
Making Markov martingales meet

marginals: with explicit constructions

D I L I P B . M A DA N 1 and MARC YOR2

1Robert H. Smith School of Business, Van Munching Hall, University of Maryland, College Park,

MD 20742, USA. E-mail: dbm@rhsmith.umd.edu
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We present three generic constructions of martingales that all have the Markov property with known

and prespecified marginal densities. These constructions are further investigated for the special case

when the prespecified marginals satisfy the scaling property and hence the only datum needed for the

construction is the density at unit time. Interesting relations with stochastic orders are presented, along

with numerous examples of the resulting martingales.
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1. Introduction

The role of martingales in the study of stochastic processes, and more generally, probability

theory, cannot be overemphasized (see Williams 1991). Mathematical finance, in particular,

recognizes martingales as central to the description of economic uncertainty. This paper

studies the construction of martingales from a novel perspective motivated by questions

arising in the markets for financial derivatives. The more traditional perspective, taken for

example in the structure of martingale representation theorems, is to describe all the

martingales on a certain underlying stochastic basis. Financial markets trading derivatives,

however, identify through option prices the marginal densities of the stochastic process at

various – and in principle all future – time points. The underlying stochastic basis is

unknown. Conditions of no arbitrage in markets lead us to enquire into the structure of

martingales consistent with a prespecified set of marginal densities.

It is useful in the first instance, from both an analytical and a practical perspective, to

restrict attention to martingales with the Markov property. Hence, we describe the

construction of Markov martingales with fixed marginals. Three distinct solutions are

proposed at a general level. This is followed by a discussion of further examples and results

when the fixed marginals also satisfy the scaling property. For abstract results on the

existence of general and Markov solutions to the problem of matching prespecified

marginals, we refer to Strassen (1965), Doob (1968) and Kellerer (1972).

The three constructions developed here are as follows. First, we consider the possibility

of obtaining the martingales from a solution of the Skorohod embedding problem as
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proposed by Azéma and Yor (1979). The second solution exploits the representation of self-

decomposable laws as the unit time densities of self-similar processes by Sato (1991) to

construct inhomogeneous Markov martingale processes with independent increments using

subordinated Brownian motion. The third solution constructs continuous martingales

following methods related to Dupire (1994).

The outline of the paper is as follows. Section 2 presents all constructions at a general

level, along with conditions under which they may be implemented. Section 3 considers the

constructions under the further hypothesis of fixed marginals that satisfy the scaling

property. Section 4 presents a number of examples that have some theoretical or financial

importance. Section 5 gives a brief summary.

2. Marginals and Markov martingales

We begin with the marginal densities for a stochastic process that we wish to construct.

Suppose the density at time t is given by g(y, t), for y 2 R, where R denotes the real line.

We suppose throughout this section thatð
jyjg(y, t)dy , 1,

ð
yg(y, t)dy ¼ 0,

and hence that the densities are candidates for a martingale begining at zero. From the

perspective of the applications we have in mind, we shall primarily be concerned with cases

where the densities g(y, t) are strictly positive on the real line for all t. We term our three

constructions the Skorohod embedding, the inhomogeneous process of independent increments

and the continuous martingale. Three subsections present the details for these cases.

We first note the relation between the existence of a Markov martingale X (t) matching

the marginal densities g(y, t) and the convexity order of the marginal densities across

maturity. From the martingale property we may infer that for each convex function �(y) we

must have that, for s , t,

Es[�(X (t))] > �(X (s)),

where we denote the conditional expectation of �(X (t)) given information at time s, T s, by

Es[�(X (t)]. Hence, it follows that

E[�(X (t))] > E[�(X (s))],

which is equivalent to the density at time s being less than or equal to the density at time t in

the convex order (Shaked and Shantikumar (1994), page 55).

Conversely, the following result summarizes studies on this subject prior to 1972.

Theorem 1. Let p(y, t) be a family of marginal densities, with finite first moment, such that

for s , t the density at time t dominates the density at time s in the convex order. Then there
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exists a Markov process X (t) with these marginal densities under which X (t) is a

submartingale. Furthermore, if the means are independent of t then X (t) is a martingale.

Proof. See Kellerer (1972, p. 120). h

Our objective here is to present constructive versions of this result for a number of cases.

These constructions are made under more stringent conditions than monotonicity in the

convex order.

2.1. Skorohod embedding

Our starting point is the solution to the Skorohod embedding problem that was presented in

Azéma and Yor (1979). Here one is given a prespecified probability measure on R, say �(dy),

such that
Ð
jyj�(dy) , 1 and

Ð
y�(dy) ¼ 0, and we seek to construct a stopping time � for

standard Brownian motion B(t), such that the probability distribution of the stopped random

variable X ¼ B(�) is given by the measure � on R. Azéma and Yor (1979) show how one

may construct such a stopping time. We first construct the barycentre function ł(x) defined

by

ł(x) ¼

ð1
x

y�(dy)ð1
x

�(dy)

: (1)

We observe that ł(x) is a positive increasing function that tends to zero as x tends to �1.

