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We propose a recursive stochastic algorithm with decreasing step to compute the invariant distribution


 of a Brownian diffusion process, in which we approximate 
( f ) for a wide class of possibly

unbounded continuous functions f. We consider a somewhat general setting which includes cases

where the diffusion may have several invariant distributions. Our main convergence result contains as

a corollary the almost sure central limit theorem. Further, we investigate the weak rate of convergence

of the algorithm. We show, in the class of polynomial steps ªn ¼ n�Æ, that it can be at most n1=3

when the white noise has third moment zero and n1=4 otherwise, where n denotes the number of

iterations of the algorithm.
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1. Introduction

The aim of this paper is to propose and study a stochastic recursive algorithm for the

computation of the invariant distribution 
 of a Brownian diffusion process

dYt ¼ b(Yt)dt þ � (Yt)dWt, (1)

where b : Rd ! Rd is a continuous vector field, � is continuous on Rd with values in the set

M(d 3 q) of matrices with d rows and q columns, and W is a q-dimensional Brownian

motion.

Invariant distributions are crucial in the study of the long-run behaviour of diffusions. We

refer the reader to Has’minskii (1980) and Ethier and Kurtz (1986) for background on the

stability of stochastic differential systems. In general, the functions b and � are given by

some physical model, and a numerical procedure for the computation of the invariant

distribution is needed. A typical situation of this kind is given by randomly perturbed

mechanical systems (see Soize 1995). Talay (1990; 2002) was the first to design and

analyse such a procedure, and we will briefly discuss below the difference between his

approach and ours.
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In order to motivate our algorithm, recall that if the diffusion is stationary and ergodic

with invariant distribution 
, then, for every 
-integrable function f,

lim
t!þ1

1

t

ð t

0

f (Ys)ds ¼
ð
Rd

f d
 ¼ 
( f ) almost surely:

This suggests the use of the average of f along the path of the diffusion as a proxy for 
( f ).

However, since the exact simulation of the diffusion Y itself cannot be achieved, we first

discretize the diffusion and then compute a discrete analogue of the average. Therefore, we

propose an algorithm consisting of two successive phases.

Phase I: Discretization. Compute the Euler discretization of (1) with a step ªn vanishing

to 0, i.e.

8n 2 N, X nþ1 ¼ X n þ ªnþ1b(Xn)þ ffiffiffiffiffiffiffiffiffiffi
ªnþ1

p
� (X n)U nþ1, (2)

where X 0 2 L0
Rd (�, A, P) and (Un)n2N� is an Rq-valued white noise defined on a

probability space (�, A, P), independent of X 0. The step sequence ª :¼ (ªn)n2N satisfies

the condition

8n 2 N�, ªn > 0, lim
n
ªn ¼ 0 and lim

n
ˆn ¼ þ1, where ˆn :¼

Xn

k¼1

ªk : (3)

Choosing a vanishing discretization step allows for a more accurate approximation of the

diffusion as time goes to infinity.

Phase II: Averaging. Form a weighted empirical measure with the Xn using a weight

sequence � :¼ (�n)n2N� satisfying the condition

8n 2 N�, �n > 0 and lim
n

Hn ¼ þ1, where Hn :¼ �1 þ . . . þ �n: (4)

Let �x denote the Dirac mass at x. For every n > 1 and every ø 2 �, set


�n(ø, dx) :¼ �1�X0(ø) þ . . . þ �kþ1�X k (ø) þ . . . þ �n�X n�1(ø)

�1 þ . . . þ �n

, (5)

and use 
�n(ø, f ) to approximate 
( f ).

For numerical purposes, it is observed that, for a fixed function f, 
�n(ø, f ) can be

recursively computed as follows:


�nþ1(ø, f ) ¼ 
�n(ø, f )þ ~��nþ1( f (Xn(ø))� 
�n(ø, f )) with ~��nþ1 :¼ �nþ1

H nþ1

: (6)

This recursive form shows that 
�n( f ) is given by a linear stochastic algorithm with step ~��nþ1

and pseudo-innovation f (Xn) (at time nþ 1).

Our general almost surely weak convergence result for 
�n(ø, dx) is Theorem 3, stated in

Section 2. Since the full statement of Theorem 3 is somewhat technical, we state a slightly

simpler version (with �n ¼ ªn) usually sufficient for practical purposes.
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Theorem 1. Assume that there is a C2 function V : Rd ! [v�, þ1), v� . 0, satisfying the

following conditions:

kD 2Vk1 :¼ supx2Rd kD 2V (x)k , þ1, and lim
jxj!þ1

V (x) ¼ þ1; (7a)

j=V j2 þ jbj2 < cV V for some cV . 0, and Tr(���)(x) ¼ o(V (x)) as jxj ! þ1;

(7b)

(=V jb) < �ÆV þ �, for some Æ 2 R�þ, � 2 R: (7c)

If the white noise U1 has moments at any order and if (1) has a unique invariant measure 
,

then, for every continuous function f satisfying f (x) ¼ o(V k(x)) for some k 2 N,

limn 
ªn( f ) ¼ 
( f ) a.s.

Assumption (7b) is a no-explosion condition for the diffusion process, whereas (7c) is a

stability condition that guarantees the existence of (at least) one invariant distribution.

Theorem 3 covers more general situations of interest, in particular the cases �n 6¼ ªn,

Tr(���) 2 V or U1 with finitely many finite moments. This theorem also has some

interesting theoretical consequences. One of these is that, applied to the Ornstein–

Uhlenbeck process with ªn ¼ �n :¼ 1=n, it yields the celebrated almost sure central limit

theorem for sequences of independent and identically distributed (i.i.d.) random variables

(see Brosamler 1988; Lacey and Philip 1990; Berkes and Csáki 2001). This fact is

established in Section 5.

In Section 6, we analyse the rate of convergence of our algorithm when the invariant

distribution 
 is unique. More precisely, we study 
�n(ø, f ) for test functions f of the form

f ¼ Aj, where A stands for the infinitesimal generator of (1). Although the choice � ¼ ª
turns out to be optimal in many cases, it is worth mentioning that the results on the rate of

convergence for 
ªn(ø, f ) rely on the almost sure convergence of auxiliary weighted sums

with � 6¼ ª. Our study shows that the normalized error may weakly converge towards either

a Dirac mass or a centred Gaussian measure. Actually, both types of limit can be observed

for a given rate, depending on the choice of step sequence (see the beginning of Section 6

for details).

In order to put our results in the context of the recent literature on invariant distribution

approximation, let us first recall that the rate of convergence of the semigroup Pt(x, dy)

towards 
 has been thoroughly investigated (see Ganidis et al. 1999). Actually, it may

converge quite fast to 
 (in variation) so that Pt(x, dy) $ 
 for reasonably large t. Since Pt

is generally not explicitly known, it seems natural to approximate Pt by L(Y
h

n), nh $ t,

where Y h denotes a discretization scheme with constant step h . 0, e.g. the Euler scheme

given by

Y
h

nþ1 ¼ Y
h

n þ hb(Y
h

n)þ
ffiffiffi
h
p

� (Y
h

n)U nþ1:

Finally, one estimates L(Y
h

n) using N trials of a Monte Carlo simulation. This method induces

three different errors (dw denotes a distance for the weak topology): dw(Pt(x, dy), 
),

dw(L(Y
h

nh), Pt(x, dy)) and the O(N�1=2) induced by the MC simulation.

One way to improve on this first approach is to use the ergodic properties of the

Recursive computation of the invariant distribution of a diffusion 369



diffusion (if any). Thus, inferring that, for a small enough step h, the discretization scheme

(Y
h

n)n2N� is an ergodic Markov chain with invariant distribution 
h, one has

P-a:s:
1

n

Xn

k¼1

�
Y

h

k

weakly converges to 
 h: (8)

In this method, there are only two sources of error: that in (8), which can generally be

controlled by a central limit theorem; and that in dw(
 h, 
), which can be estimated along

smooth enough functions f. This method was first designed and studied by Talay (1990). He

obtains some explicit rates for dw(
 h, 
) (but not for the convergence in (8)).

Another alternative is to get rid of the asymptotic methodological error due to the step h

of the discretization scheme. To this end one may consider a discretization scheme with a

vanishing step. This idea was investigated by Basak et al. (1997) and also appears in

Pelletier (1998, Theorem 7): it is established, under suitable assumptions, that the recursive

sequence (Xn)n2N defined by (2) converges weakly towards the unique invariant distribution


 of the diffusion. Here the two sources of error are dw(X n, 
) and the Monte Carlo

fluctuations.

Our algorithm combines the advantages of both approaches: the computation of 
�n( f ) is

recursive as in (8) and almost surely does converge towards its true target 
( f ) (at least for

a wide class of unbounded continuous functions f ). From a technical point of view, we

obtain this result under less stringent assumptions on the underlying diffusion: even the

uniqueness of the invariant distribution 
 is not crucial. Note, however, that Talay (1990)

and Basak et al. (1997) require strong ergodicity assumptions on the diffusion.

There is a formal analogy between the recursive procedure defined by (2) and (5) and

that designed in Fort and Pagès (1998) (see also Pagès 2001) in the framework of regular

stochastic approximation. However, in Fort and Pagès (1998) the noise is essentially

vanishing so that the asymptotics of the algorithm is described by an ordinary differential

equation.

Like any numerical method for computing the invariant distribution of a diffusion, our

algorithm is an alternative to partial differential equation methods for solving the stationary

Fokker–Planck equation: any invariant distribution 
 solves A�� ¼ 0, � > 0, �(Rd) ¼ 1,

where A� denotes the adjoint of the infinitesimal generator of the diffusion. Probabilistic

methods are especially efficient in higher-dimensional settings (d > 3) or when A is

degenerate.

Let M(d 3 q, R) denote the set of matrices having d rows and q columns. For every

A 2M(d 3 q, R), let A� 2 M(q 3 d, R) denote its transpose matrix. For every d 3 q

matrix, let kAk denote the related operator norm defined by kAk :¼ supjxj¼1 jAxj.
Let Sþ(d, R) denote the set of symmetric non-negative d 3 d matrices. For

S 2 Sþ(d, R), kSk ¼ supjxj¼1 (xjSx) ¼ maxifºig, where ºi is the ith eigenvalue of S. If S,

S9 2 S(d, R), then S < S9 if S9� S 2 Sþ(d, R). For every S 2 S(d, R), ºS :¼ max(fºig, 0).

The real ºS is the lowest real number satisfying

8y 2 Rd , y�Sy < ºS jyj2:
One may readily verify that ºS < kSk and that, if S < S9, then ºS < ºS9. By extension, if S

denotes a mapping from Rd into S(d, R), then
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ºS :¼ sup
x2Rd

ºS(x):

For every non-negative symmetric matrix S 2 Sþ(d, R), the trace operator defined

by Tr(S) ¼
Pd

i¼1Sii satisfies the inequality Tr(S) < dkSk < d Tr(S). For every A 2
M(d 3 q, R), Tr(A�A) ¼ Tr(AA�) is simply the square of the Euclidean norm of A

viewed as a vector in Rd3q.

We will make extensive use of the Chow theorem (see Hall and Heyde 1980) for

martingale increments. This yields, under suitable assumptions, the almost sure convergence

(in Rd) of a martingale having possibly non-square integrable increments.

Theorem 2 (Chow). Let (Mn)n2N� be a martingale with respect to some filtration F ¼
(F n)n2N. Then

8r 2 (0, 1], Mn !
n!þ1

M1 2 R a:s: on the event
X
n>1

E(j˜Mnj1þr=F n�1) , þ1
( )

,

where ˜Mn :¼ Mn � M n�1.

Most of the time, this theorem will be combined with the Kronecker lemma for series

(Neveu 1972):

Lemma 1 (Kronecker). Let (an)n2N� and (bn)n2N� be two sequences of real numbers. If

(bn)n2N� is non-decreasing, positive, with limn bn ¼ þ1, and
P

n>1an=bn converges in R,

then

lim
n

1

bn

Xn

k¼1

ak ¼ 0:

The rest of this paper is organized as follows. In Section 2, the main almost sure weak

convergence theorem is stated in full generality. The step and weight conditions are

(successfully) tested in some classical settings (ªn ¼ n�Æ or ªn :¼ ln�Æn, �n ¼ n��).

