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We first prove a general and quite simple criterion of absolute continuity, based on the use of almost

sure derivatives, which is applicable even when integration by parts may not be used. We apply it to

Poisson-driven stochastic differential equations. Next, using a typically probabilistic substitution in the

Boltzmann equation, we extend Tanaka’s probabilistic interpretation for spatially homogeneous

Boltzmann equations with Maxwell molecules and without angular cut-off to much more general

spatially homogeneous two-dimensional Boltzmann equations. We relate a measure-solution fQtg t of

the equation to a solution Vt of a nonlinear Poisson-driven stochastic differential equation: for each t,

Qt is the law of Vt. We extend our absolute continuity criterion to these nonlinear Poisson functionals

and prove that even in the case of degenerate initial distribution, the law of Vt admits a density f (t, ")
for each t . 0, which is hence a solution to the Boltzmann equation. We thus obtain an original

existence result.
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1. Introduction

The Boltzmann equation we consider describes the evolution of the density f (t, v) of

particles with velocity v 2 R2 at time t in a rarefied homogeneous gas:

@ f

@ t
(t, v) ¼

ð
R2

ð�
Ł¼��

( f (t, v9) f (t, v9�) � f (t, v) f (t, v�))B(jv � v�j, Ł)dŁdv�: (1:1)

The post-collisional velocities v9 and v9� are given by

v9 ¼ v þ A(Ł)(v � v�), v9� ¼ v� � A(Ł)(v � v�), (1:2)

where

A(Ł) ¼ 1

2

cos Ł� 1 �sin Ł
sin Ł cos Ł� 1

� �
: (1:3)

The cross-section B is a positive function, and is even in the Ł-variable. If the molecules
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in the gas interact according to an inverse power law in 1=rs with s > 2, then the phy-

sical cross-sections B(z, Ł) tend to infinity when Ł goes to zero, but satisfyÐ �
�� jŁj2 B(z, Ł)dŁ , þ1 for each z. Physically, this explosion near 0 comes from the

accumulation of grazing collisions.

In this general (spatially homogeneous) setting, the Boltzmann equation is very difficult

to study. A large literature deals with the non-physical equation with angular cut-off, that is,

under the assumption
Ð �

0
B(z, Ł)dŁ , 1. More recently, the case of Maxwell molecules, for

which the cross-section B(z, Ł) ¼ �(Ł) only depends on Ł, has been much studied without

the cut-off assumption. In the Maxwell context, Tanaka (1978) considered the case whereÐ �
0
Ł�(Ł)dŁ , 1, and Horowitz and Karandikar (1990), Desvillettes (1997), Desvillettes et

al., (1999) and Fournier (2000) worked under the physical assumption
Ð �

0
Ł2�(Ł)dŁ , þ1.

The case in which B depends on z is much harder and there are few results on it (see

Alexandre et al. 2000; Fournier and Méléard 2001).

In the present paper, we first prove a weak, general and quite simple criterion of absolute

continuity which we apply to standard Poisson-driven stochastic differential equations, and

which in some sense generalizes results of Bichteler and Jacod (1983) and Bichteler et al.

(1987). In Section 2, we extend the probabilistic interpretation of Tanaka (1978), who was

dealing with Maxwell molecules, to much more general spatially homogeneous Boltzmann

equations, under the condition supz

Ð �
0
ŁB(z, Ł)dŁ , 1. Indeed, using a typically

probabilistic substitution in the Boltzmann equation, we relate the solution of the equation

to the solution Vt of a Poisson-driven nonlinear stochastic differential equation: the law of

V is a measure solution to the Boltzmann equation. Then we develop in Section 3 our weak

approach to the stochastic calculus of variations for our nonlinear Poisson functionals, to

prove that even when the initial distribution is degenerate, the law of Vt has a density when

t . 0. This leads to a new existence result for the Boltzmann equation, generalizing the

Maxwell case in Graham and Méléard (1999).

The reason why we consider equations in two dimensions is technical. However, we are

far from able to prove such a result in the three-dimensional case; technical problems are

outlined in Fournier and Méléard (2002). This limitation is not new: for example,

Desvillettes (1997) had to consider equations in one or two dimensions to obtain

regularization results.

Let us now comment on the probabilistic tools we develop. The stochastic calculus of

variations for Poisson processes was first investigated by Bismut (1983). Bichteler and Jacod

(1983) rewrote and developed Bismut’s main ideas to prove the existence of densities for

diffusion processes with jumps. Much work has since been done. In almost all cases,

existence of densities was based on integration by parts, as in the standard Malliavin

calculus for Wiener functionals. But it is now well known in the Wiener case that the use

of integration by parts is not very efficient when one restricts oneself to studying absolute

continuity: it is much easier to use the Bouleau–Hirsch approach; see Nualart (1995).

However this sort of approach has not been investigated in the case of Poisson functionals.

Unfortunately, we cannot use an integration by parts formula in the present study,

because our random variables Vt cannot be differentiated in an L2(�) sense. Indeed, the

‘Malliavin derivative’ of Vt is not square-integrable. To overcome this limitation, we will

use the following weak, general and quite simple criterion of absolute continuity.
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Lemma 1.1. Let d 2 N�, and let X be an Rd-valued random variable on a probability space

(�, F , P). Let ¸ be a neighbourhood of 0 in Rd . Assume that there exists a family fX ºgº2¸
of Rd-valued random variables such that the following conditions hold:

(i) For each º 2 ¸, the law of X º is absolutely continuous with respect to that of X .

We denote by Gº ¼ dX=dX º the associated Radon–Nikodym density. The family Gº

satisfies the integrability condition

sup
º

E(jGºj2) , 1: (1:4)

(ii) For almost all ø, there exists a neighbourhood V(ø) of 0 in Rd on which the map

º 7! X º(ø) is of class C1.

(iii) For almost all ø, the derivative (@X º=@º)jº¼0 is invertible.

Then the law of X is absolutely continuous with respect to the Lebesgue measure on Rd .

Proof. Let A be a negligible subset of Rd . We have to prove that P(X 2 A) ¼ 0.

Applying the inverse local theorem, we deduce from (ii) and (iii) that, for almost all ø,

there exists a neighbourhood V(ø) of 0 in Rd on which the map º 7! X º(ø) is a C1

diffeomorphism. We now set, for n 2 N�, �n ¼ fø 2 �j[�1=n, 1=n]d � V(ø)g. Then it is

clear that �n grows to some ~��, with P( ~��) ¼ 1.

On the other hand, we know from (i) that for each º 2 ¸, P(X 2 A) ¼ E(1A(X º)Gº).