Furthermore, ł(x) > x.

To construct the stopping time � we simultaneously run the Brownian motion B(t) and its

maximum to date M(t), where

M(t) ¼ sup
0<s< t

B(s),

and define � as the first time M(t) climbs up to the level ł(B(t)). Specifically, we have that

� ¼ inf fsjM(s) > ł(B(s))g:

It is instructive to see a graph of the determination of � from the barycentre function

ł(x), and this is presented in Figure 1.

In Figure 1 we show on the horizontal axis the level of the Brownian motion while the

vertical axis records the level of the maximum to date. The horizontal lines indicate the

level of the maximum to date as it rises through time, with the stopping time defined as

the first time the horizontal lines touch the barycentre curve. In Figure 1 the barycentre

curve shown corresponds to a standard normal variate.

This solution to the Skorohod embedding problem may be used to construct martingales

with prespecified marginals as follows. For a recent paper that matches a finite set of

marginals we refer to Brown et al. (2001). Let ł t be the barycentre function associated
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with the probability � t(dy) ¼ g(y, t)dy at time t. Specifically, we define the family of

barycentre functions

ł(x, t) ¼

ð1
x

yg(y, t)dyð1
x

g(y, t)dy

, (2)

which we shall sometimes write as ł t(x).

Our Skorohod embedding solution constructs a martingale with the specified marginals

under the further assumption that ł(x, t) is increasing in t for each x. This is equivalent to

the statement that the random variables through time are ordered by the mean residual life

order so that they are increasing in t (Shaked and Shantikumar 1994, p. 43). We say that a

family of zero expectation densities has the property of increasing mean residual value

(IMRV) precisely if the barycentre functions are increasing in t. The IMRV property is
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Figure 1. The Azéma–Yor solution to Skorohod’s problem for the standard normal distribution.
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stronger than convexity order, as shown in Theorems 3.A.13 and 3.A.16(a) of Shaked and

Shantikumar (1994, pp. 91–93).

Theorem 2. Under the IMRV property for a family of zero mean densities g(y, t) on the real

line, let (B(u), u > 0) be a standard Brownian motion. Then there exists an increasing family

of Brownian stopping times (Tt, t > 0) such that:

(i) � t ¼def
B(T t) is a martingale.

(ii) (� t, t > 0) is an inhomogeneous Markov process.

(iii) For each t, the density of � t is given by g(y, t).

Proof. Define T t by

Tt ¼ inf fsjM(s) > ł(B(s), t)g,

where M(t) ¼ sup 0<s< t B(s). It follows from the Azéma and Yor (1979) solution to the

Skorohod embedding problem that the law of � t is g(y, t)dy for each t. Hence, property (iii)

holds.

From the IMRV property we observe from Figure 1 that Tt < Ts for t , s. It follows that

� t is a martingale, i.e.

B(Tt) ¼ E[B(Ts)jT Tt
]:

Hence, property (i) holds.

For the Markov property we note that, for t , s,

Ts ¼ inf fujM(u) > ł(B(u), s)g

¼ Tt þ inf fvjM(Tt þ v) > ł(B(Tt þ v), s)g

¼ Tt þ inf v

����M(Tt) _
�

sup
Tt<h<Ttþv

B(h)

�
> ł(B(v), s)

( )

¼ Tt þ inf v

����M(Tt) _
�

B(Tt) þ sup
0<u<v

~BB(u)

�
> ł(B(Tt) þ ~BB(v), s)

( )
,

where ~BB(u) ¼ B(T t þ u) � B(Tt).

Now define

~TT (� , b) ¼ inffvj� _ (b þ eMM(v)) > ł(b þ ~BB(v), s)g

and observe that, for any test function f (x), we have that

E[ f (B(Ts))jT Tt
, B(Tt) ¼ b] ¼ E[ f (b þ ~BB( ~TT (ł(b, t), b)))], (3)

and hence, that � t is an inhomogeneous Markov process and (ii) holds. h

The martingale constructed by this procedure is a one-dimensional Markov process, and
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it is instructive to develop its infinitesimal generator. To identify the infinitesimal generator

of the inhomogeneous Markov process � t we evaluate, for a test function f (x),

A t( f )(b) ¼ d

ds

����
s¼ tþ

E[ f (�s)j� t ¼ b]:

First, we develop further the expression for the conditional expectation on the right-hand side

of equation (3). It is useful to consult Figure 2 in this respect, where we graph the

possibilities for t ¼ 2 and s ¼ 6 when ł(x, u) is derived from the Gaussian density of mean

zero and variance u. As shown in Figure 2, there are two cases to be distinguished. We define

dT( t) ¼ inf fv . T (t)jM(v) ¼ B(v)g:

In the first case T (s) , dT( t) and Brownian motion has not yet returned to the maximum

to date at time t. In this case M(T (s)) ¼ M(T (t)) ¼ c, as shown in Figure 2. In the second
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Figure 2. Graph showing the two cases for a later stopping time relative to an earlier stopping time.