Section 3 deals with the almost sure tightness of the empirical (random) measures


�n(ø, dx), whereas Section 4 is devoted to the identification of the limit. Section 5 points

out the link with the almost sure central limit theorem. Section 6 deals with the weak rate

of convergence of 
�n towards the invariant measure 
. This leads to optimization of the

choice of steps according to whether the third moment E(U33
1 ) is 0 or not. Finally, some

recommendations and numerical illustrations are given in Section 7.

2. The main a.s. weak convergence results

The main assumption will be the existence of a Lyapunov function for the diffusion.

Assumption (LV, p). There exists a C2 function V : Rd ! [v�, þ1), v� . 0, satisfying, for

some p > 1,
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(i) kD 2Vk1 :¼ supx2Rd kD 2V (x)k , þ1 and lim Vjxj!þ1(x) ¼ þ1,

(ii) j=V j2 þ jbj2 þ Tr(���) < cV V,

(iii) (=V jb)þ º pTr(���) < �ÆV þ �, for some Æ 2 R�þ and � 2 R,

where º p :¼ 1
2
ºD2 Vþ( p�1)(=V 3 =V )=V .

Conditions (7) in Theorem 1 will be referred to as (LV ,1). We clearly have

(LV ,1)) (LV , p) for all p > 1. More generally, since º p is a non-decreasing function of

p, for p9 > p > 1, (LV , p9)) (LV , p). Further comments on these assumptions will be made

in Section 2.1.

Concerning the white noise, we assume that (Un)n2N� is a sequence of i.i.d. Rq-valued

random vectors, independent of X0, satisfying EjU1j2 , þ1, E(U1) ¼ 0 and 	U1
:¼

[cov(U i
1, U

j
1)] ¼ Idq. Our results are likely to remain valid for suitably dependent noise, but

for the applications that we have in mind dependent noise seems irrelevant.

Henceforth, the filtration F :¼ (F n)n2N is given by F n :¼ � (X0, U1, . . . , Un), n > 0.

Actually, we will also assume that X 0 is deterministic. This entails no loss of generality for

our main results, which can be obtained in the non-deterministic case by conditioning on

X 0.

We now introduce a condition on the steps ªn and weights �n as follows:

X
n>1

1

Hn

˜
�n

ªn

� �
þ
, þ1 and lim

n!1

1

Hn

Xn

k¼1

$$$$˜ �k

ªk

$$$$ ¼ 0: (9)

Condition (9) is clearly satisfied if the sequence (�n=ªn)n2N is non-increasing.

Theorem 3. Let p 2 [1, þ1). Assume (LV , p) and EjU1j2 p ,1. Let r 2 (0, 1]. Assume that

ª and � satisfy (9) and

X
n>1

�n

Hn
ffiffiffiffiffi
ªn
p

� �1þr
, þ1: (10)

(a) Then

sup
n2N


�n(ø, V p=(1þr)) , þ1 P(dø)-a:s: (11)

(b) When p < 1þ r, assume also that ��� ¼ o(V p=(1þr)) and
P

n>1�nªn=Hn , þ1.

Then, with probability 1, any weak limit of the sequence (
�n)n2N is an invariant

distribution for the diffusion (1).

Remark 1. When p ¼ 1þ r, the assumption that
P

n>1�nªn=Hn , þ1 turns out to be

unnecessary.

Note that (11) implies that (
�n)n2N is almost surely tight, since limjxj!þ1 V (x) ¼ þ1. If

we add to the assumptions of Theorem 3 the uniqueness of the invariant distribution of the
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diffusion, we obtain that P-a.s. 
�n¼)
(Rd )


, where 
 is the invariant distribution, and, for every

f 2 C(Rd , R),

( f (x) ¼ o(V p=(1þr)(x)) as jxj ! þ1)) (P-a:s: 
�n( f )! 
( f )): (12)

Note that if, in Theorem 3, we have � ¼ ª, condition (10) is satisfied with r ¼ 1. This

shows in particular that Theorem 1 is a corollary of Theorem 3.

Further comments are made below on the main assumptions of Theorem 3.

2.1. The Lyapunov assumptions (L V , p), p > 1

The main assumption we make on the diffusion, i.e. on functions b and �, is the existence of

a positive Lyapunov function V satisfying (LV , p). Actually, this kind of assumption is quite

standard as soon as one wishes to investigate the long-run behaviour of a dynamical system,

either in the stochastic or in the deterministic world.

Remark 2. Requiring the Lyapunov function V to be bounded away from 0 is not a true

restriction since one may always consider V þ 1 instead of V.

Remark 3. Assumptions (ii)–(iii) in (LV , p) induce a quite stringent constraint on the drift b

and on the function V. As a matter of fact (iii) implies that, for every º . 0,

ºj=V j2 þ jbj
2

º
> 2ÆV � 2�:

Combined with (ii), this yields that j=
ffiffiffiffi
V
p
j is bounded and bounded away from 0 near infinity

so that V (x) ¼ O(jxj2) and b(x) ¼ O(jxj). Actually, in most examples, V (x) 2 jxj2 and

jb(x)j 2 jxj.

Remark 4. In the more specific case where V (x) ¼ jxj2 þ A for every x 2 Rd, one can verify

that º p ¼ 2 p� 1 (so it does not depend upon the real constant A). Then (LV , p) becomes

jbj2(x)þ Tr(���)(x) < cV (1þ jxj2) for some constant cV . 0,

(xjb(x))þ (2 p� 1)Tr(���)(x) < �� Æjxj2 where Æ . 0 and � 2 R,
(13)

which we denote by (Lj:j2, p). In particular, b(x) :¼ ��x, � 2 R�þ and � (x) :¼ (1þ jxj)	,

	 2 Sþ(d, R) satisfy (Lj:j2, p) if and only if

Tr(		�) , �

2 p� 1
:

Remark 5. Lyapunov functions are typically used to derive the existence of a stationary

distribution (see Has’minskii 1980, Chapters 3–4; Ethier and Kurtz 1986). Concerning

uniqueness, at least two types of uniqueness criteria are available: uniform ellipticity

conditions for diffusions with smooth and bounded coefficients (Has’minskii 1980; Ethier and

Kurtz 1986; see also Karatzas and Shreve 1988, Theorem 5.15 and Exercise 5.40, for one-

dimensional diffusions); and asymptotic flatness (Basak and Bhattacharya 1992).
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2.2. Steps and weights

In this subsection, we will specify the step–weight assumptions of Theorem 3 when � ¼ ª
and when � 6¼ ª for two natural parametrized families of steps and weights: polynomial steps

and weights on the one hand, and log-polynomial steps and polynomial weights on the other

hand.

The case � ¼ ª. The step–weight condition (10) is equivalent toX
n>1

ªn

ˆ2
n

� �(1þr)=2

, þ1:

The condition
P

n>1�nªn=ˆn , þ1 becomes
P

n>1ª
2
n=ˆn , þ1.

For polynomial steps ªn :¼ n�Æ, these conditions become:X
n>1

ªn

ˆ2
n

� �(1þr)=2

, þ1, 0 , Æ ,
2r

1þ r
or Æ ¼ r ¼ 1

� �
,

X
n>1

ª2
n

ˆn

, þ1, 0 , Æ < 1:

For log-polynomial steps ªn :¼ (ln n)�Æ, we obtain:X
n>1

ªn

ˆ2
n

� �(1þr)=2

, þ1 , Æ . 0,

X
n>1

ª2
n

ˆn

, þ1 , Æ . 1:

The case � 6¼ ª. For polynomial steps and weights, set ªn :¼ n�Æ, 0 , Æ < 1, �n :¼ n��,

� < 1. The assumptions of Theorem 3 are fulfilled if and only if

(Æ, �) 2 0,
2r

1þ r

� �
3 (�1, 1] [ 2r

1þ r
, 1

� �� �
:

For log-polynomial steps and polynomial weights, set ªn :¼ (ln n)�Æ, �n :¼ n��, with

Æ, � . 0. Assumption (10) is then satisfied for all values of Æ and � andP
n>1�nªn=ˆn , þ1 holds if and only if � ¼ 1 or (Æ, �) 2 (1, þ1) 3 (0, 1).

3. Almost sure tightness of the weighted empirical measures

This section is devoted to the tightness of the random empirical measures (
�n(ø, dx))n2N� .
More precisely, we obtain the almost sure boundedness of the empirical moments of V

according to the integrability properties of the noise.

The key inequality is (16), which is a variant of results recently obtained in the field of

stochastic approximation (see Pelletier 1999; Basak et al. 1997). When p ¼ 1 it is the
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discrete-time version of the decay assumption AV < �� ÆV which appears in the diffusion

setting.

Theorem 4. Let p 2 [1, þ1). Assume (LV , p) and EjU1j2 p , þ1. If there exists r 2 (0, 1]

such that X
n>1

1

Hn

˜
�n

ªn

� �
þ
, þ1 and

X
n>1

�n

Hn
ffiffiffiffiffi
ªn
p

� �1þr
, þ1, (14)

then

P(dø)-a:s: sup
n2N�


�n(ø, V p=(1þr)) , þ1:

Lemma 2. (a) If (LV ,1) (i)–(ii) hold, then, for every a > 1
2

,

jV a(X nþ1)� V a(X n)j < ca

ffiffiffiffiffiffiffiffiffiffi
ªnþ1

p
V a(X n)(1þ jU nþ1j2a): (15)

(b) If, for some real number p > 1, we have (LV , p) and EjU1j2 p , þ1, then there exist

real numbers ~ÆÆ . 0 and ~�� and n0 2 N such that

8n > n0, E(V p(X nþ1)=F n) < V p(Xn)þ ªnþ1V p�1(X n)( ~��� ~ÆÆV (X n)) (16)

and, furthermore,

sup
n2N

E(V p(X n)) , þ1:

Note that part (b), stated with p ¼ 1, yields supn2N EV (X n) , þ1.

Proof. (a) It follows from the mean value theorem that

V a(X nþ1)� V a(X n) ¼ aV a�1(�nþ1)(=V (�nþ1)j˜X nþ1)

for some �nþ1 2 (X n, X nþ1) (geometric segment). Hence, using (LV ,1) (ii),

jV a(X nþ1)� V a(Xn)j < CV a�1=2(�nþ1)j˜X nþ1j: (17)

Now, =
ffiffiffiffi
V
p

being bounded by (LV ,1) (ii),
ffiffiffiffi
V
p

is Lipschitz. Hence,

V a�1=2(�nþ1) < (
ffiffiffiffi
V
p

(Xn)þ [
ffiffiffiffi
V
p

]1j˜X nþ1j)2a�1

< 22a�1(V a�1=2(X n)þ [
ffiffiffiffi
V
p

]2a�1
1 j˜X nþ1j2a�1): (18)

We also have

j˜X nþ1j < ªnþ1jb(Xn)j þ ffiffiffiffiffiffiffiffiffiffi
ªnþ1

p k� (Xn)kjUnþ1j

< C
ffiffiffiffiffiffiffiffiffiffi
ªnþ1

p ffiffiffiffi
V
p

(Xn)(1þ jU nþ1j): (19)

Plugging (18) and (19) into (17) leads to
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jV a(X nþ1)� V a(Xn)j < ca(
ffiffiffiffiffiffiffiffiffiffi
ªnþ1

p
V a(X n)(1þ jUnþ1j)þ V a(Xn)ªa

nþ1(1þ jU nþ1j)2a)

which, noting that 2a > 1, yields the required result.