Hence, for each n,

P(X 2 A) ¼ E
n

2

� �dð
[�1=n,1=n]d

1A(X º)Gº dº

" #
: (1:5)

It is straightforward to conclude, using (1.4), the Cauchy–Schwarz inequality, and the fact

that limn P[�n] ¼ 1, that

P(X 2 A) ¼ lim
n!1

E
n

2

� �d ð
[�1=n,1=n]d

1A(X º)Gº dº

( )
3 1�n

" #
: (1:6)

To conclude that P(X 2 A) ¼ 0, it thus suffices to prove that, for each n and each ø 2 �n,ð
[�1=n,1=n]d

1A(X º)Gº dº ¼ 0: (1:7)

It is of course enough to show that, for each n and each ø 2 �n, I n(ø) ¼ 0, where

I n(ø) ¼
ð

[�1=n,1=n]d

1A(X º)dº ¼ 0: (1:8)

But ø belongs to �n, thus º 7! X º(ø) is a C1 diffeomorphism from [�1=n, 1=n]d into some

set Dn(ø). Substituting y ¼ X º(ø) in (1.8), and denoting by J n(ø, y) the associated

Jacobian, we obtain
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I n(ø) ¼
ð

Dn(ø)

1A(y)Jn(ø, y)dy, (1:9)

which of course vanishes since A is Lebesgue negligible. This concludes the proof. h

We can apply this absolute continuity criterion to standard Poisson-driven stochastic

differential equations, and the theorem we obtain (Theorem 1.2 below) generalizes the result

of Bichteler and Jacod (1983) and Bichteler et al. (1987) in the case of processes with finite

variations. Bichteler and Jacod (1983) deal with the unidimensional case, while Bichteler

et al. (1987) treat the multidimensional case; our result is stated for any dimension. The

technical hypotheses on the coefficients are less stringent: instead of boundedness, we

assume polynomial growth and the integrability assumption is also weaker. Furthermore, our

proof (in the case of a process related to the Boltzmann equation) is technically simpler. Let

us now state our result.

Theorem 1.2. Consider, on a probability space (�, F , P), a Poisson point measure

N (ø, dt, dz) on [0, T ] 3 R with intensity measure m(dt, dz) ¼ dt dz, and consider the Rd-

valued stochastic differential equation

X t ¼ x0 þ
ð t

0

ð
R

ª(X s�, z)N (ds, dz) þ
ð t

0

b(X s�)ds, (1:10)

where x0 2 Rd, and where the coefficients ª and b satisfy the following hypotheses:

(i) The maps ª(X , z) : Rd 3 R� 7! Rd and b are of class C2. There exist p 2 N,

K 2 Rþ, and a bounded positive function � : R� 7! Rþ satisfying the integrability

condition

�(z) ¼ sup
ju�zj<jzj=2^1=jzj

�(u) 2 L1(R�, dz), (1:11)

such that, for X 2 Rd and z 2 R,

jª(X , z)j < (1 þ jX j)�(z), jb(X )j < K(1 þ jX j); (1:12)

jª9X (X , z)j þ jª 0XX (X , z)j < (1 þ jX j p)�(z), jb9(X )j þ jb 0(X )j < K(1 þ jX j p); (1:13)

jª9z(X , z)j þ jª 0zz(X , z)j þ jª 0Xz(X , z)j < K(1 þ jX j p): (1:14)

Notice that the integrability condition (1.11) is not much more stringent than the

simple condition � 2 L1(R�, dz).

(ii) The following non-degeneracy condition holds: for each X 2 Rd and each

Y 2 Rdnf0g, ð
R

1fY Tª9z(X ,z)(ª9z(X ,z))T Y 6¼0g(z)dz ¼ 1:

Then there exists a solution fX tg t2[0,T ] to (1.10), and for all t . 0 the law of X t admits a

density with respect to the Lebesgue measure on Rd .
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We do not give the proof of this result here, since we do so later (Section 3) for the more

complicated (because nonlinear) case of Boltzmann processes.

In Bichteler and Jacod (1983) and Bichteler et al. (1987), the assumptions equivalent to

(1.13) and (1.14) are given by

jª9X (X , z)j þ jª 0XX (X , z)j < �(z), jb9(X )j þ jb 0(X )j < K; (1:15)

jª9z(X , z)j þ jª 0z(X , z)j þ jª 0Xz(X , z)j < K: (1:16)

Finally, notice that a localization procedure may be used to generalize directly the results of

Bichteler and Jacod and of Bichteler et al. But this would probably not lead to such weak

assumptions. Furthermore, localization cannot be used in nonlinear settings, such as that of

the Boltzmann equation.

2. Transformation of the Boltzmann equation, and main results

First of all, we specify the family of cross-sections we will study.

Hypothesis 2.1. For all x 2 Rþ, B(x, Ł) is an even, strictly positive function on [��, �]nf0g
satisfying ð�

��
B(x, Ł)dŁ ¼ 1 and sup

x2Rþ

ð�
��
jŁjB(x, Ł)dŁ , 1: (2:1)

For X 2 R2, we will denote by B(X , Ł) the quantity B(jX j, Ł).

Equation (1.1) has to be understood in a weak sense. Integrating (1.1) against test functions,

and using standard integration by parts (see Desvillettes, 1997), we obtain the following weak

formulation. First of all, we define, for each probability measure q 2 P(R2) and each

� 2 C1
b(R2),

Lq�(v) ¼
ð
R2

ð�
��

(�(v þ A(Ł)(v � v�)) � �(v))B(v � v�, Ł)dŁq(dv�): (2:2)

This kernel is well defined since jA(Ł)j < KjŁj and thanks to (2.1).

Definition 2.2. Assume Hypothesis 2.1. Consider a probability measure Q0 on R2. We say that

a probability measure family fQtg t2[0,T] is a measure solution of the Boltzmann equation

(1.1) with initial data Q0 if, for each � 2 C1
b(R2) and all t 2 [0, T ],

h�, Qti ¼ h�, Q0i þ
ð t

0

hLQs
�(v), Qs(dv)i ds: (2:3)

If, furthermore, for all t 2]0, T ], the probability measure Qt admits a density f (t, ") with

respect to the Lebesgue measure on R2, the function f (t, v) : ]0, T ] 3 R2 7! Rþ obtained is

said to be a function solution of the Boltzmann equation (1.1).
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The probabilitistic approach will consist in considering (2.3) as the evolution equation of the

flow of time-marginals of a Markov process.