514 D.B. Madan and M. Yor



case M(T (s)) exceeds c ¼ M(T (t)) and the maximum to date has climbed higher than it

was at time T (t). For the first case we have that

ł(B(T (s), s) ¼ c

or

B(T (s)) ¼ ł�1
s (c):

Therefore we may write

E[ f (B(T (s)))jT T ( t); B(T (t)) ¼ b]

¼ E[ f (B(T (s)))1T (s),dT ( t)
jT T( t); B(T (t)) ¼ b] þ E[ f (B(T (s)))1T (s).d T( t)

jT T ( t); B(T (t)) ¼ b]

¼ f (ł�1
s (c))P[T (s) , dT( t)jT T ( t); B(T (t)) ¼ b] þ E[ f (B(T (s)))1T (s).dT ( t)

jT T( t); B(T (t)) ¼ b]

We now observe that

(T (s) , dT ( t)) ¼
�

inf
T ( t),u,d T( t)

B(u) < ł�1
s (c)

�
- (Łb,ł�1

s (c) , Łb,c),

where we define

Łb, y ¼ inf ftjBb(t) ¼ yg

and Bb(t) is Brownian motion starting at b. Thus we have that

E[ f (B(T (s)))jT T ( t); B(T (t)) ¼ b]

¼ f (ł�1
s (c))P Łb,ł�1

s (c) , Łb,c) þ E[ f (B(T (s)))1T (s).d T( t)
jT T ( t); B(T (t)) ¼ b]:

�
From classical results on Brownian motion we know that

P(Łb,ł�1
s (c) , Łb,c) ¼ c � b

c � ł�1
s (c)

:

We now define

� t,s(b) ¼ ł�1
s (ł t(b))

and observe that

E[ f (B(T (s)))jT T ( t); B(T (t)) ¼ b]

¼ f (� t,s(b))
ł t(b) � b

ł t(b) �� t,s(b)
þ b �� t,s(b)

ł t(b) �� t,s(b)
E f (B(T (s)))jT T( t); B(T (t)) ¼ b; T (s) . dT ( t)]:
.

Now, conditional on T (s) . dT( t), we may wait till time dT ( t) when Brownian motion is

at the level c. We now consider B̂B(u) ¼ B(u) � c, starting at 0 at dT ( t), and we are

interested in the law of when its maximum to date M̂M(u) will reach the level of a new ł
function defined by
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ł(x) ¼ (ł(x þ c, s) � c)þ: (4)

This is the ł function of a measure r(x)dx defined by

r(x) ¼ exp �
ðx

�1

dł(u)

ł(u) � u

� �
,

where r(x) ¼
Ð1

x
r(y)dy. In our case this new ł function is given by equation (4) and we

have that dł is zero for (x þ c) , ł�1
s (c). Hence, for x þ c . ł�1

s (c), we have that

r(x) ¼ exp �
ðxþc

ł�1
s (c)

ł9s(u)

łs(u) � u
du

 !
:

But we know that the original density at time s satisfies

rs(x) ¼ exp �
ðx

�1

ł9s(u)

łs(u) � u
du

� �
:

It follows that

r(x) ¼ rs(x þ c)

rs(ł�1
s (c))

and the probability measure of the B(T (s)) conditioned on T (s) . dT ( t) in the second case is

just the original measure conditioned to be above ł�1
s (c).

We may then write, in summary, that

E[ f (B(T (s)))jT T ( t); B(T (t)) ¼ b]

¼ Æ f (ł�1
s (c)) þ (1 � Æ)

ð1
ł�1

s (c)

f (y)g(y, s)dyð1
ł�1

s (c)

g(y, s)dy

,

where Æ ¼ (c � b)=(c � ł�1
s (c)). As a particular case we note that

E[B(T (s))jB(T (t)) ¼ b] ¼ Æł�1
s (c) þ (1 � Æ)c

¼ c � b

c � ł�1
s (c)

ł�1
s (c) þ b � ł�1

s (c)

c � ł�1
s (c)

c

¼ b ¼ B(T (t)),

as expected.

