € Aoy Xo_1]€4 11}

X P|X0|,sign(X0)(a|Xt—l|Sign(Xt—1) + \/ﬁ+}b|Xt_1|28t < O, |Xt| S At|

[Xotls -5 [ X0, [ Xo])
= Py, sign(xy) (| Xo| € 4o, ..., [X 1] € 41, |X| € 4y, sign(X) = —1) (2.14)
and thus
Pix,|signxo) (| Xo| € Ao, -, [ X 1] € Ay, |X4| € 4y, sign(X ) = 1)
= Pixy|signxo) ([ Xo] € Ao, -, [Xio1| € Ay, |X 4| € 44, sign(X) = —1)
= 1Py siencxo) ([ Xo| € Ao, .., [X 1| € Aimy, | X4| € 4)),
which, in combination with (2.10) completes the proof. O

3. Weak convergence of some point processes associated with
the ARARCH(1,1) process

In this section we formulate results on the weak convergence of point processes of the form
n

N, :Zéxgﬂ,)/w, n=1,2,..., (3.1
1=

where X(,m) are random row vectors with arbitrary dimension m + 1 € N whose components
are closely related to the ARARCH(1, 1) process (X;) defined in the previous section, and
(a,) is a normalizing sequence of positive numbers. The main result in this section is
summarized in Theorem 3.7. The proof of this result is essentially an application of the
theory in Davis and Mikosch (1998). Proposition 3.1 gathers together some properties of
(X(,m)) which we need for the proof of Theorem 3.7.

We follow the notation and the point process theory in Davis and Mikosch (1998) and
Kallenberg (1983), respectively. The state space of the point processes considered is
R™+1\{0}. Write M for the collection of Radon counting measures on R”*'\{0} with null
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measure o. This means that 4 € M if and only if u is of the form u =) ;= n;0x,, where
ni€{1,2,3,...}, the x; € R"*'\{0} are distinct and #{i||x;| > y} < oo for all y > 0.

Recall that (X;) is the stationary ARARCH(1, 1) process given by (2.1). (&) satisfies
Assumptions G and T, and the parameters a and A are chosen such that (2.2) holds. We
start by specifying the random row vectors (X(tm)) and the normalizing constants (a,) in
(3.1) and by introducing some auxilary quantities in order to be in the framework of Davis
and Mikosch (1998). For m € Ny, define

X(tm):(Xl‘aXt+la"':Xt+m)a teza

m—1
ng) = (I”(), (ary + \/ISI), cooy (arg + \/181) H(Cl + \/Irsserl))
s=1
and
m+1—1
2" = (ary + Vi 81)<H(a +Virga), . [ @+ ﬁrsem)>, teN,
s=1

where 7, = sign(Ys), (Yy) is the process in (2.8) and H(i):l = 1. Note that the r; are
dependent, symmetric random variables.
Moreover, for k € Ny arbitrary but fixed, define the stochastic vectors

XMk +1) = XU, X", . X
and
2"k + 1) =@y, 2", ..., Z5}).

Analogously to Davis and Mikosch (1998), we take |-| to be the maximum norm in R”*!,
that 1is,

x| = (X0, - -, Xm)| = rglax |x:].

.....

We are now ready to define the sequence (a,) in (3.1). Let (a(nk”")) be a sequence of positive
numbers such that

P(x| > a'*™) ~ (nE(Z{ 2k + 1)), as n — oo. (3.2)
For k = 0, we write a, = a(no”"). Note that because of (2.5) one can choose a(nk”") as
alksm = QcB(1Z 2k + D<)V Enl/x, n=1. (3.3)

From (3.3) one can readily see that @, and a(" ™ differ asymptotically only by the constant
0 := (E(|1Z{" 2k + 1)[*)/E(|ZY” [)V/%, that is, a'¥™ /a, — O, as n — .
With these observations and notation we can state the next two propositions.

Proposition 3.1. Let (X,) be the stationary ARARCH(1, 1) process given by (2.1) and assume
that the conditions of Theorem 2.1 hold. Then:
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(a) (X(,m)) is strongly mixing with geometric rate of convergence ¢xm(h) = ¢ x(h — m),
h = m, where ¢x(-) is given in (2.4).
(b) Xgm,g(2k + 1) is jointly regularly varying with index xk > 0; more precisely,

(3.4)

X(m) 2k 1
nP (|X"’})(zk + 1) > atkm XL Qk+1D) >

CIXUY2k+ 1)

(m) K
— t—kE(|Z0 2k +1D)| 1{z;"')(zk+1)/\zgm>(zk+1)|e»}) £>0
E(Zy" 2k + DI

as n — oo, where the symbol L stands for vague convergence on the Borel o-field
of the unit sphere S := SEkDnD=1 of RCEDOND ith respect to the maximum
norm |-.