This entire work is based on the following substitution in Lq. For each X 2 R2, we

consider the function hX defined on [��, �]nf0g by

hX (Ł) ¼
ð�
Ł

B(X , j)dj if Ł . 0; hX (Ł) ¼ �
ðŁ
��

B(X , j)dj if Ł , 0: (2:4)

Thanks to Hypothesis 2.1, it is clear that for each X , hX (Ł) is strictly decreasing from 0 to

�1 between Ł ¼ �� and Ł ¼ 0�, and from þ 1 to 0 between Ł ¼ 0þ and Ł ¼ �. We thus

can set, for each X 2 R2 and each z 2 R�,

g(X , z) ¼ h�1
X (z), i:e: hX (g(X , z)) ¼ z: (2:5)

Notice that for each X , z, the derivative g9z(X , z) ¼ �1=B(X , g(X , z)) , 0, thanks to

Hypothesis 2.1. The function g(X , z) is thus strictly decreasing from 0 to �� between �1
and 0�, and from � to 0 between 0þ and +1. Notice also that g(X , ") is odd and depends

only on jX j. Finally, observe that (2.1) can be written as

sup
X2R2

ð
R�
jg(X , z)jdz , þ1: (2:6)

For X 2 R2 and z 2 R�, we set

ª(X , z) ¼ A(g(X , z)):X : R2 3 R� 7! R2: (2:7)

In this way, we obtain a new expression for the operator Lq.

Proposition 2.3. Assume Hypothesis 2.1. Then, for each q 2 P(R2) and � 2 C1
b(R2),

Lq�(v) ¼
ð
R2

ð
z2R�

(�(v þ ª(v � v�, z)) � �(v))dzq(dv�): (2:8)

Proof. It suffices to use the substitution Ł ¼ g(v � v�, z) in (2.2), which implies that

z ¼ hv�v�(Ł) and thus dz ¼ �B(v � v�, Ł)dŁ. h

Let us now explain why this substitution is of interest. Tanaka (1978) dealt with the

much simpler case of Maxwell molecules (i.e. B(X , Ł) ¼ �(Ł)). In this case, the jump

measure appearing in (2.2) is �(Ł)dŁq(dv�), and does not depend on v. The main attrac-

tion of the substitution described above is in transforming the jump measure

B(v � v�, Ł)dŁq(dv�) into a measure of the form dzq(dv�), independent of v. This will

enable a probabilistic interpretation in terms of Poisson measure.

Finally, we wish to introduce a nonlinear stochastic differential equation associated with

our Boltzmann equation. To this end, we follow the main ideas of Tanaka. We first consider

two probability spaces: the first is the abstract space (�, F , fF tg t2[0,T], P); and the second

is the auxiliary space ([0, 1], B([0, 1]), dÆ) introduced to model the nonlinearity. In order to

avoid any confusion, the processes on ([0, 1], B([0, 1]), dÆ) will be called Æ-processes, the

expectation under dÆ will be denoted by EÆ, and the laws LÆ.
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Definition 2.4. Assume Hypothesis 2.1. We will say that (V , W , N , V0) is a solution of (SDE)

if:

(i) fVt(ø)g t2[0,T ] is a R2-valued cadlag adapted process on � such that

E(sup t2[0,T]jVtj2) , þ1;

(ii) fW t(Æ)g t2[0,T ] is a R2-valued cadlag Æ-process on [0, 1];

(iii) N (ø, dt, dÆ, dz) is a Poisson measure on [0, T ] 3 [0, 1] 3 R� with intensity

measure

m(dt, dÆ, dz) ¼ dt dÆ dz; (2:9)

(iv) V0(ø) is a square-integrable variable independent of N ;

(v) the laws of V and W are the same, i.e. L(V ) ¼ LÆ(W );

(vi) the following S.D.E. is satisfied:

Vt ¼ V0 þ
ð t

0

ð1

0

ð
R�
ª(Vs� � Ws�(Æ), z)N (ds, dÆ, dz) (2:10)

The following remark shows the connection between (SDE) and the Boltzmann equation

(1.1).

Remark 2.5. Let (V , W , N , V0) be a solution of (SDE), and set Qt ¼ L(Vt) ¼ LÆ(W t) for

each t 2 [0, T ]. Then one can easily prove, using the Itô formula, that the family fQtg t2[0,T]

is a measure solution of (2.3) with initial data Q0.

Let us now state a hypothesis, which, combined with Hypothesis 2.1, will be sufficient to

obtain existence of a function solution to the Boltzmann equation.

Hypothesis 2.6. (i) The initial distribution Q0 ¼ L(V0) admits moments of all orders, and is

not a Dirac mass.

(ii) The map ª(X , z) : R2 3 R� 7! R2 is of class C2. There exist p 2 N, K 2 Rþ, and a

bounded positive function � : R� 7! Rþ satisfying the integrability condition

�(z) ¼ sup
ju�zj<(jzj=2)^(1=jzj)

�(u) 2 L1(R�, dz), (2:11)

such that

jª(X , z)j < (1 þ jX j)�(z), (2:12)

jª9X (X , z)j þ jª 0XX (X , z)j < (1 þ jX j p)�(z), (2:13)

jª9z(X , z)j þ jª 0zz(X , z)j þ jª 0Xz(X , z)j < K(1 þ jX j p): (2:14)

Notice that the integrability condition (2.11) is not much more stringent than the simple

condition � 2 L1(R�, dz).
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The following existence result for (SDE) is an easy but tedious exercise, and can be

proved by following the main ideas of Fournier and Méléard (2001).

Proposition 2.7. Assume Hypotheses 2.1 and 2.6. Then there is weak existence for (SDE).

This means that there exists a probability space (�, F , P), on which there exists a solution

(V , W , N , V0) to (SDE). Furthermore, we have for any q 2 N,

E sup
[0,T ]

jVtjq
 !

¼ EÆ sup
[0,T]

jW tjq
 !

, 1: (2:15)

Finally, momentum and kinetic energy are conserved, that is, for all t 2 [0, T ],

E(Vt) ¼ E(V0) and E(jVtj2) ¼ E(jV0j2).

Then the following regularization result holds:

Theorem 2.8. Assume Hypotheses 2.1 and 2.6. Consider a solution (V , W , N , V0) of SDE.

Then, for all t . 0, the law of Vt admits a density f (t, :) with respect to the Lebesgue

measure on R2.

The next corollary, immediately deduced from Theorem 2.8, states the analytical version of

our result.

Corollary 2.9. Assume Hypotheses 2.1 and 2.6. Then there exists a function solution

f 2 L1(]0, T ], L1((1 þ jvj2)dv)) (2:16)

to the Boltzmann equation without cut-off, for non-Maxwell molecules, with initial data Q0,

and f (t, :) is, for each t . 0, a probability density function.

We now give an example where Hypotheses 2.1 and 2.8 can easily be verified.