For the infinitesimal generator we seek to evaluate
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A t( f )(b) ¼ d

ds

����
s¼ tþ

(E[ f (�s)j� t ¼ b])

¼ d

ds

����
s¼ tþ

f (ł�1
s (ł t(b)))

ł t(b) � b

ł t(b) � ł�1
s (ł t(b))

� �

þ d

ds

����
s¼ tþ

b � ł�1
s (ł t(b))

ł t(b) � ł�1
s (ł t(b))

ð1
ł�1

s (ł t(b))

g(y, s) f (y)dyð1
ł�1

s (ł t(b))

g(y, s)dy

8>>><>>>:
9>>>=>>>;:

Computing the derivatives, we obtain that

A t( f )(b) ¼ f 9(b) � 1

ł t(b) � b

ð1
b

g(y, t)( f (y) � f (b))dyð1
b

g(y, t)dy

8>>><>>>:
9>>>=>>>;

d

ds

����
s¼ tþ

ł�1
s (ł t(b)):

We may further evaluate the final derivative and write

� d

ds

����
s¼ tþ

ł�1
s (ł t(b)) ¼

@

@ t
ł(b, t)

@

@x
ł(b, t)

¼ at(b), (5)

and then we can write that

A t( f )(b) ¼ at(b)
1

ł t(b) � b

ð1
b

g(y, t)( f (y) � f (b))dyð1
b

g(y, t)dy

� f 9(b)

8>>><>>>:
9>>>=>>>;: (6)

By writing f (y) � f (b) in terms of f 0(y) and performing the integrations involved, we obtain

the simple expression

A t( f )(b) ¼
@

@ t
ł(b, t)

@

@x
ł(b, t)

ð1
b

f 0(v)E(X t � v)þdv

E(X t � b)þ
: (7)

From expression (6) we see that the process is a one-sided jump process with jump

intensities given by

at(b)

ł t(b) � b

g(b þ x, t)ð1
0

g(b þ x, t)dx

, for x . 0

and a drift factor of �at(b).

Other more symmetric solutions to the Skorohod embedding problem may also be used
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along similar lines to form martingales with fixed marginals. We refer the reader to Vallois

(1982) and Perkins (1986) for further details on these constructions.

2.2. Inhomogeneous independent increments

A large class of processes with independent increments may be associated with the self-

decomposable laws or the distributions of class L (see Khinchine 1938; Gnedenko and

Kolmogorov 1968). Sato (1991) has linked these probability laws to the time 1 distributions

of self-similar processes with independent increments. See also Jeanblanc et al. (2001) for

further discussions of various processes attached to self-decomposable laws. These laws may

be recognized by the Lévy-Khinchine decomposition of their characteristic functions. In

particular, their Lévy densities k(x), when multiplied by the absolute value of x, must be

increasing for negative x and decreasing for positive x (Sato 1999, Corollary 15.1, p. 95). For

the construction of martingales we focus attention on subordinating Brownian motion by an

independent increasing Markov process with independent increments. Specifically, in this

approach we seek an increasing Markov process with inhomogeneous independent

increments, say L(t), such that the process

X (t) ¼ B(L(t))

has the requisite marginals, where B(u) is a Brownian motion independent of (L(t), t > 0).

For this approach to be successful we may identify the Laplace transform of L(t) by noting

that

E[eiuX ( t)] ¼ E exp
�u2

2
L(t)

� �$ %
¼
ð1
�1

eiuy g(y, t)dy:

The infinitesimal generator for the resulting process is easily identified from the Laplace

transform for L(t) written in its infinitely divisible form as

E[exp(�ºL(t))] ¼ exp

ð t

0

ð1
0

e�ºx � 1ð Þk L(x, u)dx du

� �
:

In particular, we have from Sato’s (1999) Theorems 30.1 and 31.5 that

A t( f )(x) ¼
ð1
�1

( f (x þ y) � f (x) � 1j yj<1 yf 9(x))k X (y, t)dy,

where

k X (x, t) ¼
ð1

0

1ffiffiffiffiffiffiffiffi
2�s

p exp � x2

2s

� �
k L(s, t)ds:

2.3. Continuous martingale constructions

This is the approach of Dupire (1994) and follows on noting that, for a continuous Markov

martingale defined by
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X (t) ¼
ð t

0

� (X (s), s)dW (s),

the forward transition densities g(y, t) satisfy the forward equation

@

@ t
g(y, t) ¼ 1

2

@2

@ y2
(� 2(y, t)g(y, t)):

Defining the function

C(k, t) ¼
ð1

k

(y � k)g(y, t)dy,

one may show by some elementary calculations that

� 2(k, t) ¼ 2Ct

Ckk

: (8)

Hence, provided the resulting diffusion coefficients computed in accordance with (8) are

Lipschitz, we have a continuous martingale representation with the prespecified marginals.

3. Markov martingales for scaling marginals

We now suppose that the prespecified densities scale in the following way. Specifically, we

assume that

X (t) ¼law ffiffi
t

p
X (1):

Note that other scaling laws may be easily accomodated by deterministic time changes.

It follows that the densities are explicitly given in terms of the density h(y) at unit time

by

g(y, t) ¼ 1ffiffi
t

p h
yffiffi
t

p
� �

, (9)

and hypotheses for the success of the constructions reduce to assumptions on the single

density h(y).