Remark 3.2. (a) In the spirit of Davis and Mikosch (1998), the jointly regular varying
property of X%)(Zk + 1) can also be expressed in the more familiar way

X2k + 1)

nP| X"k + )| > talfm, == —
(' , = X2k + 1)|

€ ) 4 t " Po(), as n — oo, (3.5)

where Po = Po (0, ..., 071, 6V =2y /|Z{" 2k + 1)|, j=—k, ..., k, and dP =
|Z(m)(2k + ¥ /E(|Z(m)(2k + 1)|")dP 'In the following we will use the latter notation.
(b) Due to statement (b) in Proposition 3.1, the positive sequence (a,) in (3.2) with

k =0 can also be characterized by

lim nP(|X{"”| > a,) = 1.

Proof- (a) This is an immediate consequence of the strong mixing property of (X,) which is
stated in Theorem 2.1(a) and the fact that strong mixing is characterized by the underlying o-
field.
(b) Define Y\ := (Y., Yii1, ..., Yum) t €Ng, and Y Qk+1) = (Y™, Y™, ...,
(m)) where (Y;) is the process given in (2.8). Using the definition of the process (Y ;) and
of the stochastic vectors Z( ), it can readily be seen that

Y2k + 1) = | Xo|Z{" 2k + 1), (3.6)
where |X,| and Z(m)(2k + 1) are independent, non-negative random variables. Moreover, | X|

is regularly varying with index x > 0 and E(|Z(m)(2k + 1)|¥) < oco. Thus, a result of Breiman
(1965) yields that, for every ¢ > 0,
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Y2k + 1
nP<|YE)m)(2k+l)| > afhm, Yo CEFD )

YY" 2k + 1)

Zy"(2k + 1
nP<|X0|Zg’”)(2k+1) > ratem, Lo @k 1) e-)

Z{" 2k + 1)

2

k,m (m) <
nP(|Xo| > talS"™E(|1Z5" 2k + DL g1z ks jey)

(m) ¢
L EUZg QR+ DI gm0y iz is e )
E(|Z§" 2k + 1)])

~t , as n — oo,

where we have used (2.5) and (3.2) in the fourth line. Therefore, Y\ (2k + 1) is jointly
regularly varying with index x > 0 and the spectral measure is the same as in (3.5).

Now note that if there are two vectors A and B, A is regularly varying and
P(JA — B| > x) = o(P(|A| > x)) as x — oo, then B is regularly varying with the same
index and spectral measure as A (see, for example, Davis et al. 1999, Remark 5.11). Thus,
setting A = ng)(2k +1), B= Xgm)(2k + 1) and x = a,, it remains to show that

P(X{PQ2k + 1) = Y2k + 1)| > a,)
P(Y{" @k + 1) > ay)

O nP(XY" 2k + 1) — YY" 2k 4+ 1)| > a,) — 0,

as n — 0o,

which follows from the joint regular variation of YB’") (2k + 1) and the fact that a'*™ ~ da,
as n — oo. However, since the vectors X" (2k + 1) and Y{" (2k + 1) are finite-dimensional,
it suffices to show that, for every s € N,

nP(| X, — Y| > a,) — 0, as n — oo.

Using the recurrence equations both for Xy and Y, s times, one can easily see that, for every
seN,

X, — vl < VBY ] @+ Valele| = E.
J=1 i=j+1

Therefore, the expression nP(|X; — Y| > a,) can be estimated by nP(E > a,) and the latter
converges to zero because

E(EY) <2 ' (VA T Ea+ VAled))E(e ") < oo.

J=1 i=j+1

O

Proposition 3.3. Let (p,) be an increasing sequence such that p,/n — 0 as n — oo. Then,
for every y >0,
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lim limsup P( \/ X\ > a,y|X{"| > a,y | =0. (3.7)
Poe mmeo p<|t|<p,

Remark 3.4. In the case of a strongly mixing process, the condition p,/n — 0, as n — oo, in
combination with

noxm(y/Pn) =0

, as n — oo,
Pn
is sufficient to guarantee that (p,) is a A(a,)-separating sequence, that is,
kn
n X(m) Pn X(Wl)
Eexp| = > (=] |- |Eexp|[ =D r[|= —0, asn—oo, (38)
=1 n =1 an

where k, = [n/p,] and f is an arbitrary bounded non-negative step function on R”\{0} (see
also the comments in Remark 3.2 in Davis et al. 1999).

In order to prove Proposition 3.3 we need the following lemma.