Example 2.10. Assume that the cross-section is of the form B(X , Ł) ¼ ł(X )=jŁjÆ, with ł
positive and Æ 2 [1, 2[. Then Hypotheses 2.1 and 2.6 are satisfied if ł is bounded from

above and from below, and is of class C2 on R2, and if ł9 and ł 0 have at most polynomial

growth. We can prove this by means of simple computations, observing that when Æ ¼ 1,

g(X , z) ¼ sign(z)e�jzj=ł(X ),

and when Æ . 1,

g(X , z) ¼ sign(z)
�Æ�1ł(X )

(Æ� 1)jzj�Æ�1 þ ł(X )

 !1=(Æ�1)

:
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3. Existence of a function solution

In this section we will prove Theorem 2.8, assuming Hypotheses 2.1 and 2.6 throughout. We

consider a fixed solution (V , W , N , V0) of (SDE). Our aim is to prove that the law of VT

admits a density with respect to the Lebesgue measure on R2, for fixed terminal time T . 0 ,

which of course suffices since T . 0 is fixed arbitrarily.

To prove such a result, we will apply Lemma 1.1 to the random variable X ¼ VT . First,

we will construct in Section 3.1 some absolutely continuous changes of measure, on our

Poisson space, which will allow us to define the perturbed processes V º. In fact, we will

define a ‘class’ of changes of measure, depending on the ‘direction’ in which we want to

perturb our process. In Section 3.2 we will study the almost sure differentiability of V º
T

with respect to º. In Section 3.3 we will choose a ‘direction’, and we prove that the

associated (@V º
T=@º)º¼0 is almost surely invertible. In Section 3.4 we bring everything

together to conclude our proof.

3.1. Absolutely continuous changes of measure

Following the ideas of Bichteler and Jacod (1983), we now construct a family of shifts Sº on

�, such that the family V º
T ¼ VT 7 Sº satisfies the assumptions of the criterion given in

Lemma 1.1. We begin with a definition, which describes in which ‘directions’ we are

authorized to perturb our process.

Definition 3.1. We say that a predictable function v(ø, s, Æ, z) : �3 [0, T ] 3 [0, 1]

3 R� 7! R2 is a direction if it is of class C1 in z, and if there exists a deterministic

positive function r(z) : R� 7! Rþ such that

jv(ø, s, Æ, z)j þ jv9(ø, s, Æ, z)j < r(z) (3:1)

(where v9 ¼ v9z), and

r 2 L1(R�, dz), 8z 2 R�, r(z) < (jzj=2) ^ (1=jzj), r(z) < 1=2: (3:2)

Let v now be a fixed direction. We associate with v many objects.

We consider a neighbourhood ¸ of 0 in B(0, 1) � R2. For º 2 ¸, we define the

perturbation

ˆº(ø, t, z, Æ) ¼ z þ ºv(ø, t, z, Æ) ¼ z þ ºxvx(ø, t, z, Æ) þ º yv y(ø, t, z, Æ): (3:3)

One can verify, using (3.1), that, for every º 2 ¸ and every ø, t, Æ, the map

z 7! ˆº(ø, t, z, Æ) is an increasing bijection from R� into itself.

For º 2 ¸, we set Nº ¼ ˆº(N ): if A is a Borel set of [0, T ] 3 [0, 1] 3 R�,

N º(A) ¼
ðT

0

ð1

0

ð
R�

1A(s, ˆº(ø, s, z, Æ), Æ)N (ø, dz, dÆ, ds): (3:4)

We consider the shift Sº defined by
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V0 7 Sº(ø) ¼ V0(ø), N 7 Sº(ø) ¼ N º(ø): (3:5)

We now look for a family of probability measures Pº on � satisfying Pº 7 (Sº)�1 ¼ P.

To this end, we consider the predictable real-valued function on �3 [0, T ] 3 R� 3 [0, 1]

given by

Y º(ø, s, z, Æ) ¼ 1 þ ºxv9x(ø, s, z, Æ) þ º yv9y(ø, s, z, Æ): (3:6)

We have

jY º(ø, s, z, Æ) � 1j < jºjr(z): (3:7)

Then we consider the following square-integrable Doléans–Dade martingale:

Gº
t ¼ 1 þ

ð t

0

ð1

0

ð
R�

Gº
s�(Y º(s, z, Æ) � 1) ~NN (dz, dÆ, ds): (3:8)

Proposition 3.2. Gº
t is strictly positive for every t 2 [0, t]. If Pº is the probability measure

defined by Pº ¼ Gº
T P, then Pº 7 (Sº)�1 ¼ P. Furthermore,

sup
º

E[(Gº
T )2] , 1: (3:9)

Proof. Recall that if

Mº
t ¼

ð t

0

ð1

0

ð
R�

(Y º(ø, s, z, Æ) � 1) ~NN (dz, dÆ, ds), (3:10)

then (see Jacod and Shiryaev 1987, p. 59) Gº
t ¼ eMº

t—s< t(1 þ ˜Mº
s)e�˜Mºs . Since, by

construction, jY º(ø, s, z, Æ) � 1j < 1
2

for z 2 R�þ, the jumps of Mº are greater than �1
2
, and

thus Gº
t is strictly positive. Now, using the definition of the shift Sº and the Girsanov theorem

(see Jacod and Shiryaev 1987, p. 157), we see that the compensator of N under Pº is

ˆº(Y ºm). But Y º has been chosen such that ˆº(Y ºm) ¼ m. Indeed, considering a Borel set A

of [0, T ] 3 R� 3 [0, 1], we have

ˆº(Y º:m)(A) ¼
ð t

0

ð1

0

ð
R�

1A(s, ˆº(s, z, Æ), Æ)Y º(s, z, Æ)dz dÆ ds: (3:11)

The substitution z9 ¼ ˆº(s, z, Æ) implies that ˆº(Y ºm)(A) ¼ m(A). Hence, since the law of a

Poisson point measure is characterized by its intensity, we deduce that L(NºjPº) ¼ L(N jP).

Finally, since V0 is independent of Gº, it is clear that L(V0jPº) ¼ L(V0jP). We have shown

that Pº 7 (Sº)�1 ¼ P.

We deduce (3.9) from (3.8), (3.7), the fact that r 2 L1 \ L1(R�, dz), and the Gronwall

lemma. h
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3.2. Perturbation and derivation of Vt

In this subsection, we consider a fixed direction v, we use the notation of the previous

subsection, and we study the smoothness of the map º 7! V º
t ¼ Vt 7 Sº. Here the Æ-process

W is fixed, deterministic (from the point of view of the probability space �), and thus

behaves as a parameter.

Proposition 3.3. Let º 2 ¸ be fixed. The perturbed process V º, defined by V º
t ¼ Vt 7 Sº,

satisfies the equation

V º
t ¼ V0 þ

ð t

0

ð1

0

ð
R�
ª(V º

s� � Ws�(Æ), ˆº(s, Æ, z))N (dz, dÆ, ds) (3:12)

Proof. It suffices to replace ø by Sº(ø) everywhere in equation (2.10). h

We will need the following lemma.

Lemma 3.4. For each º, (3.12) admits a unique solution that is almost surely cadlag from

[0, T ] into R2. We furthermore have almost surely that

sup
º

sup
0< t<T

jV º
t j , 1: (3:13)

We omit the proof of this lemma, because it can be done in the same way as that of the next

one.