3.1. Azéma–Yor under scaling

For the densities to satisfy the IMRV property, we now need that

ł t(x) ¼

ð1
x

yh(y=
ffiffi
t

p
)dyð1

x

h(y=
ffiffi
t

p
)dy

¼

ffiffi
t

p ð1
x=
ffiffi
t

p uh(u)duð
x=
ffiffi
t

p h(u)du

be increasing in t. The following lemma gives a useful criterion.
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Lemma 3. The functions ł t are increasing with respect to t if and only if

the function
a

ł1(a)
is increasing in a 2 Rþ: (10)

Proof. Writing

1

x
ł t(x) ¼ ł1(a)

a
,

where a ¼ x=
ffiffi
t

p
, it follows that the functions ł t are increasing in t if and only if the

function

a ! a

ł1(a)

is increasing over the entire real line. But it is elementary that a=ł1(a) is increasing for

a , 0, since ł1 is increasing and non-negative. h

The IMRV condition is satisfied by an important class of densities of which there are

numerous examples.

Theorem 4. If h(y) ¼ exp(�V (y)) and yV 9(y) is increasing in y . 0, then h(y) admits IMRV

under scaling.

Proof. We write for, a . 0 and H(y) ¼
Ð1

y
h(u)du, that

ł1(a)

a
¼ 1

aH(a)

ð1
a

y(�dH(y))

¼ 1 þ 1

aH(a)

ð1
a

H(y)dy

¼ 1 þ
ð1

1

H(au)

H(a)
du:

Hence, it suffices that

ªu(y) ¼def H(yu)

H(y)

is decreasing in y . 0, for fixed u > 1. We evaluate

@

@ y
ªu(y) ¼

u

ð1
y

(h(y)h(xu) � h(yu)h(x))dx

(H(y))2
:

For this derivative to be negative for y . 0, it suffices that the integrand in the numerator

is negative or, in terms of V , that
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V (xu) � V (x) . V (yu) � V (y):

We now write this inequality as ðxu

x

V 9(Æ)dÆ .

ð yu

y

V 9(Æ)dÆ

and, making the change of variables Æ ¼ xk on the left and Æ ¼ yk on the right, we have thatðu

1

V 9(xk)xk
dk

k
.

ðu

1

V 9(yk)yk
dk

k
:

The result follows from the fact that yV 9(y) is increasing for y . 0. h

The class of densities permitting Skorohod embedding using the Azéma–Yor construction

after scaling is quite broad and includes the collection of log-concave densities with the

additional sufficient provision that V 9(y) be positive for positive y. The log-concave

densities are an important class of densities constituting the class of strongly unimodal

densities (Sato 1999, p. 395).

A further large class of possibilities for this construction is made available by the

following result. Suppose that h(y) is written as the Laplace transform in y2=2 of a

probability on Rþ for a random variable we shall call T , i.e.

h(y) ¼ CE exp � y2

2
T

� �$ %
: (11)

The following result gives us a large class of densities that admit the scaled Skorohod

embedding constructions.

Theorem 5. Suppose that (11) holds for T infinitely divisible, with

E exp � x2T

2

� �$ %
¼ exp �

ð1
0

�(dt)(1 � e�x2 t=2

� �
:

Assume, further, that T is self-decomposable or, equivalently, that

�(dt) ¼ m(t)

t
dt

with m(t) decreasing. Then yV 9(y) is increasing in y . 0, where

V (y) ¼
ð1

0

dt

t
m(t)(1 � e� y2 t=2):

Proof. Note that
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yV 9(y) ¼
ð1

0

dtm(t)y2 e� y2 t=2

¼
ð1

0

dum
u

y2

� �
e�u=2:

Hence yV 9(y) is increasing in y . 0. h

3.2. Inhomogeneous process of independent increments under scaling

We now seek to construct martingales using subordination as

X (t) ¼ B(L(t)) (12)

where B(u)ð Þ is a Brownian motion, L(t) is an independent increasing process with

independent but generally inhomogeneous increments that has the scaling property

L(ct) ¼law
cL(t), t . 0: (13)

It follows immediately from (12) that

h(y) ¼ E
1ffiffiffiffiffiffiffiffiffiffiffi

2�L1

p exp � y2

2L1

� �" #
: (14)

Theorem 6. Let L1 > 0. Then the following three properties are equivalent:

(i) There exists an increasing process with independent increments (Lt, t > 0) which

satisfies (13).

(ii) L1 is self-decomposable.

(iii) The Laplace transform of L1 is given by

E[exp(�ºL1)] ¼ exp �
ð1

0

1 � e�º l
� �

(dl )

� �
with (dl ) ¼ dl(k(l )=l ) and k is decreasing.

Consequently, there exists a martingale X (t), defined by (12), which satisfies (14).