Lemma 3.5. Let (Z,) := (log)N(%) and (S(,a)), a >0, be the random walk given by
S =89 +log 117,
where
V(t”) = (a + /e +/ls,)2 — Zaﬂe*”/zs,l{elq)} =0, reN,
and Sg”) = 0. Choose a > 0 large such that
E(r@”) < 1. (3.9)

If Zy>a and N, := inf{v = 1|Z, < a}, then

Z,<Zy+ S(,a), for every t < N, a.s, (3.10)
and the random walk (S(ta)) has negative drift.

Remark 3.6. (a) We can achieve (3.9) since (2.2) implies that E(|a 4+ vAe|*) <1 for all
u € (0, k) and

E(y@”) - E(|a + \/I£|"/2), as a — oo,

by the dominated convergence theorem. ~
(b) Since (X,) is given by the stochastic recurrence equation (2.10), the process (Z;) can
be recursively written as

Z,=Ziy +log((a+ \/ e +/1£t)2), teN, (3.11)
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where Zj = log X3 as.

Proof of Lemma 3.5. Let x = a be arbitrary. If € = 0 it can be readily seen that
(a+\/Be + Ae)* < (a + /Pe— + Ae)’. (3.12)
Now consider ¢ < 0. Then,
(a+/Be + Ae)* — (a + \/Be @ + Ae)? < 2a+/Pe /> (—¢). (3.13)
From (3.12) and (3.13), we obtain

—x 2 — “a 2 _ 2(1\/Beia/28
vl st v (1 @ty raer ) G

Taking logarithms on both sides and using the additive structure (3.11) proves (3.10). Finally,
from (3.9) and Jensen’s inequality we conclude that (S(,”)) has negative drift. O

Proof of Proposition 3.3. We start by rewriting the probability in statement (c).

P( \/ X > anp] (XS] > any>

ps|t<p,

—ppSts—p+m

:P< max |X,|>a,,y|omax |Xj|>a,,y>
sjsm

PSIspy+m

+P< max | X, > a,,y\omax |X ;| > a,,y)
<j<m

=:(J1) + (J2).

In what follows we consider only (J;); (J2) can be treated in a similar way. First, note that

m

(Jl) < ZP(maxfantsprrm |Xt| > ay, ‘le > a,,y) P(|Xj| > any)
P(|Xj‘ > Llny) P(maXOSjSm |Xj| > any)

=0

m
SZP( max j|Xt|>any||X0|>any)

=0 —pn—jStS—ptm—,

s(m+1)P< max |X,>a,,y||X0|>a,,y>
P

—pp—MSIS—p+m

—p+m

<(m+1) Y. PUX/] > auy||Xo| > any).

t=—p,—m
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Moreover, by the stationarity of (X,) and substitution, we obtain

—p+m
) =(m+1) > PX (| >awy||Xo| > ay)

t=—pp,—m

(3.15)
Pntm

=(m+1) > P(X,| > awy||Xo| > ay).

t=p—m

Using Lemma 2.3 and the notation in Lemma 3.5 with ¢ > 0 such that (3.9) holds, we can
rewrite the last expression in (3.15) as

Dntm
(m + 1)( > P(Zi > log(any), No < p— m|Zy > log(a,y)®).
t=p—m

Pntm
+ > P(Z; > log(anyY, p—m < Ny < p,+m|Zy > log(a,y))

t=p—m

pntm
+ Y P(Z, > log(any)’, Na > pu+ m|Zy > log<ana)2>>

t=p—m
=:(m+ D((K1) + (K2) + (K3)).
It remains to prove that all the K; are negligible as n — co. We follow the proof in
Borkovec (2000, pp. 202—-205). Note first that, because of the continuity of the transition

probability of Z, and (2.6), there exist constants C >0 and N € N such that, for any
n>N,x€[—n,a] and s € N,

nP(Zy > log(a,y)*|Zo = x) < C. (3.16)

This enables us now to estimate K;. Conditioning on V4 p—m—1 yields

Pntm
Ki= 3" E(lwepmlz, , = P(Zi > 108(@0 |2y 1)l 2o > log(any))
t=p—m
pntm 5 B 5
n E(1{Na<p,m}1{prmfl<7n}P(zt > log(anyV| Zp-m-1)| Zo > 1og(a,,y)2)
t=p—m
=L+ L

By (3.16),
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1 - . -
Li< ) ;E(l{NN,,m}l{ 2y wr=-m P2 > N0g(any| Z p 1) | Zo > log<any>2)
e

