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We consider increasing semi-stable Markov processes starting at x > 0 and specify their asymptotic
behaviour in law as x — 0+. This can be viewed as an extension of a result of Brennan and Durrett
on the asymptotic size of a particle undergoing a certain type of random splitting.
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1. Introduction and main result

Motivated by certain limit theorems, Lamperti (1962; 1972) introduced the notion of semi-
stable Markov process (also called self-similar Markov process) as follows. Let X =
(X(#), t = 0) be a strong Markov process with values in ]0, oo[, and denote by P, its law
starting at X(0) = x. For a > 0, call X semi-stable with index 1/a whenever it satisfies the
following scaling property:

the distribution of (AX(k~%¢), t = 0) under P, is Py, (1)

where &k > 0 is arbitrary. The main result of Lamperti (1972) is a connection between semi-
stable Markov processes and Lévy processes using a time substitution; see Carmona et al.
(1994; 1997), Vuolle-Apiala (1994) and the references therein for some applications. More
precisely, suppose X is a semi-stable Markov process with index 1/a, starting say at x > 0,
and set

o ds
V(’):LW’ =0

Provided that y(co) = co almost surely, we may consider the inverse functional C of y, and
then

&, =log(X o C(1)) — logx, t=0,

is a Lévy process starting at 0. Conversely, if £ = (&, t = 0) is a Lévy process starting at 0,
define, for any fixed y € R,
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t

C(t) = Joexp(a(és + y))ds, t=0.

Suppose that C(c0) = co a.s., and denote by y the inverse functional of C. Then
X = (exp{&in + 3}, 1=0)

is a semi-stable Markov process with index 1/a starting at x = e”.

Lamperti (1972) raised the question of whether one can make sense of X starting at 0+,
which has a crucial importance when one analyses the possible limit processes that can
arise from a sequence of normalized Markov processes; see also Vuolle-Apiala (1994).
Essentially, this amounts to the problem of entrance from 0+, that is, to the asymptotic
behaviour of PP, as x — 04 (of course, by the Markov property, it suffices to consider the
behaviour of the one-dimensional distributions). By scaling property (1), this is also
equivalent to studying the asymptotic behaviour of X(#) as ¢ — oo when the semi-stable
process starts at some fixed point.

We focus here on the case where X has non-decreasing sample paths, that is, when & is a
subordinator — see Chapter III in Bertoin (1996) for background. This is quite a special
case; however, it has some interesting applications that will be discussed at the end of this
section. To state our main result, we need to introduce some notation. We assume
henceforth that & is a subordinator and write @ for its Laplace exponent, that is,

E(exp(—g&1)) = exp(—1P(q)), t,9=0.
The celebrated Lévy—Khinchine formula enables us to express the Laplace exponent in the
form

®(q) = dg + j (1=,

10,00
where d = 0 is the drift coefficient and IT the Lévy measure. We shall implicitly exclude the
case where & is arithmetic, that is, where the drift is d = 0 and the Lévy measure IT is
supported by »N for some r > 0 (this case can be treated by a simple variation of our
argument). Finally, we write m for the mean of the subordinator,

m=F&)=d+ J]O [xH(dx) = P'(0+) € 10, o0].

We are now able to state our result.

Theorem 1. (i) If m < oo, then for every t > 0, P (X(¢) € -) converges as x — 0+ to the
entrance law at 0+, Py, (X(¢) € -). More precisely, the latter is determined by the following
identities:

1
Eo (X (1)) = p

(k — 1!

—aky _
Eo+ (X (0) )_atkaD(a) .o D(a(k - 1))’

for k=2,3,.....
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(ii) If m = oo, then for every t >0, P.(X(t) € -) converges as x — 0+ to the Dirac
point mass at oo.

The formulae for the moments in Theorem 1 are reminiscent of those obtained by
Brennan and Durrett (1987, p. 114) — see their equation (3). Let us now explain the
connection. Motivated by a model for polymer degradation, Brennan and Durrett considered
the evolution of a particle system in which each particle of size ¢ waits an exponential
length of time with parameter ¢* and then undergoes binary splitting into a left particle of
size /V and a right particle of size (1 — V). Here, V is a random variable with values in
10, 1] which has a fixed distribution and is independent of the past behaviour of the system.
Suppose now that we start at the initial time with a single particle of unit size; we focus on
the leftmost particle and write ¢, for its length at time ¢

From the preceding verbal description, one can easily see that the process X =
(1 /ft, t = 0) is an increasing semi-stable Markov process with index 1/a, starting at 1.
More precisely, the subordinator & resulting from Lamperti’s transformation is a compound
Poisson process with Lévy measure (i.e. jump intensity) the distribution of —log V, that is,
II(-) = P(—log ¥ € -). In other words, its Laplace exponent is given by

D(g) = E(1 —exp{glogV}) =1 -EWY), qg>0. )

It follows from scaling property (1) that for every ¢ > 0, the distribution of té? is the same as
that of X(1)~* under P, for x = /% Provided that the variable —log ¥ is not arithmetic
and has finite mean E(—log V') := m, we then deduce from Theorem 1 that

téf converges in distribution as # — oo towards a variable Y, 3)

where the distribution of Y is specified by its integer moments,
—a 1
E(r) = o (X(D) ™) = —.
am

(k —1)!