(b) The Taylor formula applied to V p between X n and X nþ1 yields

V p(X nþ1) ¼ V p(X n)þ pV p�1(X n)(=V (X n)j˜X nþ1)þ 1
2

D 2(V p)(�nþ1):(˜X nþ1)32,

where �nþ1 2 (Xn, X nþ1). Now, starting from D 2(V p) ¼ pV p�1 D 2V þ p( p� 1)

3V p�2=V=V�, the very definition of º p implies that

D 2(V p)(�nþ1):(˜X nþ1)32 < 2 pº pV p�1(�nþ1)j˜X nþ1j2:

Hence

V p(X nþ1) < V p(X n)þ pV p�1(Xn)(=V (X n)j˜X nþ1)þ pº pV p�1(�nþ1)j˜X nþ1j2: (20)

At this stage, one needs to investigate successively the cases p ¼ 1 and p . 1. Assume

first that p ¼ 1. It follows from (20) and assumption (LV ,1) (iii) that

E(V (X nþ1)=F n) < V (X n)þ ªnþ1(=V jb)(X n)þ º1(ª2
nþ1jb(X n)j2 þ ªnþ1Tr(���)(Xn))

< V (X n)þ ªnþ1[(=V jb)(Xn)þ º1Tr(���)(Xn)]þ º1ª
2
nþ1jb(X n)j2

< V (X n)þ ªnþ1(�� ÆV (X n))þ º1cVª
2
nþ1V (X n): (21)

Consequently, there exist ~ÆÆ . 0 and n0 2 N, such that, for every n > n0,

E(V (X nþ1)=F n) < V (X n)(1� ~ÆÆªnþ1)þ �ªnþ1 and 1� ~ÆÆªnþ1 . 0:

Then, one shows by induction from (21) that V (Xn) 2 L1 for every n 2 N. Taking the

expectation leads, for n > n0, to

E(V (X nþ1)) < E(V (X n))(1� ~ÆÆªnþ1)þ �ªnþ1:

A simple induction yields

sup
n>n0

E(V (Xn)) <
�
~ÆÆ
_ EV (X n0

)

and completes the proof.

Assume now that p . 1. The function
ffiffiffiffi
V
p

is Lipschitz by (LV , p) (ii) since =(
ffiffiffiffi
V
p

) is

bounded. Consequently, as �nþ1 2 (Xn, X nþ1),

V p�1(�nþ1) ¼
ffiffiffiffi
V
p

2( p�1)(�nþ1) < (
ffiffiffiffi
V
p

(X n)þ [
ffiffiffiffi
V
p

]1j˜X nþ1j)2( p�1):

Then, using the following straightforward inequalities, valid for every u, v > 0,

8Æ 2 [0, 1], (uþ v)Æ < uÆ þ vÆ,

8Æ > 1, (uþ v)Æ < uÆ þ Æ(uþ v)Æ�1v < uÆ þ Æ2Æ�1(uÆ�1vþ vÆ),

one derives
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V p�1(�nþ1) <
V p�1(X n)þ ([

ffiffiffiffi
V
p

]1j˜X nþ1j)2( p�1) if 2( p� 1) < 1,

V p�1(X n)þ C(V (2 p�3)=2(X n)j˜X nþ1j þ j˜X nþ1j2( p�1)) if 2( p� 1) . 1,

(

V p�1(�nþ1)j˜X nþ1j2 < V p�1(Xn)j˜X nþ1j2 þ Cj˜X nþ1j2 p^3

3
1 if 2 p < 3,

(V (2 p�3)=2(Xn)þ j˜X nþ1j2 p�3) if 2 p . 3:

(
(22)

Combining inequality (22) with (19) leads to the following upper bound (using

v� :¼ min V . 0 for the case 2 p . 3):

V p�1(�nþ1)j˜X nþ1j2 < V p�1(Xn)j˜X nþ1j2 þ Cª p^3=2
nþ1 V p(Xn)(1þ jUnþ1j2 p): (23)

By plugging (23) into (20), one obtains

E(V p(X nþ1)=F n) < V p(X n)þ pV p�1(X n)ªnþ1((=V (X n)jb(Xn))þ º pTr(���(X n)))

þ pº pV p�1(X n)ª2
nþ1jb(Xn)j2 þ Cª p^3=2

nþ1 V p(Xn),

< V p(X n)þ pV p�1(X n)ªnþ1(�� ÆV (X n))þ CV p(X n)(ª2
nþ1 þ ª p^3=2

nþ1 ):

(24)

As ª p^3=2
n ¼ o(ªn), there exist ~ÆÆ . 0, ~�� . 0 and some n0 2 N such that, for every n > n0,

E(V p(X nþ1)=F n) < V p(X n)þ ªnþ1V p�1(Xn)( ~��� ~ÆÆV (Xn)):

The boundedness of the sequence (EV p(X n))n2N follows as in the case p ¼ 1. h

Lemma 3. Let W : Rd ! Rþ be a non-negative Borel function.

(a) If supn2N EW (Xn) , þ1 and
P

n>1(1=Hn)(˜(�n=ªn))þ , þ1, then

lim
n
� 1

Hn

Xn

k¼1

�k

ªk

˜W (Xk) < 0 a:s:

(b) If W is bounded and limn (1=Hn)
Pn

k¼1j˜(�k=ªk)j ¼ 0, then

lim
n
� 1

Hn

Xn

k¼1

�k

ªk

˜W (X k) ¼ 0 a:s:

Proof. (a) Setting, without loss of generality, �0=ª0 :¼ 0, one obtains

� 1

Hn

Xn

k¼1

�k

ªk

˜W (Xk) ¼ � �n

Hnªn

W (X n)þ 1

Hn

Xn

k¼1

˜
�k

ªk

� �
W (Xk�1) (25)

<
1

Hn

Xn

k¼1

˜
�k

ªk

� �
þ

W (Xk�1):
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The series assumption implies thatX
n>1

1

Hn

˜
�n

ªn

� �
þ
EW (X n�1) , þ1:

Hence the series X
n>1

1

Hn

˜
�n

ªn

� �
þ

W (X n�1) P-a:s:

converges in Rd . The Kronecker lemma completes the proof.

(b) This follows from (25), once it is noticed that limn �n=(Hnªn) ¼ 0. This follows from

the triangle inequality. h

Proof of Theorem 4. From Lemma 2(b), we have, for some n0 2 N,

8n > n0, E(V p(X nþ1)=F n) < V p(Xn)þ ªnþ1V p�1(X n)( ~��� ~ÆÆV (X n)),

or, equivalently,

E
V p(X nþ1)

V p(Xn)
=F n

� �
< 1þ ªnþ1

~��� ~ÆÆV (X n)

V (Xn)
:

Now set p9 :¼ p=(1þ r). For n > n0, we have, using Jensen’s inequality and the concavity

of x 7! x1=(1þr),

E
V p9(X nþ1)

V p9(X n)
=F n

 !
< 1þ ªnþ1

~��� ~ÆÆV (X n)

V (Xn)

 !1=(1þr)

< 1þ ªnþ1

1þ r

~��� ~ÆÆV (X n)

V (X n)
:

The last inequality can be rewritten as follows:

E(V p9(X nþ1)=F n) < V p9(Xn)þ ªnþ1

1þ r
V p9�1(X n)( ~��� ~ÆÆV (Xn)):

Using the fact that, for any � . 0, V p9�1 < C� þ �V p9 for some constant C�, we obtain, for

some Æ̂Æ . 0 and some �̂�,

E(V p9(X nþ1)=F n) < V p9(X n)þ ªnþ1( �̂�� Æ̂ÆV p9(Xn)),

or, equivalently,

8n > n0, V p9(X n) <
V p9(X n)� E(V p9(X nþ1)=F n)

ªnþ1Æ̂Æ
þ �̂�

Æ̂Æ
:

Consequently, the almost sure finiteness of supn2N� 

�
n(ø, V p9) amounts to showing that,

P-a.s.,
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sup
n

1

Hn

Xn

k¼1

�k

ªk

(V p9(Xk�1)� E(V p9(Xk)=F k�1)) , þ1:

Now

Xn

k¼1

�k

ªk

(V p9(Xk�1)� E(V p9(X k)=F k�1))

¼ �
Xn

k¼1

�k

ªk

˜V p9(X k)þ
Xn

k¼1

�k

ªk

(V p9(Xk)� E(V p9(Xk)=F k�1)):

On the one hand, Lemma 3(a) applied to W :¼ V p9 implies that

lim
n
� 1

Hn

Xn

k¼1

�k

ªk

˜V p9(X k) < 0:

On the other hand, the Kronecker lemma shows that the conclusion will follow from the

almost sure convergence of the martingale

Mn :¼
Xn

k¼1

�k

Hkªk

(V p9(X k)� E(V p9(Xk)=F k�1)), n > 1

(M0 :¼ 0). In turn, this almost sure convergence will follow, using the Chow theorem, from

the convergence of the series

X
n>1

�n

Hnªn

� �1þr
EjV p9(Xn)� E(V p9(X n)=F n�1)j1þr:

First, observe that

kV p9(X k)� E(V p9(X k)=F k�1)k1þr < kV p9(X k)� V p9(Xk�1)k1þr

þ kV p9(Xk�1)� E(V p9(Xk)=F k�1)k1þr

< kV p9(X k)� V p9(Xk�1)k1þr

þ kE(V p9(Xk�1)� V p9(Xk)=F k�1)k1þr

< 2kV p9(X k)� V p9(Xk�1)k1þr:

Combining this inequality with Lemma 2(a) yields

EjV p9(X n)� E(V p9(Xn)=F n�1)j1þr < 21þrCª(1þr)=2
k E(V (Xk�1) p(1þ jUk j2 p)):

Consequently the above convergence holds as a consequence of assumption (14) and

supn EV p(X n) , þ1. h
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4. Identification of the limit

In this section we characterize – P(dø)-a.s. – the weak limiting distributions of the tight

sequence 
�n(ø, dx). To this end we will essentially establish that any weak limiting

distribution 
�1(ø, dx) satisfies

8 f 2 C2
c(Rd), 
�1(ø, Af ) ¼ 0 (26)

where

A( f )(x) :¼ (bj= f )(x)þ 1

2

Xd

i, j¼1

(���)ij(x)
@2 f

@xi@xj

(x)

denotes the infinitesimal generator of the diffusion (Yt) t2Rþ . It will then follow from the

Echeverrı́a–Weiss theorem (see below) that 
�1(ø, dx) is an invariant distribution of (Yt) t2Rþ .

In fact, establishing (26) will even prove the existence of at least one invariant distribution (of

course, the assumptions we made are not optimal for that purpose, but we are looking for

much more than that).

4.1. Some background on the Echeverrı́a–Weiss theorem

The key to the identification of the limit is the Echeverrı́a–Weiss theorem (see Ethier and

Kurtz 1986, Chapter 4, Theorem 9.17) for linear operators satisfying a positive maximum

principle.

Definition 1. Let E be a locally compact and separable metric space. A linear operator A

defined on the subset D(A) of the set C0(E) of continuous functions that vanish at infinity

satisfies the positive maximum principle if

8 f 2 D(A), sup
x2E

f (x) ¼ f (x0) > 0) Af (x0) < 0:

(When E is a compact set, C0(E) is defined as C0(E) ¼ C(E)).

Theorem 5 (Echeverrı́a–Weiss). Let E be a locally compact Polish space and A a linear

operator satisfying the positive maximum principle. Assume that its domain D(A) is an

algebra everywhere dense in (C0(E), k � k1), containing a sequence ( fn)n2N satisfying

sup
n2N

(k fnk1 þ kAfnk1) , þ1, 8x 2 E, fn(x)! 1 and Afn(x)! 0: (27)

If a distribution 
 on (E, B(E)) satisfies
Ð

E
Af d
 ¼ 0 for every f 2 D(A), then there exists a

stationary solution for the martingale problem (A, 
) (this means that there exists a

stationary continuous-time homogeneous Markov process with infinitesimal generator A and

invariant distribution 
).

Remark 6. Although assumption (27) is not explicitly stated in Theorem 9.17 of Ethier and

Kurtz (1986), it seems to be used implicitly in the proof.
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Lemma 4. If the functions b, � and V satisfy jbj2 þ Tr(���)þ j=V j2 < cV V, then the above

operator A satisfies the assumptions of the Echeverrı́a–Weiss theorem.