The following lemma deals with the possible derivative of V º
t , which should satisfy the

equation obtained by formally differentiating (3.12) with respect to º.

Lemma 3.5. For each º, the equation

D º
t ¼

ð t

0

ð1

0

ð
R�
ª9X (V º

s� � Ws�(Æ), ˆº(s, Æ, z))D º
s�N (ds, dÆ, dz) (3:14)

þ
ð t

0

ð1

0

ð
R�
ª9z(V

º
s� � Ws�(Æ), ˆº(s, Æ, z))v(s, Æ, z)N (ds, dÆ, dz)

admits a unique solution which is almost surely cadlag from [0, T ] into M232(R)). We have,

furthermore, almost surely that

sup
º

sup
0< t<T

jD º
t j , 1: (3:15)

Observe that there is no reason why for some º fixed, say for º ¼ 0, D0
T should belong to L2

(or even L1). The only assumption that ensures that D0
T belongs to L2 is the Maxwell

assumption B(X , Ł) ¼ �(Ł), which yields that ª(X , z) ¼ A(g(z))X , with g no longer

depending on X , and thus ª9X (X , z) ¼ A(g(z)). In any other case, D0
T behaves almost as the

Doléans–Dade exponential of a pure jump process with finite variations, belonging to all the

Lqs, but this does not imply that D0
T belongs to L1. (One can easily construct Poisson-driven
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semimartingales which belong to all the Lqs, and whose Doléans–Dade exponential is not in

L1). This is the reason why we have to use the almost sure derivatives and the weak criterion

given by Lemma 1.1.

Proof. We first prove the uniqueness. We will use Lemma A.1 in the Appendix, for º and ø
fixed. Thus, let º be fixed, and let D and E be two cadlag solutions of (3.14). A simple

computation shows that

jDt � Etj <
ð t

0

ð1

0

ð
R�
jDs� � Es�j3 jª9X (V º

s� � Ws�(Æ), ˆº(s, Æ, z))jN (ds, dÆ, dz): (3:16)

Since ˆº(s, Æ, z) ¼ z þ ºv(s, Æ, z), we deduce from (3.1) and (3.2) that jˆº(s, Æ, z)

�zj < (jzj=2) ^ (1=jzj). Hence, using (2.11) and (2.13) in Hypothesis 2.6, we obtain the

existence of a constant C such that

jª9X (V º
s� � Ws�(Æ), ˆº(s, Æ, z))j < C(1 þ jV º

s�j p þ jWs�(Æ)j p)�(z): (3:17)

We set ~��(s, Æ, z) ¼ (1 þ jWs�(Æ)j p)�(z). Then ~�� belongs to L1(ds, dÆ, dz), thanks to

Hypothesis 2.6 and (2.15), and hence ~�� belongs almost surely to L1(N (ds, dÆ, dz)). We also

set c ¼ 1 þ supº sups2[0,T] jV º
s�j p, which is almost surely finite thanks to Lemma 3.4. We

finally obtain

jDt � Etj < Kc

ð t

0

ð1

0

ð
R�
jDs� � Es�j3 ~��(s, Æ, z)N (ds, dÆ, dz): (3:18)

Applying Lemma A.1, we finally deduce that sup[0,T] jDt � Etj ¼ 0 almost surely, as

required.

We now prove the existence. We continue to fix º. We first consider the simpler equation,

for n 2 N� fixed,

D
n

t ¼
ð t

0

ð1

0

ð
jzj<n

ª9X (V º
s� � Ws�(Æ), ˆº(s, Æ, z))D

n

s�N (ds, dÆ, dz)

þ
ð t

0

ð1

0

ð
R�
ª9z(V º

s� � Ws�(Æ), ˆº(s, Æ, z))v(s, Æ, z)N (ds, dÆ, dz): (3:19)

We denote by Ut the last term of this equation. Notice that thanks to (2.14) in Hypothesis 2.6

and to (3.1), almost surely, sup[0,T] jUtj < A, where

A ¼ K 1 þ sup
º,u

jV º
uj p

 !ð t

0

ð1

0

ð
R�

(1 þ jWs�(Æ)j p)r(z)N (ds, dÆ, dz), (3:20)

which is almost surely finite thanks to (3.2), Lemma 3.4 and (2.15).

Since N j[0,T]3[0,1]3fjzj<ng is a finite counting measure, it can be written (for each ø) as a

(finite) sum of n Dirac measures at some points (Ti, Æi, zi), and one may assume that

0 , T1 , T2 , . . . , Tn , T . Thus equation (3.19) can be solved by working recursively

on the time intervals [Ti, Tiþ1[: for t 2 [0, T1[, we set
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D
n

t ¼ U t;

for t 2 [T1, T2[, we set

D
n

t ¼ ª9X (V º
T1� � WT1

� (Æ1), ˆº(T1s, Æ1, z1))D
n

T1� þ U t;

and so on. Then we have to prove that, for almost all ø,

sup
n

sup
t2[0,T ]

jDn

t j , 1: (3:21)

Using (3.20) and the same arguments and notation as in the proof of uniqueness, we obtain

jDn

t j < A þ Kc

ð t

0

ð1

0

ð
R�
jDn

s�j~��(s, Æ, z)N (ds, dÆ, dz): (3:22)

Lemma A.1 allows us to conclude that

sup
[0,T ]

jDn

t j < A exp

ðT

0

ð1

0

ð
R�

ln(1 þ Kc~��(s, Æ, z))N (ds, dÆ, dz)

 !
(3:23)

and (3.21) is proved. We finally check that the family Dn is Cauchy for the supremum norm

on [0, T ] (for almost all ø fixed). Let n , n9 be fixed. Then

jDn

t � D
n9

t j <
ð t

0

ð1

0

ð
R�
jª9X (V º

s� � Ws�(Æ), ˆº(s, Æ, z))j jDn

s� � D
n9

s�jN (ds, dÆ, dz)

þ sup
l,u2[0,T ]

jDl

uj3
ðT

0

ð1

0

ð
n,jzj,n9

jª9X (V º
s� � Ws�(Æ), ˆº(s, Æ, z))j

N (ds, dÆ, dz): (3:24)

Still using the same notation as in the proof of uniqueness, we obtain

jDn

t � D
n9

t j < Kc

ð t

0

ð1

0

ð
R�

~��(s, Æ, z)jDn

s� � D
n9

s�jN (ds, dÆ, dz) þ Z n,n9, (3:25)

where

Z n,n9 ¼ sup
l,u2[0,T]

jDl

uj3 cK

ðT

0

ð1

0

ð
n,jzj,n9

~��(s, Æ, z)N (ds, dÆ, dz): (3:26)