E(Y*) = Eor (X(1)*) = am®(a) ... D(a(k— 1))’

for k=2,3,...,

in which @ is given in terms of the splitting variable 7 by (2). This is precisely the result
observed by Brennan and Durrett. In turn, a continuous-time version of the argument
developed by Brennan and Durrett provides key steps to establishing Theorem 1.

We stress that Theorem 1 is also relevant to the investigation of a more general type of
self-similar fragmentation considered in Bertoin (2001) — roughly speaking, the situation
treated there includes cases in which particles undergo splitting infinitely many times on
any non-trivial time interval. Indeed, the process giving the mass of a tagged fragment as
time passes is then a decreasing semi-stable process whose parameters are specified in
terms of the characteristics of the self-similar fragmentation (for details, see Bertoin 2001),
and thus its asymptotic behaviour as time goes to infinity can be deduced from Theorem 1.

The proof of Theorem 1 will be presented in the next section. Some partial results on the
entrance law for semi-stable Markov processes having only negative jumps are presented in
Section 3.
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2. Proof of Theorem 1

To start with, we introduce the so-called age and residual lifetime processes

Ar=1t—Epp-, Ri=&1pn—1t
where L is the local time, that is,
L(t)y=inf{s =0: & = t}, t=0.

We recall a well-known consequence of the renewal theorem (see, for instance, Bertoin et al.
1999).

Lemma 2. () If m < oo, then (A, R,) converges in distribution towards (UZ, (1 — U)Z) as
t — 00, where the random variables U and Z are independent, U is uniformly distributed on
[0, 1] and the law of Z is given by

P(Z € dz) = m~ ' (ddo(dz) + zI1(dz)), z=0,

with 8¢ standing for the Dirac point mass at 0.
(i) If m = oo, then (A,, R;) converges in probability towards (co, 00).

We will deduce Theorem 1 from the following limit theorem, which in turn is essentially
a consequence of Lemma 2. Recall that we denote by X the (right-continuous) semi-stable
Markov process associated with & by Lamperti’s time substitution, and that [P, stands for
the law of X started from x.

Proposition 3. Denote the first passage time of X above a level b > 0 by
T, =inf{t =0 : X(¢) > b}.
(1) If m < oo, then the distribution of (Ty, X(Tp)) under P, converges as x — 0+ fto
the law of the pair
00
(C exp(—aUZ)J exp(—aé&y)ds, bexp((1 — U)2)),
0

where & U and Z are independent, and U and Z are as in Lemma 2.
(i) If m = oo, then the distribution of (Tp, X(T}p)) under P, converges as x — 0+ to the
Dirac point mass at (0, 00).

The proof of Proposition 3 relies on four simple results on subordinators.

Lemma 4. For every t > 0, let §<’> be the time-reversed process given by

En {&m— —&wm-o- I s <L),
: &s if s = L(1).

Then & and é‘(’) have t~he same distribution, and moreover the local time L, the age AD and
the residual lifetime R of ED satisfy
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m=rLn, A"=4, R’ =R.

Proof. The law of L(#) has at most countably many atoms, none of which can be 0. Thus the
set of real numbers which can be expressed in the form (x/ k)~'/", where x is an atom and k
and n positive integers, is at most countable. Hence there exists a > 1 which cannot be
expressed in the preceding form so that P(L(#) = ka~") = 0 for every k, n € N. Pick such an
a>1, and set k(n) = [a"L(?)], where [-] refers to the integer part. We thus have a.s.

a "k(n) < L(t) and lim a "k(n) = L(?). 4)
Next, let

Elem _ Erar — E(han—s)— if s <ka™",
* &s if s = ka™".

By the duality lemma (see, for example, Bertoin 1996, p. 45), the process é(k’”) has the same
law as & for each fixed k, n. On the other hand, we have the equivalence

=(k, (k,
k= k(n) & Ear <t and Eggpnar =t ER < rand E7) L =1,

so that, for every measurable functional F = 0,

E(FERDM) = N EFER), Ehn <t < EFDL )
k=0

I
NgE

ECF(E), Skar < 1 =< Eks1ya)

S
Il

0

E(F(E)).