Proof. It is well known that the generator of a diffusion satisfies the positive maximum

principle. In order to check (27), observe that the function V satisfies V (x) ¼ O(jxj2), which

in turn implies that jb(x)j < C(1þ jxj) and j(���)ij(x)j < C(1þ jxj2). Now one sets

fn(x) :¼ j(x=n), where j is C2 with compact support and j(0) ¼ 1. The fact that fn(x) goes

to 1 while A( fn)(x) goes to zero is straightforward. The uniform boundedness simply follows

from the above bounds for b and ���. h

4.2. The main identification result

In this subsection we need a kind of ‘light’ Lyapunov assumption on the functions b and �,

which is that there exists some function V : Rd ! Rþ such that

lim
jxj!þ1

V (x) ¼ þ1, j=V j2 þ jbj2 þ Tr(���) < cV and sup
n2N

EV (X n) , þ1: (28)

Theorem 6. Assume that b and � are continuous functions. Assume that (28) is fulfilled for

some function V. Assume that (3) and (4) hold and that

lim
n

1

Hn

Xn

k¼1

$$$$˜ �k

ªk

$$$$ ¼ 0 and
X
n>1

�n

Hn
ffiffiffiffiffi
ªn
p

� �2

, þ1: (29)

Let a > 1
2
. Assume that supn 
�n(V a) , þ1 P-a:s: and Tr(���) ¼ o(V a). If a , 1, assume

furthermore that
P

n>1 �nªn=Hn , þ1.

Then, P(dø)-a:s:, every limiting distribution 
1(ø, dx) of the sequence (
�n(ø, dx))n2N is

an invariant distribution of a (weak) solution of (1).

Note that Theorem 3 follows from Theorems 4 and 6.

The proof of Theorem 6 relies on the two technical lemmas below.

Lemma 5. If condition (28) is fulfilled and if the step–weight assumptions (3), (4) and (29)

hold, then, for every bounded Lipschitz continuous function f : Rd ! R,

P-a:s: lim
n

1

Hn

Xn

k¼1

�k

ªk

E(˜ f (X k)=F k�1) ¼ 0:

Proof. The proof is similar to that of Theorem 4. Setting �0=ª0 :¼ 0 gives

1

Hn

Xn

k¼1

�k

ªk

E(˜ f (Xk)=F k�1) ¼ 1

Hn

Xn

k¼1

�k

ªk

˜ f (X k)� 1

Hn

Xn

k¼1

�k

ªk

( f (Xk)� E( f (X k)=F k�1)):

As f is bounded, Lemma 3(b) implies that, a.s.,

Recursive computation of the invariant distribution of a diffusion 381



lim
n

1

Hn

Xn

k¼1

�k

ªk

˜ f (X k) ¼ 0:

Then

1

Hn

Xn

k¼1

�k

ªk

( f (X k)� E( f (X k)=F k�1))

will converge to 0 once the martingale

M f
n :¼

Xn

k¼1

�k

ªk Hk

( f (X k)� E( f (X k)=F k�1))

a.s. converges in R. Now, using assumption (28),

EhMf i1 ¼
X
n>1

�n

Hnªn

� �2

k f (Xk)� E( f (Xk)=F k�1)k2
2 <

X
n>1

�n

Hnªn

� �2

k f (X k)� f (Xk�1)k2
2

< [ f ]2
1

X
n>1

�n

Hnªn

� �2

k˜X kk2
2 < C

X
n>1

�n

Hn
ffiffiffiffiffi
ªn
p

� �2

, þ1,

where

[ f ]1 :¼ sup
x, y2Rd ,x 6¼ y

j f (x)� f (y)jF
jx� yj :

h

Lemma 6. If the assumptions of Theorem 6 hold, then for every twice continuously

differentiable function f with compact support,

lim
n

1

Hn

Xn

k¼1

�k

ªk

E(˜ f (X k)=F k�1)� 
�n(Af )

 !
¼ 0 a:s:

Proof. Setting R2(x, y) :¼ f (y)� f (x)� (= f (x)jy� x)� 1
2
D 2 f (x):(y� x)32, one obtains

f (X k)� f (Xk�1) ¼ (= f (Xk�1)j˜Xk)þ 1
2
D 2 f (Xk�1)˜X32

k þ R2(Xk�1, X k)

for every k 2 N�. Hence, using the fact that E(Uk=F k�1) ¼ 0,
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E( f (Xk)� f (Xk�1)=F k�1)� ªk Af (Xk�1)

¼ ª2
k

2
D 2 f (Xk�1):b32(Xk�1)þ E(R2(Xk�1, Xk)=F k�1),

�k

ªk

E( f (Xk)� f (Xk�1)=F k�1)� �k Af (Xk�1)

¼ �kªk

2
D 2 f (Xk�1)b32(Xk�1)þ �k

ªk

E(R2(Xk�1, Xk)=F k�1):

First, note that$$$$ 1

Hn

Xn

k¼1

�kªk D 2 f (Xk�1)b32(Xk�1)

$$$$ < kD 2 f :b32k1
1

Hn

Xn

k¼1

�kªk !
n!þ1

0:

Let us now deal with the conditional expectation involving R2. Let, for every x, y 2 R2,

r2(x, y) :¼ 1
2

sup
t2(0,1)

kD 2 f (xþ t(y� x))� D 2 f (x)k:

This defines a bounded continuous function on Rd 3 Rd , satisfying r2(x, x) ¼ 0. One may

straightforwardly verify that

jR2(x, y)j < r2(x, y)jx� yj2:

Then, as j˜Xk j2 < 2ªk(ªk jb(Xk�1)j2 þ j� (Xk�1)Uk j2), one obtains

�k

ªk

jE(R2(Xk�1, Xk)=F k�1)j

< 2�kªkkr2k1jb(Xk�1)j2 þ 2d�kTr(���)(Xk�1)E(r2(Xk�1, X k)jUk j2=F k�1),

< 2�kªkkr2k1jb(Xk�1)j2 þ 2d�k(V aŁ)(Xk�1)J (ªk , Xk�1),

where

Tr(���)(x) :¼ V (x)aŁ(x) with lim
jxj!þ1

Ł(x) ¼ 0

and

J (ª, x) :¼
ð
Rq

r2(x, xþ ªb(x)þ ffiffiffi
ª
p

� (x)u)juj2�(du), � :¼ L(U1):

Note that J is still a bounded continuous function, on Rþ 3 Rd , and J (0, x) :¼ 0.

The term kr2k1�kªk jb(Xk�1)j2 can be handled as follows. If a > 1, P-a.s.,

1

Hn

Xn

k¼1

�kªk jb(Xk�1)j2 <
C

Hn

Xn

k¼1

�kªk V (Xk�1) !n!þ1
0 as sup

n


�n(V ) , þ1 and ªn ! 0:

If a 2 [1
2
, 1), the result follows from the Kronecker lemma and

P
n>1 �nªn=Hn , þ1.

Finally, it remains to prove that
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P-a:s: lim
n

1

Hn

Xn

k¼1

�k J (ªk , Xk�1)(V aŁ)(Xk�1) ¼ 0:

Let A . 0 be a temporarily fixed real number. The function J is uniformly continuous

on the compact set [0, kªk1] 3 B(0; A), hence J (ªk , Xk�1)1fjX k�1j<Ag !
P-a:s:

0 so that, V aŁ
being bounded on B(0; A),

lim
n

1

Hn

Xn

k¼1

�k J (ªk , Xk�1)1fjX k�1j<Ag(V
aŁ)(Xk�1) ¼ 0 P-a:s:

To complete the proof, let A! þ1 in the inequality

lim
n

1

Hn

Xn

k¼1

�k J (ªk , Xk�1)(V aŁ)(Xk�1)1fjX k�1j.Ag < sup
jxj.A

jŁ(x)jkJk1 sup
n


�n(V a):

h

Proof of Theorem 6. Combining Lemmas 5 and 6 yields that, if f is C2 with compact

support, limn 
�n(Af ) ¼ 0. As Af is bounded and continuous, we obtain that 
�1(Af ) ¼ 0 a.s.,

and may apply Theorem 5. h

5. Theoretical application: the almost sure central limit
theorem

As far as numerical simulations are concerned, the choice of a Gaussian or a Bernoulli white

noise for (Un)n2N� seems more appropriate than a square-integrable sequence of i.i.d. random

vectors having no finite higher moments. (In fact the existence of higher moments will be

required later in Section 6 to derive some rates of convergence.) However, relaxing the

moment conditions to square integrability is of some interest from a theoretical point of view:

applied to the Ornstein–Uhlenbeck diffusion process, Theorem 3 yields a natural proof of the

almost sure central limit theorem, stated with its minimal moment conditions.

Theorem 7 (Standard almost sure CLT). Let (Un)n2N� be a sequence of i.i.d. square-

integrable random vectors satisfying E(U1) ¼ 0 and 	U1
¼ Id . Then

P-a:s:
1

ln n

Xn

k¼1

1

k
�(U1þ...þUk )=

ffiffiffi
k
p ¼)

(Rd )
N (0, Id):

The almost sure (or almost everywhere) central limit theorem was first established

independently by Brosamler (1988) and Schatte (1988) under slightly more stringent

assumptions: U1 2 L2þ�, � . 0, in Brosamler (1988); and U1 2 L3 in Schatte (1988); see

also Fisher (1987). In Brosamler (1988) a functional version of the theorem is proved using

Skorokhod embedding. These moment assumptions were relaxed in Lacey and Philip

(1990); see also Touati (1995). Recently, this theorem has been generalized in several
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directions. We mention the extension of the almost sure CLT to vector-valued martingale

increments by Chaâbane (1996) and Chaâbane et al. (1996) or that to converging recursive

stochastic algorithms established by Pelletier (1999; 2000).

In another direction, there has been some discussion of the rate of convergence in the

almost sure CLT: see Csörg}oo and Horváth (1992) for a central limit theorem, Heck (1998)

for some large-deviation results, and Chaâbane and Maâouia (2000) for a law of the iterated

logarithm, among others. In Section 6, we also deal with the rate of convergence of

algorithm (2) which, as a by-product, will allow us to recover the central limit theorem for

the almost sure central limit theorem.

Actually, we are naturally led, in our framework, to establish an extension of the almost

sure CLT that embodies a slightly wider class of weights than �n ¼ 1=n.

Theorem 8 (Weighted almost sure CLT). Let (Un)n2N� be a sequence of i.i.d. square-

integrable random vectors defined on a probability space (�, A, P) and satisfying E(U1) ¼ 0

and 	U1
¼ Id . Let (�n)n2N� be a sequence of weights satisfyingX

n>1

�n

nHn

, þ1,
X
n>1

n�n

Hn

$$$$1� 1� 1

n

� �
�n�1

�n

$$$$ , þ1 and
X
n>1

n�2
n

H2
n

, þ1: (30)

Then

P-a:s:
1

Hn

Xn

k¼1

�k�(U1þ...þUk )=
ffiffiffi
k
p ¼)

(Rd )
N (0, Id):

Note that assumption (30) holds for the family of weights

�n :¼ ln� n

n
, � > �1:

Remark 7. Assumption (30) is not satisfied by polynomial weights �n :¼ n� except for

� :¼ �1, which is the setting of the standard almost sure CLT.