Since ~�� belongs (almost surely) to L1(N ), it is clear that when n, n9 go to infinity, Z n,n9 goes

to 0. Lemma A.1 immediately yields that

sup
[0,T ]

jDn

t � D
n9

t j < B 3 Z n,n9, (3:27)

where B is an almost surely finite random variable. The family D
n

t is thus almost surely

Cauchy for the supremum norm on [0, T ], and hence admits a limit Dt. Making n tend to

infinity in (3.19), using (3.21), we show that D satisfies (3.14). This concludes the proof of

the existence.
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We finally check (3.15). Still using the same arguments and notation, we obtain

jD º
t j < Kc

ð t

0

ð1

0

ð
R�

~��(s, Æ, z)jD º
s�jN (ds, dÆ, dz) þ A (3:28)

and Lemma A.1 allows to conclude as usual that

sup
º

sup
[0,T ]

jD º
t j < A exp

ðT

0

ð1

0

ð
R�

ln (1 þ Kc~��(s, Æ, z))N (ds, dÆ, dz)

 !
, (3:29)

which implies (3.15). h

To check that º 7! V º
T is almost surely differentiable, we first need a Lipschitz estimate.

Lemma 3.6. There exists an almost surely finite random variable A such that, for all

0 < t < T and all º, � 2 ¸,

jV º
t � V

�
t j < Ajº� �j: (3:30)

Proof. Let º, � be fixed. Notice that thanks to Hypothesis 2.6, to the definition of ˆº, and to

the properties of the direction v, there exists a constant C such that

jª(V º
s� � Ws�(Æ), ˆº(s, Æ, z)) � ª(V �

s� � Ws�(Æ), ˆ�(s, Æ, z))j

< C(1 þ jV º
s�j p þ jV �

s�j p þ jWs�(Æ)j p)�(z)jV º
s� � V �

s�j

þ C(1 þ jV �
s�j p þ jWs�(Æ)j p)jˆº(s, Æ, z) � ˆ�(s, Æ, z)j

< C sup
º9,u

(1 þ jV º9
u j p) 3 (�(z)(1 þ jWs�(Æ)j p) 3 jV º

s� � V �
s�j þ jº� �jr(z))

¼ Cc(~��(s, Æ, z)jV º
s� � V �

s�j þ jº� �jr(z)), (3:31)

where the last inequality defines some notation. As in the previous proofs, ~�� 2 L1(N ) almost

surely, and c is almost surely finite. We thus deduce that

jV º
t � V

�
t j < Cc

ð t

0

ð1

0

ð
R�
jV º

s� � V �
s�j~��(s, Æ, z)N (ds, dÆ, dz)

þ Ccjº� �j
ðT

0

ð1

0

ð
R�
r(z)N (ds, dÆ, dz): (3:32)

Lemma A.1 allows us to conclude once again that (3.30) holds with

A ¼ Cc

ðT

0

ð1

0

ð
R�
r(z)N (ds, dÆ, dz) exp

ðT

0

ð1

0

ð
R�

ln[1 þ Cc~��(s, Æ, z)]N (ds, dÆ, dz)

 !
(3:33)

h
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We finally can prove the differentiability of V º
T .

Proposition 3.7. For almost all ø, the map º 7! V º
T is differentiable on ¸, and

@V º
T@º ¼ D º

T .

Proof. We will check the existence of an almost surely finite random variable B such that

almost surely, for all 0 < s < T and all º, � 2 ¸,

jV º
s � V �

s � D º
s(º� �)j < Bjº� �j2, (3:34)

which will of course suffice. Thus, let º, � 2 ¸ be fixed. Set ˜s(º, �) ¼
V º

s � V �
s � D º

s(º� �). Using Hypothesis 2.6, Lemma 3.6, the definition of ˆº, the properties

of the direction v, and the notation of the proof of Lemma 3.5, we deduce the existence of a

constant K such that, for all s < T ,

jª(V º
s� � Ws�(Æ), ˆº(s, Æ, z)) � ª(V �

s� � Ws�(Æ), ˆ�(s, Æ, z)) � ª9X (V º
s� � Ws�(Æ), ˆº(s, Æ, z))

3 D º
s�(º� �) � ª9z(V

º
s� � Ws�(Æ), ˆº(s, Æ, z))v(s, Æ, z)(º� �)j

< jª(V º
s� � Ws�(Æ), ˆº(s, Æ, z)) � ª(V �

s� � Ws�(Æ), ˆº(s, Æ, z))

� ª9X (V º
s� � Ws�(Æ), ˆº(s, Æ, z))(V º

s� � V �
s�)j

þ jª9X (V º
s� � Ws�(Æ), ˆº(s, Æ, z))˜s�(º, �)j

þ jª(V �
s� � Ws�(Æ), ˆ�(s, Æ, z)) � ª(V �

s� � Ws�(Æ), ˆº(s, Æ, z))

� ª9z(V
�
s� � Ws�(Æ), ˆº(s, Æ, z))v(s, Æ, z)(º� �)j

þ j[ª9z(V º
s� � Ws�(Æ), ˆº(s, Æ, z)) � ª9z(V �

s� � Ws�(Æ), ˆº(s, Æ, z))]v(s, Æ, z)(º� �)j

< K[c~��(s, Æ, z)jV º
s� � V �

s�j2 þ c~��(s, Æ, z)j˜s�(º, �)j

þ c(1 þ jWs�(Æ)j p)r(z)jº� �jfjº� �j þ jV º
s� � V �

s�jg]

< B1jº� �j2[~��(s, Æ, z) þ (1 þ jWs�(Æ)j p)r(z)] þ B1 ~��(s, Æ, z)j˜s�(º, �)j, (3:35)

where B1 is an almost surely finite random variable. Since ~��(s, Æ, z) þ (1 þ jWs�(Æ)j p)r(z)

belongs almost surely to L1(N (ds, dÆ, dz)), it is easily deduced from (2.15) and (3.30) that,

for all t < T , almost surely,

j˜ t(º, �)j < B2jº� �j2 þ B1

ð t

0

ð1

0

ð
R�

~��(s, Æ, z)j˜s�(º, �)jN (ds, dÆ, dz), (3:36)

where B2 is an almost surely finite random variable. Lemma A.1 allows us to deduce that

(3.34) holds, which concludes the proof. h
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3.3. Choice of v and invertibility of D0
T

We still have to check that, for a good choice of v, D0
T is almost surely invertible (this will

provide condition (iii) in Lemma 1.1). To this end, we adapt to our context the ideas of

Bichteler and Jacod (1983). Thanks to (3.14), we may write

D0
t ¼

ð t

0

dX s:D
0
s� þ H t, (3:37)

where

X t ¼
ð t

0

ð1

0

ð
R�
ª9X (Vs� � Ws�(Æ), z)N (ds, dÆ, dz), (3:38)