Proof. See Sato (1991). Here we provide some details for using Kolmogorov’s extension

theorem and show that, for s , t, there exists a non-negative random variable, Ls, t, such that

sL1 þ Ls, t ¼law
tL1,

where on the left-hand side L1 and Ls, t are independent. The Laplace transform for Ls, t must

then be
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E[exp(�ºLs, t)] ¼ exp �
ð1

0

(dl )((1 � e�º tl) � (1 � e�ºsl))

� �

¼ exp �
ð1

0

dl

l
k(l )((1 � e�º tl) � (1 � e�ºsl))

� �

¼ exp �
ð1

0

dl

l
k

l

t

� �
� k

l

s

� �� �
(1 � e�º l)

 !
,

and the hypothesis that k is decreasing implies that the last writen expression is the Laplace

transform of a positive (infinitely divisible) random variable. h

3.3. Continuous martingales under scaling

For this purpose we consider the representation

X (t) ¼
ð t

0

� (s, X s)dW (s): (15)

We know by hypothesis that the laws of X (t) satisfy the scaling property in that, for any fixed

c . 0,

(X ct, t > 0) ¼law
(
ffiffiffi
c

p
X t, t > 0); (16)

furthermore, we know that equation (9) holds.

We now establish a general result that helps us identify the continuous martingale

representation.

Theorem 7. Assume that a process satisfies the scaling property (16) and simultaneously has

the representation (15). Then we must have that

� 2(s, x) ¼ a
xffiffiffi
s

p
� �

, (17)

a(y) ¼ 1

h(y)

ð1
y

zh(z)dz: (18)

Furthermore, if we have a density h and an associated function a(y) that is Lipschitz, then

there exists a continuous martingale satisfying the scaling property (16) and the Markov

property, and for which hX i t ¼
Ð t

0
dsa(X s=

ffiffiffi
s

p
).

Proof. Consider first a martingale X (t) satisfying (15) and define the function a by

a s,
xffiffiffi
s

p
� �

¼ � 2(s, x):

It follows that
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hX i t ¼
ð t

0

ds a s,
X sffiffiffi

s
p

� �
:

Now, for any function f 2 C2(R), with compact support, we have

E[ f (X t)] ¼ f (0) þ
ð t

0

ds
1

2
E a s,

X sffiffiffi
s

p
� �

f 0(X s)

$ %
: (19)

Combining (9) and (19), we obtainð1
�1

dyffiffi
t

p h
yffiffi
t

p
� �

f (y) ¼ f (0) þ
ð t

0

ds

ð1
�1

dyffiffiffi
s

p h
yffiffiffi
s

p
� �

1

2
a s,

yffiffiffi
s

p
� �

f 0(y):

Noting that this equation holds for all f , after integrating by parts twice on the right we

learn, on taking partials with respect to t, that

@

@ t

1ffiffi
t

p h
yffiffi
t

p
� � !

¼ @2

@ y2

1ffiffi
t

p h
yffiffi
t

p
� �

1

2
a t,

yffiffi
t

p
� �" #

;

equivalently, we have that

� 1

2t3=2
h

yffiffi
t

p
� �

þ 1ffiffi
t

p h9
yffiffi
t

p
� �

y � 1

2t3=2

� �
¼ 1

2t3=2

@2

@x2
[h(x)a(t, x)]

����
x¼ y=

ffiffi
t

p : (20)

Then we may write (20) as

� d

dx
(xh(x)) ¼ @2

@x2
[h(x)a(t, x)]:

Integrating twice, we obtain

�
ðx

�1
yh(y)dy ¼ h(x)a(t, x) þ u(t)x þ v(t):

Since the random variable is centred, we may writeð1
x

yh(y)dy ¼ h(x)a(t, x) þ u(t)x þ v(t):

We then have the candidate solution a(t, x) independent of t,

a(x) ¼

ð1
x

yh(y)dy

h(x)
,

as was to be shown.

For the converse, suppose we have h or equivalently a satisfying (18), and define

X (t) ¼
ð t

0

a
X sffiffiffi

s
p
� �� �1=2

dW (s), (21)
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where we suppose that � 2 ¼ a is Lipschitz. Now, following Lamperti (1962), define Y (u)

such that

X (t) ¼
ffiffi
t

p
Y (log(t)) (22)

or that

Y (u) ¼ exp � u

2

� �
X (exp(u)):

By Itô’s lemma one easily observes that if X (t) satisfies scaling and the representation (21)

then Y (t) satisfies the following conditions:

(i) For every u 2 R, there is a Brownian motion f�(u)
s , s > 0g such that

Y (u þ t) ¼ Y (u) þ
ð t

0

� (Y (u þ s))d�(u)
s � 1

2

ð t

0

Y (u þ s)ds: (23)

(ii) Y (w), w 2 Rf g is a stationary process, i.e. for every u 2 R,

(Y (u þ t), t > 0) ¼law
(Y (t), t > 0):

(iii) For every u 2 R,

P(Y (u) 2 dy) ¼ h(y)dy:

Hence the required solution for X (t) is constructed by solving equation (23), for which

existence and uniqueness hold for given Y (u), since
ffiffiffi
a

p
is Hölder of order 1

2
(see Revuz and

Yor 1999, Chapter IX), and using equation (22). h

4. Examples of Markov martingales and their marginals

For many families of marginals it is possible to obtain Markov martingales from all three

constructions meeting the specified set of marginals. In this section we provide classes of

examples for each of our three constructions. We then consider matching the marginals for

the bounded and discontinuous Azéma martingales using continuous martingales.