The starting point of the proof of Theorem 8, as in the original proof of the almost sure

CLT, is to write the CLT in a recursive form: set

Z0 :¼ 0, Zn :¼ U1 þ . . . þ Unffiffiffi
n
p ,

ªn :¼ 1

n
, n > 1:

One may easily verify that

Z nþ1 ¼ Zn � ªnþ1

Zn

2
þ ffiffiffiffiffiffiffiffiffiffi

ªnþ1

p
U nþ1 þ Rnþ1, where Rnþ1 :¼ O

1

n2

� �
Zn: (31)

This procedure appears as a perturbation of the general decreasing-step Euler scheme (2)

with drift b(x) :¼ �x=2 and diffusion coefficient � (x) :¼ Id . This suggests the investigation
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of the asymptotic behaviour of the difference ˜n between this perturbed procedure (31) and

the standard algorithm defined by

8n 2 N, X nþ1 ¼ Xn � ªnþ1

X n

2
þ ffiffiffiffiffiffiffiffiffiffi

ªnþ1

p
U nþ1, X 0 :¼ 0:

As ˜n :¼ Zn � X n, it is straightforward that

˜nþ1 ¼ 1� 1

2(nþ 1)

� �
˜n þ Rnþ1, ˜0 :¼ 0: (32)

Lemma 7. The sequence of random variables (˜n)n2N defined by (32) P-a.s. converges to 0.

That is,

k˜nk2 ¼ O
1ffiffiffi
n
p
� �

,

P-a:s: ˜n ¼ O
1ffiffiffi
n
p
� �

:

Proof. One shows by induction that, for every n 2 N, ˜n ¼ (1=cn)
Pn

k¼1 Rkck , where

cn :¼
Yn

k¼1

1� 1

2k

� ��1

¼
Yn

k¼1

2k

2k � 1
#

ffiffiffiffiffiffi
�n
p

by the Wallis formula. On the other hand,

kRnk2 ¼ O
1

n2

� �
kZnk2 < O

1

n2

� �
kZnk2 ¼ O

1

n2

� �
,

so that
P

n>1 cnkRnk2 , þ1. This in turn implies that
P

n>1 cnkRnk1 , þ1 and,

consequently, that
P

n>1cnRn P-a.s. converges in Rd . Hence ˜n # º=
ffiffiffi
n
p

and k˜nk2 ¼
O(1=

ffiffiffi
n
p

). h

Proof of Theorem 8. It follows from the above lemma that the �-empirical random measures

related to the sequences (Zn)n2N and (X n)n2N P-a.s. have the same weak limiting

distributions. This is obvious once it is noticed that bounded Lipschitz functions characterize

weak convergence of probability measures and that

P-a:s: lim
n

1

Hn

Xn

k¼1

�k jZk � Xk j ¼ 0:

Consequently, one may focus on the sequence (X n)n2N� . We now apply Theorem 3 with

p ¼ 1, b(x) :¼ �x=2 and � :¼ Id, so that the diffusion is the Ornstein–Uhlenbeck process

dYt ¼ �1
2
Ytdt þ dWt with unique invariant distribution N (0, Id). Assumption (28) is clearly

satisfied with V (x) :¼ jxj2 þ 1. h
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6. Rate(s) of convergence

Throughout this section, we assume that diffusion (1) admits a unique invariant distribution 
.

It then follows from Theorem 3 that, under some appropriate step–weight assumptions,

P(dø)-a:s: 
�n(ø, dx)) 
:

The aim of this section is to elucidate the rate of this convergence for a given pair (ª, �) of

acceptable step and weight sequences. This rate will be evaluated along some smooth ‘test

functions’

f ¼ Ajþ C, with j at least twice differentiable and C a real constant.

In fact
Ð

Ajd
 is always 0 and one may assume without loss of generality that C ¼ 0. We are

looking for some weak rate, i.e. a sequence rn !1, depending only on ª and �, such that

rn
�n( f ) converges weakly towards a distribution depending on f (and the parameters b, � of

the diffusion). Then, we will be able to recommend some sequences ª and � that maximize

the rate of convergence rn for practical use.

A large part of what follows is carried out in the special case � ¼ ª. A posteriori, this

apparently restricted setting embodies the best possible rates of convergence when this rate

rn is associated with a regular CLT (see below). When it is not, the (slight) improvement

induced by the choice of weights � 6¼ ª will be clarified.

Our main results in this section are Theorems 9 and 10. In Theorem 9, we fully describe

the global structure of the rates of convergence as a function of the step sequence ª: a

‘reachable’ rate of convergence rn can usually be achieved either with ‘fast-decreasing

steps’ ªn, leading to a regular CLT in which rn
ªn(ø, f ) converges weakly towards a

centred Gaussian measure, or with ‘slowly decreasing steps’, leading to a convergence in

probability of rn
ªn(ø, f ) towards a deterministic real constant m( f ).

From a practical point of view, the choice of error type – bias or variance – is left to

the user. There is only one exception: when the rate rn is maximal, both phenomena get

mixed and the rate of convergence holds as a biased CLT. This optimal rate is achieved at

the boundary between fast and slowly decreasing steps, as expected. See Section 7 for more

details.

Finally, we observe that it is in the ‘slowly decreasing step’ setting, when the rate of

convergence holds in probability, that choosing some ‘heavy’ weights �n different from the

step ªn can slightly increase the speed (only in terms of constant).

Theorem 9 describes what happens in the general setting: as little as possible is assumed

about the white noise Un. For practical simulations, the choice of the noise is left to the

user and, among all possible choices, a noise with vanishing third moment such as Gaussian

or Bernoulli seems quite appropriate. Now one can easily verify that the limiting parameter

m( f ) in the above convergence in probability is zero when U1 has null third moment. So in

that case, the rate in probability provided by Theorem 9 is not the real one. The aim of

Theorem 10 is to elucidate how the rate structure is modified in that case. It turns out that a

regular CLT determines the global rate of convergence for a wider family of steps so that

the optimal rate can be substantially improved. More precisely, for polynomial steps, the

optimal rates are the following, according to the value of E(U33
1 ): if E(U33

1 ) 6¼ 0, then
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�n ¼ ªn ¼ n�1=2, which yields a (biased) CLT with a rate
ffiffiffiffiffi
ˆn

p
proportional to n1=4; if

E(U33
1 ) ¼ 0, then �n ¼ ªn ¼ n�1=3, which yields a (biased) CLT with a rate

ffiffiffiffiffi
ˆn

p

proportional to n1=3.

In the special case where f :¼ b (drift), these rates can be substantially improved by

using some log-polynomial steps ªn :¼ ln�Æ n, Æ . 0 (if U1 2 L2 p, p . 1) or Æ . 1 (if

U1 2 L2): for such steps a CLT holds at a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(n=lnÆ n)

p
rate. These results have been

confirmed by numerical experiments; see Bignone (1999) and Section 7. On the way, we

retrieve as a by-product the CLT for the almost sure CLT (Section 6.2.2).

The main tool for this study will be the CLT for arrays of martingale increments (see

Hall and Heyde 1980). This is the key to the proof of the technical Proposition 2 below.

Henceforth, the distribution of U1 will be denoted by �.

6.1. Optimal choice of the weights in the CLT

In this subsection, we show why the optimal choice for the weight is always � ¼ ª so long as

the final rate of convergence holds as a CLT. This is based on a very general CLT result

obtained for the drift b ¼ A(Id) of the diffusion which is, in some sense, the simplest non-

constant ‘test function’.

Summing up the original definition of the algorithm successively leads to

X n � X 0 ¼
Xn

k¼1

ªk b(Xk�1)þ
Xn

k¼1

ffiffiffiffiffi
ªk

p
� (Xk�1)Uk : (33)

Hence

1ffiffiffiffiffi
ˆn

p
Xn

k¼1

ªk b(Xk�1) ¼ X n � X 0ffiffiffiffiffi
ˆn

p � 1ffiffiffiffiffi
ˆn

p
Xn

k¼1

ffiffiffiffiffi
ªk

p
� (Xk�1)Uk ,

i.e. ffiffiffiffiffi
ˆn

p

ªn(b) ¼ X n � X 0ffiffiffiffiffi

ˆn

p � 1ffiffiffiffiffi
ˆn

p
Xn

k¼1

ffiffiffiffiffi
ªk

p
� (Xk�1)Uk : (34)

Proposition 1. Let p 2 [1, þ1). Assume (LV , p) and EjU1j2 p , þ1. Assume that ªn

satisfies (3) and that ��� ¼ o(V p=2). Then

1ffiffiffiffiffi
ˆn

p
Xn

k¼1

ªk b(Xk�1) ¼
ffiffiffiffiffi
ˆn

p

ªn(b)!L N 0,

ð
Rd

���d

� �

:

Proof. We rely on (34). Since limjxj!þ1 V (x) ¼ þ1 and supn2N� EV (X n) , þ1, (X n)n2N
is tight; then (X n � X 0)=

ffiffiffiffiffi
ˆn

p
!P 0. On the other hand, we derive from Theorem 3 (with � ¼ ª

and r ¼ 1) that supn2N 
ªn(V p=2) , þ1 a.s. It then follows from Proposition 2 below (with

W ¼ V p=2) that (1=
ffiffiffiffiffi
ˆn

p
)
Pn

k¼1

ffiffiffiffiffi
ªk
p

� (Xk�1)Uk !L N (0,
Ð
Rd���d
). h

Remark 8. The remarkable feature of this CLT for the drift is that it holds with no extra
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assumptions. This will not be the case for more general functions, but it will help us optimize

the choice of the weights.

We now comment on the rate of convergence. Since there is no additional constraint on

the step to obtain this CLT for the drift, one derives that the step sequence ªn :¼ 1=lnÆ n,

Æ . 0, yields a rate
ffiffiffiffiffi
ˆn

p
#

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=lnÆ n

p
which asymptotically gets close to

ffiffiffi
n
p

when Æ! 0.

On the other hand, starting from (33), one may also introduce the general weights �n. A

little algebra yields, still using the usual convention �0=ª0 :¼ 0,


�n(b) ¼ �n

ªn Hn

Xn �
1

Hn

Xn

k¼1

˜
�k

ªk

� �
Xk�1 �

1

Hn

Xn

k¼1

�kffiffiffiffiffi
ªk
p � (Xk�1)Uk : (35)

If the auxiliary weight sequence ~��n :¼ �2
n=ªn and the step sequence ªn satisfy the ‘step–

weight’ assumptions of Theorem 3, then one shows that

1

(
Pn

k¼1 �
2
k=ªk)1=2

Xn

k¼1

�kffiffiffiffiffi
ªk
p � (Xk�1)Uk

converges in distribution to N (0,
Ð
���d
). Now, with obvious notation,

Hnffiffiffiffiffiffiffi
~HH n

p 
�n(b) ¼ �n

ªn

ffiffiffiffiffiffiffi
~HH n

p Xn �
1ffiffiffiffiffi
~HH

p
Xn

k¼1

˜
�k

ªk

� �
Xk�1 �

1ffiffiffiffiffiffiffi
~HH n

p Xn

k¼1

�kffiffiffiffiffi
ªk
p � (Xk�1)Uk : (36)

Assumptions that would enable the convergence to 0 of the first two terms of the right-hand

side of the equality are easy to state using the Kronecker lemma, but a little difficult to

handle from a practical point of view. Thus, they hold if X n is L1-bounded (e.g. if

limx!1 V (x)=jxj . 0) and ªn ¼ n�Æ, 0 , Æ , 1, �n ¼ n�, � > �1). When they do hold, one

has

Hnffiffiffiffiffiffiffi
~HH n

p 
�n(b)!L N 0,

ð
���d


� �
:

The rate of convergence of the random integrals 
�n(b) is then Hn=
ffiffiffiffiffiffiffi
~HH n

p
.

Now the Cauchy–Schwarz inequality shows that

Hn ¼
Xn

k¼1

�kffiffiffiffiffi
ªk
p

ffiffiffiffiffi
ªk

p
<

Xn

k¼1

�2
k

ªk

 !1=2 Xn

k¼1

ªk

 !1=2

,

Hnffiffiffiffiffiffiffi
~HH n

p <
ffiffiffiffiffi
ˆn

p
:

This shows that the fastest convergence in the CLT for the drift b holds for � ¼ ª.