Pntm
C -
= ;E<1{Nu<p—m}1{2,,7,,,7124} Zy > log(any)z) (3.17)
t=p—m
st"+m—>0, as n — oo,
n

since p, = o(n). Furthermore, setting B, := {Zl >a, ..., Zy > a} for any v=2, 3, 4,
. and B; = Q, we obtain

p—m—1 py+m
L2 = E<1{Nav}l{2v<n} | ZO > IOg(any)2>
v=1l t=p-m
p—m—1 ~ ~ _
= Z (pn + m)E(lBVP(ZV < —I’l|Z1,_|)| Zy > log(any)2>
v=1
p—m—1 - B B B
= > (p+ m)E(IBVP«a +\/Beet 4 he) < —n— Zyo| Z)| Zo > log<any)2)
v=1
p—m—1 _a—(nta)/2 _ —(n+a)/2 _ 5 B
= (pn+mE| 15 P ¥<ev <¥ | Zv-1 | | Zo > log(a,y)?
r—1 Qlﬂe*ZV—l _|_A \/ﬁefzv—l _|_l
< const. p(p, + m)e""t9/2 0, as n — oo,

and therefore, with (3.17), K; — 0 as n — oo.

Next, we find an upper bound for limsup, . K3. Note first that, by the Markov
inequality, for z= 0, ¢t € N arbitrary and 7 := (V@)

t
P(S? > —z) < P45 > o=(/h2) — P(H yt > e‘“’“”) < ™Yyt (3.18)
s=1

Thus, from Lemma 3.5, (3.18) and the exponential tail behaviour of Z,
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Pntm

limsup K3 < limsup Y P(Ny = py+ m, Zy+ 5" > log(a,y)* | Zy > log(a,y)))
n—o00 n—00 t=p—m
Pntm

< limsup Z P(Zy + 89 > log(any)? | Zo > log(any)?)

=00 y=p—m

) o)
<Cc > J PS> )k o=te/22 g, (3.19)
t=p—m0 2
- t /R
<2C Z n'=2C , for some constant C > 0.
t=p—m 1 -
Finally,
pPntm t—1

Ky< Y Y P(Ny=v, Z > log(a,y) | Zy > log(a,y))

t=p—mv=p—m

Patm pptm—1
+ 3 > PWNa=v. Z, > log(a,y)* | Zy > log(asy)?)
t=p—m v=t

=: M] +M2

Similarly to K; and Kj, respectively, we derive that

lim sup M| =0,
n—oo
_pP " -
limsup M, = 2C1 , for some C > 0.
n—oo - 77
Combining everything and letting p — oo, the statement follows. O

Proposition 3.1 proved some properties for (X(,m)) and (X(,m)(2k + 1)) which turn out to be
exactly the required assumptions in Davis and Mikosch (1998) for weak convergence of point
processes of the form (3.1). If we define

M = {u € M|u({x|[x| > 1}) = 0 and u({x|x € §"}) > 0}

and if we let B(M) be the Borel o-field of M, then the following theorem is an immediate
consequence of Proposition 3.1.

Theorem 3.7. Assume (X,) is the stationary ARARCH (1, 1) process satisfying the conditions
of Theorem 2.1. Then

NX = zn:ax,/a,, LNX=3"S 6na, (3.20)
t=1

i=1 j=1
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where X, = X\ and >-32,0p, is a Poisson process on (0, o] with intensity

0 k
v(dy) = K2J P(sup H(a + \/ng) = t_]> el dt_)/_K_l dy.
1

k=15

The process Y.< 0p, is independent of the sequence of i.i.d. point processes Z] 10q,, 1= 1,
with joint distribution Q on (M, B(M)), where Q is the weak limit of

E((|9§)k)|" - \/;{:L |0§'k)|K)+1{<}(Z\t\sk60‘f))
B0 — Vi, 16171)¢

(3.21)

as k — oo, and the limit exists. E is the expectation with respect to the probability measure

dP defined in Remark 3.2(a).

Remark 3.8. Analogous results can be found for the vectors
X, = X = (X, oy [ Xm) and X2 =X = (X2, X2 ), teZ, meN,

by using (3.20) and the continuous mapping theorem. Thus, under the same assumptions as in
Theorem 3.7, we have

NX = 2 O, /a, — i i Or oyl
=

i=1 j=

—_

and
) n v o0 o0
X
N =D 00, = D) Onaes
=1 i=1 j=1

where the sequences (P;), (Q;) are the same as above and

Qs = (01 1001 ... 10, 1=1,2.

Proof. The proof is a simple application of Theorem 2.8 in Davis and Mikosch (1998).
Because of Proposition 3.1, all assumptions of the theorem are satisfied. Moreover, the
extremal index y = limy_,q E(|05)k)|" - \/;‘:1 |0§k)|")Jr /E|05)k) | of the ARARCH(I, 1) process
is specified by the formula (see Borkovec 2000)

00 k
y = KJ P(sup H(a + \//Tss) < t1> *~ldr.