4.1. Skorohod embedding

We construct a sequence of martingale marginal processes by the Skorohod embedding

method for various families of distributions, beginning with some simple cases. Our first

example considers the very simple family of distributions that are uniform in the interval

[�t, t], and we call this the uniform case. We then take up the shifted exponential

distributions of mean t and shifted to start at �t to fulfil the zero mean condition for the

family. We call this the exponential case. Our third example is the Gaussian family of mean

zero and variance t that has a density satisfying the condition that yV 9(y) is increasing for

y . 0 from Theorem 4. This is followed by other examples in this category.
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4.1.1. The uniform case

Suppose the family of densities g(y, t) is given by the uniform density in the interval [�t, t].

For these densities the ł function is easily evaluated as

ł(x, t) ¼

ð t

x

y dyð t

x

dy

, �t , x , t,

¼ t2 � x2

2(t � x)
, �t , x , t,

¼ t þ x

2
, �t , x , t:

The associated stopping time is given by

T (t) ¼ inffsj2M(s) � B(s) ¼ tg:
We recall that 2M(s) � B(s)f g is Pitman’s (1975) representation of the norm of a three-

dimensional Brownian motion. Then we write the martingale marginal consistent with these

densities as

X (t) ¼ B(T (t)):

4.1.2. The exponential case

Suppose the family of densities is given by the exponential of mean t, shifted to start at �t.

We then have that

g(y, t) ¼ 1

t
exp � y þ t

t

� �
, �t , y , 1:

Once again we may explicitly determine the ł functions as

ł(x, t) ¼

ð1
x

y exp(�y=t)dyð1
x

exp(�y=t)dy

¼ xt exp(�x=t) þ t2 exp(�x=t)

t exp(�x=t)

¼ x þ t,

for x > t. Hence, ł(x, t) ¼ (x þ t)þ.

The time change is then given by

T (t) ¼ inf fsjM(s) � B(s) ¼ tg,
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which features Lévy’s representation M(s) � B(s), s > 0f g of the reflecting Brownian

motion. Since, by Lévy’s equivalence theorem,

((M(u) � B(u), M(u)), u > 0) ¼law
((jB(u)j, L(u)), u > 0),

where L(u) is the local time of B at zero, we observe that

(B(T (t)), t > 0) ¼law
(L(T�(t)) � t), (24)

where

T�(t) ¼ inffsjjB(s)j ¼ tg:

Moreover, as

B(t)þ ¼ j�jÐ t

0
ds1 B(s).0

where � is a real-valued Brownian motion, we deduce that

(B(T (t)), t > 0) ¼law 1

2
LS( t)(B) � t

� �
,

where S(t) ¼ inffsjB(s) ¼ tg.

The process (LS( t)(B), t > 0) is an inhomogeneous Lévy process and, for fixed t,
1
2
LS( t)(B) is exponential with mean t due to our embedding of exponential densities at the

outset.

4.1.3. The Gaussian case

Here we consider the case where the density g(y, t) is Gaussian with mean zero and variance

t. This is the case relevant for the Bachelier option pricing model when the underlying

follows the arithmetic Brownian motion model. In this case we have both the scaling and the

log-concavity property for the marginals. The marginals are

g(y, t) ¼ 1ffiffiffiffiffiffiffiffi
2�t

p exp � y2

2t

� �
, �1 , y , 1: (25)

Theorem 4 applies trivially with yV 9(y) ¼ y2.

The associated ł function may once again be analytically derived, and is

ł(x, t) ¼
ffiffi
t

p
exp(�x2=2t)ffiffiffiffiffiffi

2�
p

(1 � N (x=
ffiffi
t

p
))
: (26)

We note that ł(x, t) ¼
ffiffi
t

p
=R(x=

ffiffi
t

p
), where R is the celebrated Mills ratio (see Johnson and

Kotz 1970, Chapter 33, Section 7.1), so called on account of its tabulation by Mills (1926).

Instead of using Theorem 3 to check that the ł t are increasing in t, we may also use Lemma

2, which requires that
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a

ł1(a)
¼ aR(a)

be increasing in a > 0, which is demonstrated by the following:

aR(a) ¼ a

ð1
0

exp � (a þ w)2

2

� �
dw exp

a2

2

� �

¼ a

ð1
0

exp � w2

2
� wa

� �
dw

¼
ð1

0

exp � v2

2a2
� v

� �
dv:

It may be worth noticing that in fact

aR(a) ¼ P
effiffiffiffiffiffiffi
2e9

p < a

� �
,

where e, e9 are two independent exponential variables with mean 1.