In fact, the same phenomenon occurs for the more general test functions f ¼ Aj
investigated below: a similar martingale increment term, namely j9(Xk�1)� (Xk�1)Uk,

appears (it is called Nn; see Lemma 8 and Proposition 2). When this term does determine

the global rate of convergence of 
�n( f ), this rate holds as a CLT. It is optimal when � ¼ ª
as well, because the same reasoning as in (36) can be used. So, for this reason and for the
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sake of simplicity, we will focus on the case � ¼ ª. When the term j9(Xk�1)� (Xk�1)Uk no

longer determines the global rate of convergence (this occurs for ‘slowly decreasing steps’),

setting the weights �n equal to the steps ªn is no longer optimal: some limited improvement

can be obtained by considering very heavy weights (see Section 6.3.1 for some results and

comments).

6.2. Rate of convergence for functions f ¼ Aj

6.2.1. General result

In this section, we will provide a CLT for 
ªn(Aj) when j is (at least) twice differentiable

with bounded derivatives. The results below are more restrictive concerning the step

assumptions than that obtained for the drift b ¼ A(Id). There is no conflict between these

results since Theorem 9 below determines the rate of convergence of A(j) for functions j
with Hessian not identically zero.

Throughout this section, we will use a new notation for partial sums of powers of the

step: for every Æ . 0, set ˆ(Æ)
n :¼ ªÆ1 þ . . . þ ªÆn.

We will make extensive use of the following proposition which is a consequence of the

CLT for martingale increments.

Proposition 2. Assume 
ªn!
L

 and supn2N 
ªn(W ) , þ1 a.s., where W is a positive

continuous function on Rd . Then, for any continuous vector field, � : Rd ! Rd, satisfying

limjxj!þ1 j�(x)j2=W (x) ¼ 0,

1ffiffiffiffiffi
ˆn

p
Xn

k¼1

ffiffiffiffiffi
ªk

p
(�(Xk�1)jUk)!L N 0,

ð
Rd

j�j2d


� �
:

Proof. For every n 2 N� and every positive integer k, k < n, let �(n)
k :¼ffiffiffiffiffi

ªk
p

(�(Xk�1)jUk)=
ffiffiffiffiffi
ˆn

p
. We have E(�(n)

k jF k�1) ¼ 0 andXn

k¼1

E(j�(n)
k j2=F k�1) ¼ 1

ˆn

Xn

k¼1

ªk j�(Xk�1)j2 ¼ 
ªn(j�j2):

Therefore, limn!1
Pn

k¼1E(j�(n)
k j2=F k�1) ¼

Ð
j�j2d
 a.s.

The lemma will follow from the CLT for arrays of square-integrable martingale

increments (see Hall and Heyde 1980) once we have checked the Lindeberg condition. For

every � . 0, set

K�(x, ˆ) :¼
ð
Rq

juj21fj(�(x)ju)j>�
ffiffiffiffiffiffiffiffiffiffiffiffi
ˆ=kªk1
p

g�(du), x 2 Rd , ˆ > 0:

We have K�(x, ˆ) < EjU1j2 and, for every positive number A, limˆ!þ1
supjxj<A K�(x, ˆ) ¼ 0. Now let

R�
n :¼

Xn

k¼1

E j�(n)
k j21fj�( n)

k
j>�g=F k�1

� �
:
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We have, for every A . 0,

R�
n <

Xn

k¼1

ªk

ˆn

j�(Xk�1)j2 K�(Xk�1, ˆn)

<
1

ˆn

Xn

k¼1

ªk j�(Xk�1)j2 K�(Xk�1, ˆn)1fjX k�1j<Ag

þ 1

ˆn

Xn

k¼1

ªk j�(Xk�1)j2 K�(Xk�1, ˆn)1fjX k�1j.Ag

< C
ªn(W ) sup
jxj<A

K�(x, ˆn)þ sup
jxj.A

j�(x)j2
W (x)

 !

ªn(W ):

Letting A! þ1 completes the proof. h

Theorem 9. Assume that (LV ,1) holds and that the sequence (ªn)n>1 is non-increasing.

(a) Fast-decreasing step. If limn(1=
ffiffiffiffiffi
ˆn

p
)
Pn

k¼1ª
3=2
k ¼ 0 and EjU1j4 , þ1, then, for

every C2 function j with D 2j bounded and Lipschitz and limjxj!þ1
j��(x)=j(x)j2=V (x) ¼ 0, the following CLT holds:ffiffiffiffiffi

ˆn

p

ªn(Aj)!L N 0,

ð
Rd

j��=jj2d


� �
: (37)

(b) Slowly decreasing step. If limn(1=
ffiffiffiffiffi
ˆn

p
)
Pn

k¼1ª
3=2
k ¼ ~ªª 2 (0, þ1] and EjU1j6 , þ1,

for every C3 function j with D 2j and D 3j bounded and Lipschitz and supx2Rd

j��(x)=j(x)j2=V (x) ,1, we haveffiffiffiffiffi
ˆn

p

ªn(Aj)!L N ~ªªm,

ð
Rd

j��=jj2d


� �
if ~ªª ,1,

ˆn

ˆ(3=2)
n


ªn(Aj)!P m if ~ªª ¼ þ1,

(38)

(39)

:

where

m :¼ � 1

6

ð
Rd

ð
Rq

D 3j(x):(� (x)u)33�(du)

� �

(dx):

Remark 9. One may slightly relax the moment assumption in (a) by simply assuming that

U1 2 L3, provided the step assumption is strengthened to
P

n>1 ª3=2
n =

ffiffiffiffiffi
ˆn

p
, þ1. The only

noticeable change in the proof below lies in the treatment of Z(3)
n . Instead of the L2 argument

given in the case EjU1j4 , þ1, we use the Chow theorem and Kronecker lemma to show

that Z(3)
n =

ffiffiffiffiffi
ˆn

p
goes to 0 almost surely.

Remark 10. We derive the following results from Theorem 9.
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For log-polynomial steps ªn :¼ ln�Æ n, Æ . 1, we have

lim
n

1ffiffiffiffiffi
ˆn

p
Xn

k¼1

ª3=2
k ¼ þ1:

However, it is computationally easy to show that this leads to poor rates of convergence.

For polynomial steps ªn :¼ n�Æ, 0 , Æ < 1, some easy computations lead to

1ffiffiffiffiffi
ˆn

p
Xn

k¼1

ª3=2
k !

0 if Æ 2 (1
2
, 1],

2
ffiffiffi
2
p

if Æ ¼ 1
2
,

þ1 if Æ 2 (0, 1
2
):

8<
:

For this family of steps, the theorem reads as follows: if Æ ¼ 1, a CLT holds at rateffiffiffiffiffi
ˆn

p
#

ffiffiffiffiffiffiffiffi
ln n
p

; if Æ 2 (1
2
, 1), a CLT holds at rate

ffiffiffiffiffi
ˆn

p
# n(1�Æ)=2=

ffiffiffiffiffiffiffiffiffiffiffiffi
1� Æ
p

; if Æ ¼ 1
2
, a biased

CLT holds, at rate
ffiffiffiffiffi
ˆn

p
#

ffiffiffi
2
p

n1=4; if Æ 2 (0, 1
2
), the rate of almost sure convergence is

determined by

ˆn

ˆ(3=2)
n

# 2� 3Æ

2(1� Æ)
nÆ=2:

This makes the best choice of step a little unclear: the optimal rate of convergence (n1=4) is

obtained in a situation where there is an unknown bias on the limiting distribution, whereas

the range in which a centred CLT holds does not yield the optimal rate.

For the proof of Theorem 9, we first establish the following decomposition of 
ªn(Aj).

Lemma 8. If j is a twice continuously differentiable function on Rd, then

ˆn

ª
n(Aj) ¼

Xn

k¼1

ªk Aj(Xk�1) ¼ Z(0)
n � (Nn þ Z(1)

n þ Z(2)
n þ Z(3)

n þ Z(4)
n ) (40)

with
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Z(0)
n :¼ j(X n)� j(X 0) and Nn :¼

Xn

k¼1

ffiffiffiffiffi
ªk

p
(� (Xk�1)Uk j=j(Xk�1)),

Z(1)
n :¼ 1

2

Xn

k¼1

ª2
k D 2j(Xk�1)b32(Xk�1),

Z(2)
n :¼

Xn

k¼1

ª3=2
k hD 2j(Xk�1); b(Xk�1), � (Xk�1)Uki,

Z(3)
n :¼ 1

2

Xn

k¼1

ªk[D 2j(Xk�1)(� (Xk�1)Uk)32 � E(D 2j(Xk�1)(� (Xk�1)Uk)32=F k�1)],

Z(4)
n :¼

Xn

k¼1

R2(Xk�1, Xk),

where R2(x, y) ¼ j(y)� j(x)� (=j(x)jy� x)� 1
2
D 2j(x):(y� x)32.

Proof. We deduce from the definition of the algorithm that

˜j(X k) ¼ (=j(Xk�1)j˜X k)þ 1

2
D 2j(Xk�1)(˜Xk)32 þ R2(Xk�1, X k)

¼ ªk Aj(Xk�1)þ ffiffiffiffiffi
ªk

p
(� (Xk�1)Uk j=j(Xk�1))

þ ª2
k

2
D 2j(Xk�1)b32(Xk�1)þ ª3=2

k hD 2j(Xk�1); b(Xk�1), � (Xk�1)Uki

þ ªk

2
[D 2j(Xk�1)(� (Xk�1)Uk)32 � E(D 2j(Xk�1)(� (Xk�1)Uk)32=F k�1)]

þ R2(Xk�1, X k):

The lemma follows from summing the equality for k ¼ 1, . . . , n and reordering the terms.

h

The next lemma characterizes the behaviour of Nn.

Lemma 9. Assume that (LV ,1) holds and that, for some p > 1, EjU1j2 p , þ1 andP
n>1(ªn=ˆ

2
n)(1þr)=2 , þ1 for some r 2 (0, 1]. If j 2 C2(Rd) with

lim
jxj!þ1

j��(x)=j(x)j2
V p=(1þr)(x)

¼ 0,

then

1ffiffiffiffiffi
ˆn

p
Xn

k¼1

ffiffiffiffiffi
ªk

p
(� (Xk�1)Uk j=j(Xk�1))!L N 0,

ð
Rd

j��=jj2d


� �
: (41)
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Proof. We deduce from Theorem 4 that supn 
ªn(V p=(1þr)) ,1. We also deduce from

Theorem 3 that 
ªn!
L

 a.s. It remains to apply Proposition 2 with �(x) ¼ ��(x)=j(x) and

W ¼ V p=(1þr). h

For Theorem 9(b) we will need the following lemma.

Lemma 10. Under the assumptions of Theorem 9(b), we have, in the notation of Lemma 8,

P- lim
n!1

Z(4)
n

ˆ(3=2)
n

¼ 1

6

ð
Rd

ð
Rd

D 3j(x)(� (x)u)33�(du)
(dx):

Proof. We have, using Taylor’s formula,

R2(x, y) ¼ 1
6
D 3j(x)(y� x)33 þ R4(x, y),

with

jR4(x, y)j < [D 3j]1

24
jy� xj4:

Hence

R2(Xk�1, Xk) ¼ 1
6
D 3j(Xk�1)˜X33

k þ rk ,

with

jrk j <
[D 3j]1

24
j˜X k j4 < C(ª4

k jb(Xk�1)j4 þ ª2
k j� (Xk�1)Uk j4)

< Cª2
k V 2(Xk�1)(1þ jUk j4):

Since EjU1j4 , þ1, we have, using Lemma 2, supn EV 2(Xn) ,1. Therefore,

E
Pn

k¼1jrk j < C
Pn

k¼1ª
2
k . From the assumption limn!1

Pn
k¼1ª

3=2
k =

ffiffiffiffiffi
ˆn

p
¼ ~ªª 2 (0, þ1], we

deduce that limn!1
Pn

k¼1ª
3=2
k ¼ þ1 and limn!1

Pn
k¼1ª

2
k=ˆ

(3=2)
n
¼ 0. Therefore,

1

ˆ(3=2)
n

Xn

k¼1

rk!
P

0:

We now prove that

1

ˆ(3=2)
n

Xn

k¼1

D 3j(Xk�1)(˜X k)33!P
ð
Rd

ð
Rd

D 3j(x)(� (x)u)33�(du)
(dx):

We have that D 3j(Xk�1)(˜X k)33 ¼ ª3=2

k ¨(ªk , Xk�1, Uk), where

¨(ª, x, u) ¼ D 3j(x)(
ffiffiffi
ª
p

b(x)þ � (x)u)33:

Since EjU1j6 ,1, supn EV 3(X n) ,1, so that supn Ej¨(ªn, X n�1, Un)j2 ,1, and we have

(since limn!1 ˆ(3)
n =(ˆ(3=2))2 ¼ 0),
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1

ˆ(3=2)
n

Xn

k¼1

ª3=2
k [¨(ªk , Xk�1, Uk)� E(¨(ªk , Xk�1, Uk)jF k�1)]!L

2

0:

Observe that E(¨(ªk , Xk�1, Uk)jF k�1) ¼ J (Xk�1)þ ffiffiffiffiffi
ªk
p

�(ªk , Xk�1), where J and � are

given by J (x) :¼
Ð
Rq D 3j(x)(� (x)u)33�(du) and �(ª, x) < CV 3=2(x).