1 k=150
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4. Asymptotic behaviour of the sample ACVF and ACF

In what follows we derive the limit behaviour of the sample ACVF and ACF of the stationary
ARARCH(1, 1) process considered in the previous sections. The point process results of
Section 3 will be helpful.

Define the sample ACVF of (X,) by

1n7h
Yn,X(h):;ZXthJrh, h=0,1,...,
t=1

and the corresponding sample ACF by

¥V nx(h)
yn,X(O) ’

The sample ACVF and ACF for (|X;]) and (X %) are given in the same way. Moreover, we
write

pn,X(h) =

=0,1,....

yx(h) =E(XoXs),  yxu(h) = E(Xo|'[X4|")

and
yx(h)
h) = ,
px(h) 7 2(0)
Y x11(h)
pix|i(h) = , =1,2,h=01,...,
T @
if these quantities exist. If this is the case a straightforward calculation yields
a'pB
h=a"yxy(0) = ——————
va(h) = oyx(0) 1 —a? — AE(e?)
and
h-1 _
yxe(h) = (@ + AB(E2) "y :(0) + PEEDyx(0) Y (@ +2BE)Y,  h=0,
J=0
where

2By x(0)3a’E(e?) + AE(e*)) + BE(e*)

VO = e A T 6eAB(e?) — PR

Mean-corrected versions for the sample ACVF and ACF can also be investigated. However,
one can show (with the same approach as in the proof of Theorem 4.1) that the limits remain
the same (see also Remark 3.6 of Davis and Mikosch 1998).

In order to state our results we have to introduce several mappings. Let 6 > 0,
=, LA e R™*1\{0} and define the mappings

Th’k,glM%@
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by
T 1022 nidx,) = Zﬁlntl{pﬁ"’pa}’

o2 ni0x) = 2 im0 o s b k=0,

where n, € Ny for any ¢ = 1. Since the set {x € R"*'\{0}| [x"| > 8} is bounded for any
h =0, ..., mthe mappings are a.s. continuous with respect to the limit point processes NX,
NXI and N¥. Consequently, by the continuous mapping theorem, we have in particular

T, 710(N )= E 1{‘X<0>|>,5}—>T 1710(N )= E E 1{\PQ‘°>\><§} “.1)
i=1 j7
and, for any 4, £ =0,

n

Thio(NY) = ZX(/’)X( (=5} A Thro(N) = 2 Z PO 001 T C))
t= i J

Note that, with obvious modifications, both (4.1) and (4.2) also hold for NV Xl and NXI or for
N7 X* and NX The following theorem collects the weak limit results of the sample ACVF and
ACF of (X)), (|X,|) and (X?) depending on the tail index k > 0. The weak limits turn out to
be infinite-variance stable random vectors in parts 1 and 2 of Theorem 4.1. However, they are
only functionals of point processes and have no explicit representation. Therefore, the results
are only of a qualitative nature and explicit asymptotic confidence bounds for the sample
ACVFs and ACFs cannot be constructed.

Theorem 4.1. Assume (X;) is the stationary ARARCH(1, 1) process satisfying the conditions
of Theorem 2.1 with E(e?) = 1. Let k > 0 be the tail index in (2.7) and (a,) be the sequence
satisfying (3.3) for k = 0. Then the following statements hold:

1. (a) If kK €(0,2), then

(na;zynrY(h))h:O ..... nlli (L/f)hzo ..... ms

Ve
and
d |X]
(ﬂa )/n|x\(h)> ,,,,, m— (V )h—O ,,,,, ms
| X]
d(V
(P nx)(W)n=1.... m—>< hX> ,
0 h=1,....m
where the vectors (VS(, e, Vfg) and (V(‘)XI, e V‘mX|> are jointly (ic/2)-stable in

R™*1 with point process representation



Asymptotic behaviour of the AR(1) process with ARCH(1) errors 865

i=1 j=1
and
X 0 h
I = ZZPZ\Q“HQ“ h=0,...,m,
respectively.

(b) If k € (0, 4), then
_ d
(na;*y w2 (W) heom ~ VE Vim0,
(V¥
(pn,XZ(h))h:I ,,,,, m (V—};(z> )
0

where (V())(z, R an(z) is jointly (x/4)-stable in R™*' with point process representa-
tion

Vz(z:if: 0¥ 0y h=0,...,m

i=1 j=1

2. (a) If k € (2, 4) and E(e*) < oo, then

(na,*(y nx(h) — y x(h)) .., —> (Vi) ho,...