H t ¼
ð t

0

ð1

0

ð
R�
ª9z(Vs� � Ws�(Æ), z)v(s, Æ, z)N (ds, dÆ, dz): (3:39)

Using Jacod (1982), we compute D0
T explicitly. First, we denote by K t the Doléans–Dade

exponential of X : for I the unit matrix of M232(R),

K t ¼ E(X ) t ¼ I þ
ð t

0

dX s:Ks� ¼
Y
s< t

(I þ ˜X s): (3:40)

Then we consider the following sequence of stopping times:

S0 ¼ 0, Snþ1 ¼ infft 2]Sn, T ]jdet(I þ ˜X t) ¼ 0g, (3:41)

with the convention inf ˘ ¼ 1. Then the sequence Sn is totally inaccessible, and we have

almost surely, for all n, T 6¼ Sn. Furthermore, it is clear that, for all n and all t 2]Sn, Snþ1[,

the Doléans–Dade exponential E(X � X Sn ) t ¼ —Sn,s< t(I þ ˜X s) is invertible. We thus

know, again from Jacod (1982), that if ø satisfies Sn , T , Snþ1 ¼ 1, then

D0
T ¼ E(X � X Sn )T ˜HS n

þ
ð

]Sn,T ]

E(X � X Sn )�1
s�(I þ ˜Xs)

�1 dHs

$ %
: (3:42)

We finally rewrite (3.42) explicitly:

Proposition 3.8. For almost all ø, there exists n such that Sn , T , Snþ1, and

D0
T ¼ E(X � X Sn )T ˜HSn

$

þ
ð

]Sn,T ]

ð1

0

ð
R�
E(X � X Sn )�1

s�(I þ ª9X (Vs� � Ws�(Æ), z))�1ª9z(Vs� � Ws�(Æ), z)

3 v(s, Æ, z)N (ds, dÆ, dz)

%
(3:43)

We now choose v. First of all, we denote by k a function from M232(R) into [0, 1] such

that
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k(M) ¼ 0 , det M ¼ 0, (3:44)

and such that the map

M 7! k(M)(M�1)T if det M 6¼ 0,

0 if det M ¼ 0,

�
(3:45)

is of class C1
b from M232(R) into itself.

We also consider a C1 function f from R� into ]0, 1] such that, for some c 2]0, 1],

j f j þ j f 9j < c, j f (z)j þ j f 9(z)j < (jzj=2) ^ (1=jzj), j f j þ j f 9j 2 L1(R�, dz): (3:46)

Definition 3.9. We set

v(s, Æ, z) ¼ ª9z(Vs� � Ws�(Æ), z)T

1 þ jVs�j p þ jWs�(Æ)j p

3
(I þ ª9X (Vs� � Ws�(Æ), z))�1,T 3 k(I þ ª9X (Vs� � Ws�(Æ), z))

1 þ jVs�j p þ jWs�(Æ)j p

3 E(X � X Sn )�1,T
s� k(E(X � X Sn )s�) 3 f (z): (3:47)

Then the following result is straightforward.

Lemma 3.10. If c (see (3.46)) is small enough, which we assume, then the map v defined in

Definition 3.9 is a direction in the sense of Definition 3.1.

In view of (3.43), our main interest in this direction is the following.

Lemma 3.11. With our choice for v, ˜HSn
¼ 0 for all n and almost all ø such that Sn , T .

Proof. The stopping time Sn is a jump time of the Poisson measure. Let us denote by

(ÆS n
, zSn

) the associated jump. We know, from the definition of Sn, that det(I þ ˜X Sn
) ¼ 0,

which implies that det(I þ ª9X (VSn
� WSn

(ÆSn
), zSn

)) ¼ 0. Hence, thanks to the definition of

v and k, we deduce that v(Sn, ÆS n
, zSn

) ¼ 0, which clearly implies the result thanks to

(3.39). h

Remark 3.12. (i) We deduce from the lemma above that in order to prove that D0
T is almost

surely invertible, it suffices to check that, for any n and for almost all ø satisfying

Sn , T , Snþ1, ˜n
T is invertible, where

˜n
T ¼

ð
]Sn,T]

ð1

0

ð
R�
E(X � X Sn )�1

s�(I þ ª9X (Vs� � Ws�(Æ), z))�1

3 ª9z(Vs� � Ws�(Æ), z)v(s, Æ, z)N (ds, dÆ, dz): (3:48)

(ii) We can also write, using the explicit expression for v,
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˜n
T ¼

ð
]Sn,T ]

E(X � X Sn )�1
s� dRs:E(X � X Sn )�1,T

s� , (3:49)

where

Rt ¼
ð

]Sn,T ]

ð1

0

ð
R�

J (Vs� � Ws�(Æ), z) 3 h(s, Æ, z) 3 f (z)N (ds, dÆ, dz) (3:50)

with, for X 2 R2,

J (X , z) ¼ (I þ ª9X (X , z))�1ª9z(X , z)ª9z(X , z)T(I þ ª9X (X , z))�1,T (3:51)

and

h(s, Æ, z) ¼ 1

(1 þ jVs�j p þ jWs�(Æ)j p)2
3 k(I þ ª9X (Vs� � Ws�(Æ), z))k(E(X � X S n )s�):

(3:52)

For all X , z, J (X , z) is a symmetric non-negative matrix. The function h is always non-

negative. Hence, Rt is non-negative, symmetric, and increasing for the strong order. Since h

never vanishes, and since E(X � X Sn )�1
s� is invertible for all s 2]Sn, T ], it suffices to prove

that, for all 0 < s , t < T, Rt � Rs is almost surely invertible, where

Rt ¼
ð

]Sn,T]

ð1

0

ð
R�

J (Vs� � Ws�(Æ), z) 3 f (z)N (ds, dÆ, dz): (3:53)

One may, for example, verify that, for all 0 < s , t < T and all Y 2 R2=f0g,

Y T (Rt � Rs)Y . 0 almost surely.

Before concluding that D0
T is almost surely invertible, we state and prove a last lemma.

Lemma 3.13. For all t 2]0, T ], the law of Vt (and thus that of W t) is not a Dirac mass.

Proof. Using the conservation of momentum and kinetic energy (see Proposition 2.7), one

can easily prove that, for any a in R2, the quantity E(jVt � aj2) does not depend on t. Hence,

if the law of Vt were a Dirac mass at some a 2 R2, we would deduce that the law of V0, i.e.

Q0, is also a Dirac mass at a. This contradicts Hypothesis 2.6. h

We finally prove that condition (iii) of Lemma 1.1 is satisfied by VT.

Proposition 3.14. With our choice of v, D0
T is almost surely invertible.

Proof. We of course use Remark 3.12. The proof necessitates several steps.