We have thus proved that for every n, é(k(”)’”) has the same law as §&. When n — oo, we see
from (4) that é_(ck(”)’") converges a.s. to ég’) for every s, t = 0. We thus obtain that £ and £
have the same finite-dimensional distributions, and hence the same law. Finally, the identities
for the local time, age and residual lifetime are clear from the construction. O

Corollary 5. Fix 0 < x < b and set t = log(b/x). The distribution of (T, X(Tp)) under P,
is the same as that of

L(5)
(ba exp(—aA,)J exp(—aé&y)ds, bexp (Rt)> .

0

Proof. Recall the identities X o C(s) = exp(&, + logx) and C(s) = J"OY exp(a(&, + log x))du.
It follows that

L(1)
Ty — J exp(a(é, +logx)ds,  X(Ty) = bexp(R).
0
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Next, recall Lemma 4. We have on the one hand

X(Ty) = bexp(R"),
and on the other hand, by straightforward calculations,

L(0)
nzjemmaﬂ%mw
0

L(1)

=emwaMgb—ao—§u&»4; exp(—alELi- — Ewns))ds

- L(1) N
= b* exp(—aAY’)J exp(—a&Myds.
0
Lemma 4 now completes the proof. O
When m = oo, Proposition 3(ii) follows immediately from Corollary 5 and Lemma 2,
and so does Theorem 1(ii). Therefore, we shall now focus on the finite-mean case. The

third lemma is a standard consequence of the renewal theorem. For every s > 0, write Dy
(D) for Skorohod’s space of cadlag functions on [0, s] (on [0, o).

Lemma 6. Let F : Dy — R and G : [0, oo[> — R be measurable bounded functions. If
m < oo, then

lim E(F(§y, t < 5)G(4,, Ro), s < L(1) = B(F (&, r < $)E(GUZ, (1 - U)2))
where the pair (U, Z) is as in Lemma 2.
Proof. By the simple Markov property at time s, we have
E(F(Er, r =9G4y, R, s < L(1) = J[O ,]P(SS € AE(F(Er, r =< 9)|& = )E(G(4;—x, R—)).
According to Lemma 2, we have, for each fixed x, that
lim B(G(4,—, Ri—x)) = H(G(UZ, (1 - U)Z)).

We now deduce by dominated convergence that

lim E(F(E,, r < $)G(4,, R)), s < L(1) = EF(&,, r < )EG(UZ, (1 - U)2)),
which establishes our claim. O
Finally, we derive from Lemma 6 the following limit result.

Corollary 7. Suppose m < oco. Then as t — oo, the triplet
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L(1)
J exp(_ags)dsa At) Rt
0

converges in distribution towards
(J exp(—aé&)ds, UZ, (1 — U)Z),
0
where &, U, Z are independent and U and Z are as in Lemma 2.

Proof. On the one hand, for every ¢ = 0 and x, y > 0, we have, for every s > 0,

L(D)
p(t) = [P’(J exp(—a&,)dr > ¢, A, > x, R, > y)
0

= IP(J; exp(—a&)dr>c, A, >x, R, >y, s < L(t)).
We deduce from Lemma 6 that
ligglfp(t) = P(J; exp(—a&,)dr > c) P(UZ>x,(1—-U)Z>y),
and since s can be chosen arbitrarily large,
limiogfp(t) = [P’(J:O exp(—a&,)dr > c> P(UZ >x, (1 —-U)Z > y).
On the other hand, we have, for every ¢ > 0 and s > 0,

p(H) < IP(J exp(—a&,)dr >c—¢e, 4, >x, R, >y, s < L(t))
0

o0

T P(s > L(1)) + [FD(J

s

exp(—ag,)dr = g) .

Because J"OOO exp(—a&,)dr < oo a.s., the third term in the sum can be made as small as we
wish by choosing s sufficiently large. We then apply Lemma 6 again and deduce (since ¢ > 0
can be taken arbitrarily small) that

lim sup p(¢) < P(Jooexp(—a&)dr = c> P(UZ > x, (1 —U)Z > y).
0

t—00

The proof of Corollary 7 is now complete. O

Proposition 3(i) now follows immediately from Corollaries 5 and 7; so all that is needed
is to establish Theorem 1(i). But since, for every ¢, b > 0, one has

P(Ty <) =P(X(t)>b) < P(T) <),



202 J. Bertoin and M.-E. Caballero

it follows from Proposition 3 that P,.(X(z) € ) converges weakly as x — 04 towards
Py (X(¢) € -), where the latter is the law of the variable

—1/a

1'% exp(UZ) (Jmexp(—aés)ds) ,
0

in the notation of Proposition 3. The distribution of the exponential integral fgo exp(—aéy)ds
has been determined by Carmona et al. (1997) — see their Proposition 3.3. Its integer
moments characterize its law and are given in terms of the Laplace exponent ® by

E Jocex (—ak)ds B k=12 )
o LT aes (@) ... Dak) SR

As a consequence, we can calculate the moments [Ey, (X(#)~*) by applying (5) and the
simple identity

E(exp(—qUZ)) = %Z), for ¢ > 0.