(a2 (Pux(h) = P hetom = 72 OTE = px(WV )it

and

(a2 nyxi (B = Vi Do, ~— VYo

(1,20 /(1) = Pt~ YR OV = VSNt

where the vectors (V())(, ceey Vﬁ) and (V‘OXl, ceey V‘,fl) are jointly (x/2)-stable in
R™ 1 with

Ve = 1A — (o +a)7

vE=vX 4art |, m

\

and

=i,

yIX = 7Y LBl + Ve VX m=1.

m—1°
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Furthermore, (V, ..., 17),,(,) and (17(‘))(', ceey 17‘”)1(') are the distributional limits of
(T115(N®) = (& + D To06(N¥), (Tons(N*) = aTop15(N*Ni=1....m)
and

(T115(NXY — (@ + D) To0 6NN, (To,6(NX) — E(la + VA To 1 s(NX)) isr ),

respectively, as & — oo.
(b) If k € (4, 8) and E(e®) < oo, then

(nay* (W) = 72D o> (V) i

(1, @) = ()it 7O (VT = V) et
where (V())(z, ce, an(z) is jointly (ic/4)-stable in R™*' with
vE =78 (1= (a* + 6024 + A2E(e%))) !

v =Y L@@+ v

and (175(2, e folz) is the distributional limit of

m—1° le’

(TW3 (NX) — (a* + 6624 + A2B(e*)) To 0. (NX),

,,,,,

as 0 — 0.
3. (a) If kx € (4, ), then

(12 (B = 7260 ) it~ (G Vi0.m
(120 x(®) = px(h)) et 75 O(GE = px (NG i

and

(#2070 = 71000 ) 10, > (G oo

(n1/2<pn,x(h>—px<h)))h:1 ..... w2y OG5~ oG i e

where the limits are multivariate Gaussian with mean zero.
(b) If k € (8, ), then

(1207 (B) = 732000 0o (G Vit

(12 = pas(W)) st 7O (GF = pasWGE )it
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where the limits are multivariate Gaussian with mean zero.

Remark 4.2. (a) Theorem 4.1 is a generalization of results for the ARCH(1) process. See
Davis and Mikosch (1998), who use a different approach which does not extend to the
general case because of the autoregressive part of (X,). See Figure 1.

(b) The assumption 02 := E(e?) = 1 in the theorem is not a restriction. In cases where
the second moment is different from unity, consider the process (X,) defined by the
stochastic recurrence equation

o
0
o
o
o
0 0
S S
0 5 10 15 20 0 5 10 15 20
(a) (b)
Q
10
o
[=)
o
[Te]
=
0 5 10 15 20
(©)

Figure 1. Limit behaviour of the sample ACFs of an ARARCH(1,1) process with standard normal
distributed innovations (g,) for three different parameter choices: (a) a =02, f =1, A =04; (b)
a=04, =1, A=06; (¢c) a =08, =1, A =0.6. In the first case x = 5.49, in the second
x =2.87 and in the last ¥ = 1.35. The solid lines denote the theoretical ACFs. The dotted lines
indicate the 5% and 95% quantiles of the distributions of the sample ACFs at fixed lags. The
underlying simulated sample paths have length 1000. The confidence bands were derived from 1000
independent simulations of the sample ACFs at these lags. The plots confirm the different limit
behaviours of the sample ACFS as described in this paper.
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R R \/B/o2 +AX? e,
Xi=aX, 1+

o

s reN,

where the notation is the same as for the process (X,) in (2.1). Note that (X,) = (X,/0?).
Since the assumptions in the theorem do not depend on the parameter ﬂ the results hold for
VXZ)h 0,..m With

oL VT and (GF, G GE Yy, with 0%(GY Gf, LGPy tes:
pectively.

(c) Note that the description of the distributional limits in part 2 of Theorem 4.1 is
different than in Theorem 3.5 of Davis and Mikosch (1998). In the latter theorem the
condition

lim lim sup var 2 X, X, 0l _ —0
310 nﬂlolpv (a ; t+h X X p|< azd}>

is required. However, this condition is in general very hard to check. Therefore, we choose
another way and establish the convergence in distribution of the sample ACVF directly from
the point process convergence in Theorem 3.7.

Proof. Statements 1(a) and 1(b) are immediate consequences of Theorem 3.5(1) of Davis and
Mikosch (1998). Note that all conditions in this theorem are fulfilled because of Proposition
3.1 and Theorem 3.7. Statements 3(a) and 3(b) for the sample ACVFs follows from standard
limit theorems for strongly mixing sequences (see Ibragimov and Linnik 1971, Chapter 18).
The limit behaviour for the ACFs can be shown in the same way as, for example, in Davis
and Mikosch (1998, p. 2062).