We now apply Theorem 3 with p ¼ 3, r ¼ 1 and �k ¼ ª3=2
k . Note that the sequence

�k=ªk ¼ ª1=2
k is non-increasing and thatX

n>1

�n

Hn
ffiffiffiffiffi
ªn
p

� �2

¼
X
n>1

ª2
n

(ˆ(3=2)
n )2

< C
X
n>1

ª3=2
n

(ˆ(3=2)
n )2

, þ1:

Therefore, we can assert that 
�n!
L

 a.s. and that supn 
�n(V 3=2) ,1 with probability 1.

Since J ¼ o(V 3=2), we conclude that limn 
�n(J ) ¼
Ð

J d
 a.s., and the lemma follows easily.

h

Proof of Theorem 9. Using the notation of Lemma 8, we first observe that, for any sequence

of positive numbers (an)n>1 such that limn!1 an ¼ þ1, we have Z(0)
n =an!

P
0. Indeed, we

know that the sequence (X n)n2N is tight (because supn EV (X n) ,1). Since j is continuous,

the sequence (j(X n)) is tight as well.

We also derive from the definition of Z(1)
n , Z(2)

n and Z(3)
n the inequalities

EjZ(1)
n j < C

Xn

k¼1

ª2
kkD 2jk1EV (Xk�1), (42)

EjZ(2)
n j2 < C

Xn

k¼1

ª3
kkD 2jk2

1EV 2(Xk�1), (43)

EjZ(3)
n j2 < C

Xn

k¼1

ª2
kkD 2jk2

1E[V 2(Xk�1)(1þ jUk j4)]: (44)

(a) Now assume that limn!1 (1=
ffiffiffiffiffi
ˆn

p
)
Pn

k¼1ª
3=2
k ¼ 0. We then have limn!1Pn

k¼1ª
2
k=

ffiffiffiffiffi
ˆn

p
¼ 0, and it follows from (42) that Z(1)

n =
ffiffiffiffiffi
ˆn

p
!L

1

0. We also deduce from

(43) and (44) that Z( j)
n =

ffiffiffiffiffi
ˆn

p
!L

2

0, for j ¼ 2, 3. Here we use the assumption EjU1j4 ,1,

which, due to Lemma 2, implies supn EV 2(X n) ,1.

We now study Z(4)
n . Note that, due to our assumptions on j,

jR2(Xk�1, Xk)j < Cj˜Xk j3 < Cª3=2
k V

3=2
(Xk�1)(1þ jUk j3):

Since EjU1j3 ,1, we have, using Lemma 2, supn EV 3=2(X n) ,1. The assumption

limn!1
Pn

k¼1ª
3=2
k =

ffiffiffiffiffi
ˆn

p
¼ 0 now implies that Z(4)

n =
ffiffiffiffiffi
ˆn

p
!L

1

0.

Finally, we apply Lemma 9 with p ¼ 2 and r ¼ 1 to obtain

Nnffiffiffiffiffi
ˆn

p !L N 0,

ð
j��=jj2d


� �
,

which completes the proof of part (a).

(b) We now assume that (1=
ffiffiffiffiffi
ˆn

p
)
Pn

k¼1ª
3=2

k ¼ ~ªª 2 (0, þ1]. We then have that
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limn!1 ˆ(3=2)
n ¼ þ1. Therefore, Z

(0)
n =ˆ

(3=2)
n !P 0. It follows from (42) that Z(1)

n =ˆ(3=2)
n !L

1

0,

and from (43) and (44) that Z( j)
n =ˆ(3=2)

n !L
2

0, for j ¼ 2, 3. Applying Lemma 9 with p ¼ 3 and

r ¼ 1, we have

Nnffiffiffiffiffi
ˆn

p !L N 0,

ð
j��=jj2d


� �
: (45)

We also know from Lemma 10 that

Z(4)
n

ˆ(3=2)
n

!P 1

6

ð
Rd

ð
Rd

D 3j(x)(� (x)u)33�(du)
(dx) ¼ �m: (46)

Now, if ~ªª , þ1, we have Z( j)
n =

ffiffiffiffiffi
ˆn

p
!P 0, for j ¼ 0, 1, 2, 3, and

Z(4)
nffiffiffiffiffi
ˆn

p !P �~ªªm, (47)

and (38) follows from (45) and (47).

If ~ªª ¼ þ1, we have Z( j)
n =ˆ(3=2)

n !P 0, for j ¼ 0, 1, 2, 3, and Nn=ˆ
(3=2)
n !P 0, and (39)

follows from (46). This completes the proof of Theorem 9. h

6.2.2. An application: a CLT for the (standard) almost sure CLT

The above theorem yields a CLT for the almost sure CLT. It will follow from the fact that the

step sequence ªn :¼ 1=n, n > 1, satisfies the step assumption of Theorem 9(a) and as a result

the rate is
ffiffiffiffiffiffiffiffi
ln n
p

. The rate of convergence in the standard almost sure CLT has been studied

by Csörg}oo and Horváth (1992) for real-valued i.i.d. random variables. Analogous results have

been obtained by Chaâbane (1998) for real-valued martingales and by Maâouia (1998) for

additive functionals of Markov processes. Chaâbane and Maâouia (2000) examine the rate of

convergence for the so-called strong quadratic law of large numbers in the context of vector-

valued martingales (see Section 6.3.1).

Proposition 3. Denote by 
d the standard d-dimensional Gaussian measure. If U1 2 L3, then,

for every function f 2 C2(Rd), such that f, Df and D 2 f are bounded and Lipschitz continuous

on Rd,

ffiffiffiffiffiffiffiffi
ln n
p 1

ln n

Xn

k¼1

1

k
f

U1 þ . . . þ Ukffiffiffi
k
p

� �
�
ð

f (u)
d(du)

 !
!L N (0, � 2

f ), (48)

with � 2
f ¼

Ð
j=g(x)j2
d(dx), where g satisfies Ag ¼ f and

Ð
Rd gd
d ¼ 0, and A is the

Ornstein–Uhlenbeck generator Aj :¼ 1
2
˜j� 1

2
(xj=j).

It should be mentioned that the results of Csörg}oo & Horváth (1992) for real-valued

random variables require less regularity for the function f. The proof of this proposition

will follow from Theorem 9 and the following lemma.

Lemma 11. Assume f 2 C2(Rd), with f, Df and D 2 f bounded and Lipschitz continuous on
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Rd . There exists a function g 2 C2(Rd), with Dg and D 2 g bounded and Lipschitz continuous,

such that
Ð
Rd gd
d ¼ 0 and

f �
ð
Rd

f d
d ¼
1

2
˜g � 1

2
(xj=g):

Proof. We can assume, without loss of generality, that
Ð

f d
d ¼ 0. Let (Tt) t>0 be the

Ornstein–Uhlenbeck semigroup. The infinitesimal generator of (Tt) t>0 is A. We refer to

Nualart (1995) for the basic properties of the Ornstein–Uhlenbeck semigroup. Note that our

definition of the Ornstein–Uhlenbeck generator differs (by a factor of 1
2
) from that used in the

context of Malliavin calculus. Denote by Pn the orthogonal projection on the nth Wiener

chaos. We have P0 f ¼
Ð
Rd f d
d ¼ 0 and

Tt f ¼
X1
n¼1

e�nt=2 Pn f , t > 0:

It follows that the integral
Ð1

0
Tt f dt is convergent in L2. Let g ¼ �

Ð1
0

Tt f dt. The function g

may be unbounded but is in L2(
d). We have

g ¼
X1
n¼1

�2

n
Pn f and Ag ¼ f ,

and it remains to check the regularity properties of g. Recall Mehler’s formula,

Tt f (x) ¼
ð
Rd

f (e� t=2xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e� t
p

y)
d(dy):

One may easily derive from this formula the commutation relations

@

@xi

Tt f ¼ e� t=2Tt

@ f

@xi

� �
:

Therefore

@ g

@xi

¼
ð1

0

e� t=2Tt

@ f

@xi

� �
dt

and k=gk1 < 2k= f k1. A similar argument shows that the second-order derivatives of g are

bounded and Lipschitz. h

Proof of Proposition 3. Let g be as in Lemma 11. We use the notation of Section 5. Theorem

9(a) above, together with Remark 9, implies that (48) holds for the sequence Xk instead of

Zk ¼ (U1 þ . . . þ Uk)=
ffiffiffi
k
p

, and f ¼ Ag. Now f is Lipschitz, so that

ffiffiffiffiffiffiffiffi
ln n
p

E

$$$$ 1

ln n

Xn

k¼1

1

k
( f (Yk)� f (Zk))

$$$$ < [ f ]1ffiffiffiffiffiffiffiffi
ln n
p

Xn

k¼1

Ej˜k j
k
¼ O

1ffiffiffiffiffiffiffiffi
ln n
p
� �

,

and the proposition follows easily. h
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6.3. Rate of convergence for noise with zero third moment

One interesting feature of Theorem 8(b) is that, whenever ~ªª ¼ þ1 and E((U ‘
1)3) ¼ 0 for

every ‘ 2 f1, . . . , qg, the limiting term is zero, i.e. the (weak) rate of convergence for ‘large

steps’ is o(ˆn=ˆ
(3=2)
n ). It seems natural, then, to investigate what really happens in this case.

Theorem 10. Assume that (LV ,1) holds, that the sequence (ªn)n2N is non-increasing, with

limn!1 (
Pn

k¼1ª
3=2
k )=

ffiffiffiffiffi
ˆn

p
¼ þ1, and that EjU1j6 , þ1 and E(U33

1 ) ¼ 0.

(a) Fast-decreasing step. If limn(1=
ffiffiffiffiffi
ˆn

p
)
Pn

k¼1ª
2
k ¼ 0 then, for every C3 function j with

D 2j bounded, D 3j bounded and Lipschitz, and supx2Rd j��:=j(x)j2=V (x) ,1, we haveffiffiffiffiffi
ˆn

p

ªn(Aj)!L N 0,

ð
Rd

j��=jj2d


� �
: (49)

(b) Slowly decreasing step. If limn(1=
ffiffiffiffiffi
ˆn

p
)
Pn

k¼1ª
2
k ¼ ª̂ª 2 (0, þ1] and EjU1j8 , þ1,

then, for every C4 function j, with D 2j and D 3j bounded, D4j bounded and Lipschitz,

and supx2Rd j��:=j(x)j2=V (x) , þ1,

ffiffiffiffiffi
ˆn

p

ªn(Aj)!L N ª̂ªm̂m,

ð
Rd

j��=jj2d


� �
if ª̂ª , þ1,

ˆn

ˆ(2)
n


ªn(Aj)!P m̂m if ª̂ª ¼ þ1:

(50)

(51)

where

m̂m :¼ �
ð
Rd

1

2
D 2j(x)b(x)32 þ
4(x)

� �

(dx), (52)

with


4(x) ¼
ð
Rq

1

2
hD 3j(x); b(x), (� (x)u)32i þ 1

24
D4j(x)(� (x)u)34

� �
�(du):

Proof. (a) Using (40), (42), (43) and (44) and the assumption limn

Pn
k¼1ª

2
k=

ffiffiffiffiffi
ˆn

p
¼ 0, we

see that Z( j)
n =

ffiffiffiffiffi
ˆn

p
goes to zero in probability, for j ¼ 0, 1, 2, 3. Since we know from Lemma

9 that Nn=
ffiffiffiffiffi
ˆn

p
!L N (0,

Ð
j��=jj2d
), it remains to show that Z(4)

n =
ffiffiffiffiffi
ˆn

p
!P 0.