The assertion that these moments determine the entrance law Py, (X(¢) € ) is immediate
from Carleman’s condition (see, for example, Carmona et al. 1997, Proposition 3.3).

Remark. 1t is interesting to compare Theorem 1 and equation (5) to derive the identity

00

1
[I:D0+(X(1)_a S dx) = mP(J

exp(—a&y)ds € dx) .
0

This result has been recently extended by Bertoin and Yor (2001) to general (i.e. not
necessarily increasing) semi-stable processes.

3. On the case without positive jumps

To conclude this paper, let us briefly discuss the case of a semi-stable process having only
negative jumps, that is, when & is no longer a subordinator, but rather a Lévy process with no
positive jumps. The situation where & drifts to —oo is of no interest in the framework of this
paper, because then it is easy to see that the semi-stable process reaches 0 in a finite time a.s.,
and that this absorption time tends to 0 when the starting point tends to 0. So, we henceforth
assume that § is a Lévy process with no positive jumps that does not drift to —oco, and refer
to Chapter VII in Bertoin (1996) for background.

A natural way to tackle entrance from 0+ is to search for an extension of Proposition 3.
Indeed, if one can establish the convergence as x — 04 of the distribution under P, of the
pair (T, X(T}p)) of the first passage time above a level b > 0 and the position at this
passage time, then an application of the strong Markov property at time 7, yields the
existence of a unique entrance law at 04, that is, the one-dimensional distribution of the
self-similar Markov process that starts at 0, and continuously enters ]0, oo[. The absence of
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positive jumps ensures that X(7,) = b provided that X(0) = x < b, so we need only study
T». More precisely, we obtain

Po (X (1) = b) = Po (T < 1, X(1) = b)
e J[O ]Pb(X(t —u) = b)Py, (T} € du).

By Lamperti’s construction, the law under P, of T} is the same as that of

7(log(b/x))
|| et + log s
0

where 7(#) = inf{s : & > t}. Properties of Lévy processes conditioned to stay positive (for
details, see Bertoin 1996, Section VII.3) can be used to determine the asymptotic behaviour
of this quantity as x — 0. Specifically, let &I = (SI,, s = 0) be distributed as & conditioned
to stay positive, and introduce its last passage-time process A(-) = sup{s =0 : El, < -}
According to Theorem VII.18 in Bertoin (1996), the processes (&, 0 <s < 7(¢)) and
(t— g&(;)ﬂ)f’ 0 < s < A(?)) have the same distribution, so the law under P, of T is also the
same as

Alog(b/x))
J exp(a(logb — El))ds.

As x — 0+, the latter converges to 5“1, with

1 ::J exp(—aEI)ds.
0

It is interesting to point out that the variable 7 is self-decomposable, that is, for every
0 < ¢ <1, there exists a variable J,. which is independent of I and such that J. + ¢/ has
the same law as I (see, for example, Sato 1999). Specifically, according to Corollary VII.19
in Bertoin (1996), the process shifted by the last passage time A(—(1/a)logc),

[ —1
ES T gs+ﬂ(f(1/a) logc) 10gC /a’ s =0,

is distributed as &' and is independent of (51, 0<s<A(—(1/a)logc)). As we can re-
express [ in the form

A(—(1/a) log ¢) 00
I= J exp(—a’g'l)ds + cJ exp(—aé&y)ds,
0 0
the self-decomposability follows.

One can also calculate the moments of [ using the expression for the potential density of
&' (see Bertoin 1996, p. 206) and a standard formula for the moments of additive func-
tionals of Markov processes (see, for example, formula (3.4) in Fitzsimmons and Getoor

1992). For instance, elementary computations show that the first three moments are given
by
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1

E(D) = T(a)’

N 1 7 1
B = 2(W(a)2 %a)%za))’

3 _ L 2 1
E(I") =6 (]Ij(a)3 W(a)2W(2a) + lP(oc)‘P(ZOL)‘PG05)) ’

where W is the Laplace exponent of & The formulae for higher moments become
increasingly involved. Plainly, these calculations are relevant to the law of the supremum
S; = sup{X;, 0 < s < ¢} under Py, ; however, it is not clear whether explicit results can be
derived for the expression of the entrance law.
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