It remains to show 2(a) and 2(b). We restrict ourselves to the case (|X;|) and only
establish joint convergence of (y,,x|(0), ¥4 x|(1)). All other cases can be treated similarly,
or even more easily. Recall that, under Py, sign(x)» (X,)= (|X,]), where the process (X /) is
defined in (2.10). Thus, it is sufficient to study the sample ACVF of the process (X,).

We start by rewriting y, 7(0) using the recurrence structure of (X))

na,2(7,50) ~ 75(0) = @, ZZ( ) —E(Y))
= (@ a3 (K - E(E)
t=1

0735 (24 A + 4530 )
t=1

We conclude that, for any 6 > 0,
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(1 — (& 4+ A)na,*(y, 1(0) — 7 £(0))

= a;Z Z(ﬂ +l/\~/%)(£%+l — l)l{f(,Sa"é} =+ 2aa;2 Z)’Zt\/ﬂ +AX%€I+] 1{)_(,San(5}
=1 t=1

+a2 ) (5(,, [B+AX2e1 + (B+AXT)(eL, — 1)) (% >a,0) T 0p(1)
t=1
=:(I1) + (I2) + (I3) + op(1).

We show first that (/;) and (/) converge in probability to zero. Note that the summands
in (/,) are uncorrelated. Therefore,

n

var(/;) = a;4 Zvar((ﬁ +/1X§)1{\Y,|$an6}(8%+l — 1))

=1
n ~
<a* ZE((,B +/1)(3)21“)?4%5})13((33+1 _ 1)2)
=1
~ const. 0+, as n — o9,
— 0, as o | 0,
where the asymptotic equivalence comes from Karamata’s theorem on regular variation and
the tail behaviour of the stationary distribution of (X,). Note that the condition E(¢*) < oo is

crucial. Analogously, one can show that

lim lim var(/;) = 0.
0]0 n—oo

Next we consider (/3). From (2.10) we obtain
(I3) = a, Zn;)ﬁl Lg2a,0) — (@ +D)a,? zn;)?%l{f(pana} — Ba,’ Zn; L% ~a,0)
= P =
L1110 (N = (@ + DT o (V) = Ba, Ty 1 5(NIY))
T (N = (@ + )Ty (N, “3)

where the limit has expectation zero. Finally, following the same arguments as in Davis and
Hsing (1995, pp. 897—-898), the right-hand side in (4.3) converges in distribution to a (x/2)-
stable random variable, as 6 — 0.

Now consider y, 3(1). We proceed as above and write
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na,? (7, 5() = yz()) = @, > X, X111 — BE(Xo X))
1

-
Il

n—1
a2 (fer (X)) = B(fe,., (X))
t=1

n—1
+ a;? Z(i{ﬂa + VA1 | — B(XHE(|a + \/Ze|))
t=1

=:(J1) + (J2),

where f.(y) = y(|ay + /B + Ay*z| — |ay + VAyz|) for any y = 0 and z € R. First, we show
that (J;) converges in probability to zero. Observe for that purpose that
n n ~ ~
=a,* Y3 cov(|fe, (XD |fer (XD

Var< ) < var (a,,2 Z | fg,+1()?t)|> (4.4)
t=1
=1 s=1

Now note that |f.(y)| < y\/ﬁ|z| for any y = 0 and z € R. Therefore, and since x > 2, there
exists a 4 > 0 such that

E(|f(X)]P**) < /BE(|eME(| X ) < . (4.5)

Because of (4.5) and the geometric strong mixing property of (X,), all assumptions of
Theorem 17.2.2 of Ibragimov and Linnik (1971) are satisfied and we can bound (4.4) by

n—1
a2 fern(X) = E(fe,, (X))
t=1

n—1
const. a,*n Z(p"‘/ @Fuys, (4.6)
s=0

which converges to zero as n — oo since k < 4. Next we rewrite (J,) and obtain

(J2) = E(la + VAe))na,? (v, +(0) — ¥ £(0))

n—1
+ a;2 ZX%I{)?Igané} (|a —+ \/Igt+l‘ — E(|a + \/ISD

1
n—1

+a,? ZX%I{X»%@} (|a + V2| — E(la + \/Ie|))
t=1

= (K1) + (K3) + (K3).