Step 1. Let X and Y be two non-zero vectors of R2. Thenð
R�

1fY Tª9z(X ,z)ª9z(X ,z)T Y 6¼0g dz ¼ 1: (3:54)

To prove this, we first set I(X , z) ¼ ª9z(X , z)ª9z(X , z)T. Notice that, by definition of ª,
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I(X , z) ¼ (g9z(X , z))2 A9(g(X , z))XX T A9(g(X , z))T: (3:55)

But it is clear (see Section 2) that g9z never vanishes. Hence, thanks to the substitution

Ł ¼ g(X , z), we obtain (see Section 2 again)ð
R�

1fY T I(X ,z)Y 6¼0g dz ¼
ð�
��

1fY T A9(Ł)XX T A9(Ł)T Y 6¼0gB(X , Ł)dŁ: (3:56)

But a simple computation shows that Y T A9(Ł)XX T A9(Ł)TY will 1[��,�](Ł)dŁ-almost never

vanish (for X 6¼ 0 and Y 6¼ 0 fixed). Since
Ð �
�� B(X , Ł)dŁ ¼ 1, the proof of step 1 is

complete.

Step 2. For all s 2 [0, T ] and almost all ø,ð1

0

1fVs��Ws�(Æ) 6¼0g dÆ . 0: (3:57)

Indeed, we know from Lemma 3.13 that LÆ(Ws) is not a Dirac mass. Hence, for any

deterministic X 2 R2, ð1

0

1fX�Ws�(Æ) 6¼0g dÆ ¼ PÆ(Ws 6¼ X ) . 0: (3:58)

Since ø is fixed, Vs�(ø) is ‘Æ-deterministic’, and hence (3.58) holds for X ¼ Vs�(ø), which

leads immediately to (3.57).

Step 3. Putting together steps 1 and 2, we finally deduce that almost surely, for all non-

zero vectors Y 2 R2 and all s 2 [0, T ],ð1

0

ð
R�

1fY Tª9z(Vs��Ws�(Æ) ,z)ª9z(Vs��Ws�(Æ),z)T Y 6¼0g dÆ dz ¼ 1: (3:59)

Step 4. Let s . 0 and Y 2 R2nf0g be fixed. We now prove that on the set Sn ,

T , Snþ1 ¼ 1, for all s . Sn, almost surely, for all t 2]s, T ],

Y T(Rt � Rs)Y . 0: (3:60)

To this end, it suffices to show that the stopping time defined by

�(Y ) ¼ inf u . s

����ðu

s

ð
R�

ð1

0

1fY T J (Vs��Ws�(Æ) , z)Y.0gN (ds, dÆ, dz) . 0

( )
(3:61)

satisfies �(Y ) ¼ s almost surely. We have, by construction,ð�(Y )

s

ð
R�

ð1

0

1fY T J (Vs��Ws�(Æ) , z)Y.0gN (ds, dÆ, dz) < 1: (3:62)

Taking expectations, we obtain

E

ð�(Y )

s

ð
R�

ð1

0

1fY T J(Vs��Ws�(Æ) , z)Y.0g ds dÆ dz

 !
< 1 (3:63)

and we deduce that, almost surely,
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ð�(Y )

s

ð
R�

ð1

0

1fY T J (Vs��Ws�(Æ) , z)Y.0g ds dÆ dz , 1: (3:64)

Due to (3.59), this is impossible, unless �(Y ) ¼ s almost surely.

Step 5. The previous step shows that on the set Sn , T , Snþ1 ¼ 1, for all s 2]Sn, T ],

almost surely, for all u 2]s, T ], Ru � Rs is invertible. What we have to prove is that on the

set Sn , T , Snþ1 ¼ 1, almost surely, for all s 2]Sn, T ], for all u 2]s, T ], Ru � Rs is

invertible. This extension is straightforward, using the fact that R is increasing. The proof is

complete. h

3.4. Conclusion

We are finally in a position to fulfil the aim of this section.

Proof of Theorem 2.8. Since T . 0 is arbitrarily fixed, it of course suffices to prove that the

law of VT admits a density. We thus apply Lemma 1.1 with X ¼ VT . The family X º is

defined by V º
T ¼ VT 7 Sº, the shift Sº being defined by (3.5), relative to the direction v

chosen in Definition 3.9. Condition (i) of Lemma 1.1 is satisfied thanks to Proposition 3.2.

Condition (ii) holds thanks to Proposition 3.7. Finally, Proposition 3.14 shows that condition

(iii) is met. Hence the law of VT admits a density, as required. h

Appendix

Our purpose is to prove the following Gronwall-type lemma.

Lemma A.1. Let X be a measurable space. We consider a counting � -finite measure

�(dt, dx) on [0, T ] 3 X . Let �(s, x) be a positive function belonging to L1(�). Then every

bounded positive function j t on [0, T ], satisfying, for all t . 0,

j t < a þ
ð t

0

ð
X
js��(s, x)�(ds, dx) (A:1)

is bounded by

sup
[0,T]

j t < a exp

ðT

0

ð
X

ln(1 þ �(s, x))�(ds, dx)

 !
: (A:2)

Proof. We divide the proof into two steps.

Step 1. We begin with the case where �(� 6¼ 0) , 1. In this case, we can consider the

support of � to be finite, and thus that � is of the form
Pn

i¼1�(Ti ,X i), with 0 ,

T1 , T2 , . . . , Tn , T . Then we use (A.1). First, for all t 2 [0, T1[, j t < a, from which

we deduce, for all t 2 [T1, T2[,

j t < a þ a�(T1, X1) < a(1 þ �(T1, X1)), (A:3)
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which clearly also holds for all t 2 [0, T2[. And so on. We finally obtain that, for all

t 2 [0, T ],

j t < a(1 þ �(T1, X 1)) 3 . . . 3 (1 þ �(Tn, X n))

< a exp
Xn

i¼1

ln(1 þ �(Ti, X i))

 !

< a exp

ðT

0

ð
X

ln(1 þ �(s, x))�(ds, dx)

 !
, (A:4)

as required.

Step 2. If �(� 6¼ 0) ¼ 1, then we split the space X into X E [ X c
E , in such a way that for

all E, �([0, T ] 3 X E) , 1, and such that X E grows to X when E goes to 0. Then we rewrite

(A.1) as

j t < (a þ uE) þ
ð t

0

ð
X E

js��(s, x)�(ds, dx), (A:5)

where uE ¼ kjk1
Ð t

0

Ð
X c

E
�(s, x)�(ds, dx) clearly goes to 0 since � 2 L1(�). Applying step 1,

we obtain, for each E,

sup
[0,T ]

j t < (a þ uE)exp

ðT

0

ð
X E

ln(1 þ �(s, x))�(ds, dx)

 !
(A:6)

Making E tend to 0 immediately leads to (A.2). h
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