We have, in the notation of the proof of Lemma 10,

R2(Xk�1, Xk) ¼ 1

6
D 3j(Xk�1)(˜Xk)33 þ rk ,

with

jrk j < Cª2
k V 2(Xk�1(1þ jUk j4):

We also have

D 3j(Xk�1)(˜Xk)33 ¼ ª3=2
k D 3j(Xk�1)(� (Xk�1)Uk)33 þ r(Xk�1, X k),
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with

jr(Xk�1, X k)j < Cª2
k V 3=2(Xk�1)(1þ jUk j2):

Using the assumptions EjU1j6 , þ1 and EU33
1 ¼ 0, we obtain****Xn

k¼1

ª3=2
k D 3j(Xk�1)(� (Xk�1)Uk)33

****
L2

< C

ffiffiffiffiffiffiffiffiffiffiffiffiffiXn

k¼1

ª3
k

s
:

Since limn!1
Pn

k¼1ª
3
k=ˆn ¼ 0, we conclude that limn!1 kZ(4)

n =
ffiffiffiffiffi
ˆn

p
kL2 ¼ 0. This completes

the proof of (a).

(b) If limn

Pn
k¼1ª

2
k=

ffiffiffiffiffi
ˆn

p
¼ ª̂ª 2 (0, þ1], we easily deduce from (43) and (44) that

Z( j)
n =

ffiffiffiffiffi
ˆn

p
goes to zero in probability, for j ¼ 0, 2, 3. We observe that Z(1)

n =ˆ(2)
n ¼ 1

2

�n(ł), if

we set �k ¼ ª2
k and ł(x) ¼ (D 2j:b)(x)32. Since ł ¼ o(V 3=2), we have

Z(1)
n

ˆ(2)
n

!P 1

2

ð
Rd

D 2j(x)b32(x)d
(x):

We now examine Z(4)
n . Using Taylor’s formula and ˜Xk ¼ ªk b(Xk�1)þ ffiffiffiffiffi

ªk
p

� (Xk�1)Uk, we

derive

R2(Xk�1, X k) ¼ ª3=2
k a3(Xk�1, Uk)þ ª2

k a4(Xk�1, Uk)þ rk ,

with

a3(x, u) :¼ 1

6
D 3j(x)(� (x)u)33,

a4(x, u) :¼ 1

2
hD 3j(x); b(x), (� (x)u)32i þ 1

24
D4j(x)(� (x)u)34,

jrk j < Cª5=2
k V 5=2(Xk�1)(1þ jUk j5):

It is clear that

1

ˆ(2)
n

Xn

k¼1

rk!
P

0 and
1ffiffiffiffiffi
ˆn

p
Xn

k¼1

rk!
P

0:

The assumption on the third moments of U1 implies that****Xn

k¼1

ª3=2
k a3(Xk�1, Uk)

****2

L2

¼ 1

36

Xn

k¼1

ª3
kEjD 3j(Xk�1)(� (Xk�1)Uk)33j2 < C

Xn

k¼1

ª3
k ¼ o(ˆn):

Hence

lim
n!1

1ffiffiffiffiffi
ˆn

p
****Xn

k¼1

ª3=2
k a3(Xk�1, Uk)

****
L2

¼ 0:
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Finally, we must study
Pn

k¼1ª
2
k a4(Xk�1, Uk). We observe that

ja4(x, u)j < CV 2(x)(1þ juj4),

so that, using the assumption EjU1j8 , þ1, supk Eja4(Xk�1, Uk)j2 , þ1. Therefore,****Xn

k¼1

ª2
k[a4(Xk�1, Uk)� E(a4(Xk�1, Uk)=F k�1)]

****2

L2

< C
Xn

k¼1

ª4
k

and

1ffiffiffiffiffi
ˆn

p
Xn

k¼1

ª2
k[a4(Xk�1, Uk)� E(a4(Xk�1, Uk)=F k�1)]!L

2

0:

We have E(a4(Xk�1, Uk)=F k�1) ¼ 
4(Xk�1), with 
4(x) ¼
Ð
Rq a4(x, u)�(du). We now apply

Theorem 3 (with �k ¼ ª2
k , p ¼ 4, r ¼ 1) to assert that

lim
n!1

1

ˆ(2)
n

Xn

k¼1

ª2
k
4(Xk�1) ¼

ð
Rd


(dx)
4(x) a:s:

Therefore,

Z(4)
n

ˆ(2)
n

!P
ð
Rd

1

2
D 2j:b32 þ
4

� �
d
:

Using the weak convergence of Nn=
ffiffiffiffiffi
ˆn

p
, it is now easy to derive (50) and (51). h

When applying Theorem 10 to polynomial steps, one can easily verify that parts (a) and

(b) of the theorem respectively lead, for ªn :¼ n�Æ, 0 , Æ < 1
2
, to the following weak rates

of convergence. In the case 1
3
, Æ < 1

2
, a CLT holds at the rate

ffiffiffiffiffi
ˆn

p
# n(1�Æ)=2=

ffiffiffiffiffiffiffiffiffiffiffiffi
1� Æ
p

which enlarges the range of validity of the CLT formerly obtained in Theorem 9(a) for
1
2
, Æ , 1 when the white noise is standard. For Æ ¼ 1

3
, a biased CLT holds at the rateffiffiffiffiffi

ˆn

p
#

ffiffi
3
2

q
n1=3. For 0 , a , 1

3
, a weak ˆn=ˆ

(2)
n # ((1� 2Æ)=(1� Æ))nÆ rate holds.

6.3.1. Some further improvements

For functions f ¼ A(j), with j quadratic, one may obtain the improved rates of Theorem 10

even if the third moment of U1 is not zero. In fact, the rate structure of Theorem 10 holds if

(LV ,1) holds, EjU1j2 p , þ1 for some p . 1, and the sequence (ªn)n2N is non-increasing

and satisfiesX
n>1

ªn

ˆ2
n

� �(1þr)=2

, þ1, for some r 2 (0, 1], and
X
n>1

ªnffiffiffiffiffi
ˆn

p
� � p^2

, þ1: (53)

The proof relies on the fact that, D 3j being identically 0, the third moment of U1 no longer

appears in the expansion. The method of proof is the same as above; details are left to the

reader.

If we apply this result with j(x) ¼ jxj2 � d and p . 2, we recover the CLT for the
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strong quadratic law of large numbers of Chaâbane and Maâouia (2000), in the special case

of i.i.d. random variables in L2 p. Indeed, in that case, Aj(x) ¼ �j(x) ¼ d � jxj2.

If we no longer assume that � ¼ ª, we may slightly improve the rate of convergence for

slowly decreasing steps by choosing arbitrarily heavy polynomial weights �n, as shown by

the following proposition.

Proposition 4. Assume that E(U33
1 ) ¼ 0. If ªn ¼ cn�Æ, 0 , Æ , 1

3
(slowly decreasing step)

and �n ¼ n��, � < 1, then

ª�1
n 
�n(Aj)!P 1� �

1� (Æþ �)
m̂m,

where j and m̂m are as in Theorem 10 and j is bounded. One may verify that

min
�<1

$$$$ 1� �

1� (Æþ �)
m̂m

$$$$ ¼ lim
�!�1

$$$$ 1� �

1� (Æþ �)
m̂m

$$$$ ¼ jm̂mj:
Finally, we may increase the rate of convergence still further for a subclass of test

functions. In this paragraph we set d ¼ 1 for the sake of simplicity. Furthermore, we

assume that b and � are smooth. Let us consider a white noise whose first four moments

coincide with those of the standard normal distribution, i.e. E(U1) ¼ E(U 3
1) ¼ 0, E(U 2

1) ¼ 1

and E(U 4
1) ¼ 3. Then a little algebra yields

m̂m ¼ � 1

2

ð
R

bAj9þ � 2

2
Aj 0d
:

Set A9g :¼ b9g þ �� 9g 0. Formal computations show that, if there is some function �
satisfying 1

4
� 2 A9(j9) ¼ A�, then

bAj9þ � 2

2
Aj 0 ¼ 1

2
A(��
), where 
(x) ¼

ðx

0

Aj9(u)du:

Consequently, m̂m ¼ 0, which in turn implies that the rate of convergence in probability

obtained in Theorem 10 is not the real one for such functions j. In fact, this means that the

CLT still holds for larger steps along this subclass of test functions.

7. Simulations and recommendations

7.1. Operating conclusions

The two schemes below show the rate of convergence in a polynomial scale nŁ as a function

of the power Æ of the polynomial step ªn ¼ n�Æ.

• The fastest possible speed of convergence for generic test functions is n1=3, achieved in

the case �n ¼ ªn ¼ n�1=3. This holds as a biased CLT (with unknown parameters).
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• For a given rate, it seems that the ‘slowly decreasing step’ solution (convergence

in probability) is more stable than the ‘fast-decreasing step’ side. This is illustrated by

Figure 1.

• When convergence in probability holds, Proposition 4 shows the rate is improved by

the use of heavy weights, i.e. �n :¼ n�� with �! �1. This causes no problem for

implementation since the recursive form of 
�n( f ) only uses ~��n :¼ �n=
Hn # �=n(�� 1). Numerical experiments show that the greater j�j is, the later the

rate improvement becomes significant. So the specification of � depends on the a priori

order of the simulation size.

7.2. Some simulations

We choose to illustrate the rate structure obtained in Theorem 10, in particular to compare

in a practical simulation how n 7! 
ªn( f ) behaves with the steepness of the step sequence.

To this end, we consider the one-dimensional standard Ornstein–Uhlenbeck process

dYt ¼ �1
2
Ytdt þ dWt, and its Euler scheme with (decreasing) step implemented with a

Gaussian white noise. The test function selected is

Figure 1. Plot of Ł as a function of Æ from the rate of convergence nŁ when the step size is ªn ¼ n�Ł
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f (x) :¼ A
1

1þ x2

� �
¼ 1

1þ x2
þ 2

(1þ x2)2
� 4

(1þ x2)3
:

Then, for a given reachable rate Ł 2 (0, 1
3
], we set

ªfast
n :¼ 2Ł

n1�2Ł
and ªslow

n :¼ 1� Ł

1� 2Ł

1

nŁ
:

In both cases, constants have been set so that the rate of convergence is equivalent to nŁ as

n! þ1.

Numerical simulations have been carried out up to n ¼ 106 iterations for the theoretical

rate Ł ¼ 0:3 with both fast (centred CLT) and slowly (bias) decreasing step sequences. Note

that Ł ¼ 0:3 is close to the optimal rate 1
3
. The same simulation has been processed

simultaneously with the optimal polynomial step sequence ªn ¼ n�1=3 (biased CLT with rate

n1=3).

In Figure 2 the thick line is for ªslow with Ł ¼ 0:3, the regular line is for ªfast still with

Ł ¼ 0:3 and the dashed line is for ªn ¼ n�1=3. One can verify that for a given theoretical

rate of convergence, convergence in probability seems numerically more stable than the

Figure 2. Rates of convergence of 
ªn( f ) for different polynomial step functions
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centred CLT. When Ł ¼ 0:3, it competes with the optimal step sequence. This is confirmed

by other simulations; see Pagès (2001) when the diffusion has several invariant distributions.

Note added in proof

After this paper was accepted for publication we learned of work by Piccioni and Scarlatti

(1994) in which the mean square convergence of a similar algorithm for diffusions on

compact Lie groups is studied.
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