By (4.3), Kl)i Tl,l,(;(Nm) —(a? +l)To,0,5(N‘X‘). Moreover, using the same arguments as
before one can show that limgolim,_. var(K,) = 0. Hence (K3) = op(1). It remains to
consider (K3). We begin with the decomposition
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n—1

(K}) = azsztl{)?,>a,,é} (|(ZX[ + \/1)2;8[+1‘ - |O£X, + \/ﬁ+/1)2%8,+1|>
t=1

n—1 n—1
+ @, XXl g oasy — @ > Xilig =g 5 E(a+ Vig)).
=1 t=1

Proceeding the same way as in (4.4)—(4.6) the first term converges in probability to zero.
Thus,

(K3) £ 0p(1) + To,s(NX) — E(Ja + Ve Toos(N1X)

d
5 Toa6(N™) = E(la + Vae]) To0s(NX)),

where the limit has zero mean and converges again to a (i/2)-stable random variable as
0 | 0. Since for the distributional convergence only the point process convergence and the
continuous mapping theorem have been used, it is immediate that the same kind of argument
yields the joint convergence of the sample autocovariances to a (i/2)-stable limit as
described in the statement. Finally, the asymptotic behaviour of the sample ACF can be
shown in the same way as in Davis and Mikosch (1998, p. 2062). O

Acknowledgement

I gratefully acknowledge the hospitality of the school of Operations Research and Industrial
Engineering of Cornell University where the bulk of this work took place. The research was
supported by a Swiss National Science Foundation grant. Furthermore, I am very grateful to
Thomas Mikosch and Claudia Kliippelberg for useful comments. Last, but not least, I am
particularly grateful to one referee for helpful suggestions which improved the paper
considerably.

References

Basrak, B., Davis, R.A. and Mikosch, T. (1999) The sample ACF of a simple bilinear process.
Stochastic Process. Appl., 83, 1-14.

Borkovec, M. (2000) Extremal behavior of the autoregressive process with ARCH(1) errors. Stochastic
Process. Appl., 85, 189-207.

Borkovec, M. and Kliippelberg, C. (2001) The tail of the stationary distribution of an autoregressive
process with ARCH(1) errors. Ann. Appl. Probab. To appear.

Breiman, L. (1965) On some limit theorems similar to the arc-sine law. Theory Probab. Appl., 10,
323-331.

Brockwell, PJ. and Davis, R.A. (1991) Time Series: Theory and Methods. New York: Springer-Verlag.

Davis, R.A. and Hsing, T. (1995) Point process and partial sum convergence for weakly dependent
random variables with infinite variance. Ann. Probab., 23, 879-917.



872 M. Borkovec

Davis, R.A. and Mikosch, T. (1998) The sample autocorrelations of heavy-tailed processes with
application to ARCH. Ann. Statist., 26, 2049—2080.

Davis, R.A. and Resnick, S.I. (1985) More limit theory for the sample correlation function of moving
averages. Stochastic Process. Appl., 20, 257-279.

Davis, R.A. and Resnick, S.I. (1986) Limit theory for the sample covariance and correlation functions
of moving averages. Ann. Statist., 14, 533-558.

Davis, R.A. and Resnick, S.I. (1996) Limit theory for bilinear processes with heavy tailed noise. Ann.
Appl. Probab., 6, 1191—-1210.

Davis, R.A., Mikosch, T. and Basrak, B. (1999) The sample ACF of multivariate stochastic recurrence
equations with applications to GARCH. Technical Report.

Embrechts, P, Kliippelberg, C. and Mikosch, T. (1997) Modelling Extremal Events for Insurance and
Finance. Berlin: Springer-Verlag.

Engle, R.F. (1982) Autoregressive conditional heteroskedasticity with estimates of the variance of U.K.
inflation. Econometrica 50, 987—1008.

Goldie, C.M. (1991) Implicit renewal theory and tails of solutions of random equations. Ann. Appl.
Probab., 1, 126—-166.

Ibragimov, I.A. and Linnik, Yu.V. (1971) Independent and Stationary Sequences of Random Variables.
Groningen: Wolters-Noordhoff.

Kallenberg, O. (1983) Random Measures, 3rd edition. Berlin: Akademie-Verlag.

Kesten, H. (1973) Random difference equations and renewal theory for products of random matrices.
Acta Math., 131, 207-248.

Mikosch, T. and Starica, C. (2000) Limit theory for the sample autocorrelations and extremes of a
GARCH(1, 1) process, to appear in: Ann. Statist., 28, 1427—-1451.

Resnick, S.I. (1997) Heavy tail modeling and teletraffic data. With discussion and a rejoinder by the
author. Ann. Statist., 25, 1805-1869.

Resnick, S.I. and van den Berg, E. (2000) A test for nonlinearity of time series with infinite variance.
Extremes, 3, 145—172.

Weiss, A.A. (1984) ARMA models with ARCH errors. J. Time Ser. Anal., 3, 129—143.

Received February 2000 and revised July 2001