We may therefore construct the martingale B(T (t)), where

T (t) ¼ inffsjM(s) ¼ ł(B(s), t)g:

The inhomogeneous and discontinuous Markov process here has one-sided jumps given by

the normal density truncated at the level of the process with a drift that may be computed in

closed form using expression (5).

4.1.4. Other examples of scaled densities permitting the Azéma–Yor Skorohod embedding

There are many other examples of densities meeting the conditions of Theorem 3 that may be

scaled and then matched using the Skorohod embedding method.

Double negative exponential. We may consider, for example, the important class of double

negative exponential densities defined by

g(x, t) ¼ 1

�
ffiffiffiffiffi
2t

p exp �
ffiffiffi
2

p
jxj

�
ffiffi
t

p
 !

, �1 , x , 1: (27)

We may easily compute the variance of x and observe that it is � 2 t. We also verify by the

change of variables y ¼ x=
ffiffi
t

p
that

h(y; � ) ¼ 1

�
ffiffiffi
2

p exp �
ffiffiffi
2

p
jyj
�

� �
¼ g(y, 1): (28)

It is clear that yV 9(y) is increasing in y . 0. Hence, the densities admit the Skorohod

embedding construction by Theorem 4.
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Symmetric powers. An interesting generalization that nests the double negative exponential

and the Gaussian models is provided by the class

h(y) ¼ k exp(�cjyjÆ), for Æ . 0:

We observe that for positive y the hypothesis of Theorem 4 holds.

Reciprocal hyperbolic cosine. The density

h(y) ¼ 1

cosh(y)

may be expressed in the form (11) as shown, for example, in Pitman and Yor (2000), where

we find that

1

cosh(y)
¼ E exp � y2

2
C1

� �$ %
and C1 may be realized as the first hitting time of �1 by Brownian motion. The Lévy density

is given by

kC(x) ¼

X1
n¼1

e��2

(n � 1=2)2x=2

x
,

which has the form required in Theorem 5.

Scaled reciprocal hyperbolic sine. This is the density

h(y) ¼ y

sinh(y)
,

which has the form

y

sinh(y)
¼ E exp � y2

2
S1

� �$ %
,

where S1 may be realized as the hitting time of the unit sphere by three-dimensional

Brownian motion. The Lévy density is given by

kS(x) ¼

X1
n¼1

e��2 n2 x=2

x

and has the requisite form of Theorem 5.

4.2. Independent increments

We begin with the case of the double negative exponential. For this purpose consider the

process
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L(a) ¼ ‘T(a),

where ‘(s) is the local time at zero of a Brownian motion and T (a) is the first passage time of

this Brownian motion to the level a. Hence L(a) is the local time at zero of a Brownian

motion up to the first passage time of this Brownian motion to the level a.

It is well known that L(a) is an exponential random variable with mean 2a (see Revuz

and Yor 1999, Chapter XIII). It follows that

E[exp(�ºL(a))] ¼ 1

1 þ 2aº
:

We may now compute the characteristic function for an independent Brownian motion

evaluated at L(a), Y (a) ¼ B(L(a)), and observe that

E[exp(iuY (a))] ¼ 1

1 þ au2
:

Computing the characteristic function of the double negative exponential density (27), we see

that ð1
�1

eiux g(x, 1)dx ¼ 1

1 þ � 2u2
:

It follows that the double negative exponential laws are matched by the process

X (t) ¼ B(L(� 2 t)),

and we have the representation by an inhomogeneous Markov martingale with independent

increments.

4.2.1. The Student distributions

The Student distributions (see Johnson and Kotz 1970, Chapter 27) have densities defined by

hm(y) ¼ Cm

(1 þ y2)m
(29)

for m . 1 (which implies that
Ð
jyjhm(y)dy , 1). These densities may be associated with

the independent increments solution as follows. Consider the random variable

L1 ¼
1

2 ̂
,

where ̂ denotes a gamma variable with parameter .

Evaluating a standard Brownian motion at the independent time L1, we obtain the density

of the random variable
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g(y) ¼ E
1ffiffiffiffiffiffiffiffiffiffiffi

2�L1

p exp � y2

2L1

� �" #

¼
ð1

0

1ffiffiffi
�

p
ˆ()

t�1=2e�(1þ y2) tdt

¼ ˆ(þ 1=2)ffiffiffi
�

p
ˆ()

1

(1 þ y2)þ1=2
,

which agrees with (29) for m ¼ þ 1
2

and Cm ¼ ˆ(m)=
ffiffiffi
�

p
ˆ(m � 1

2
).

The representation of L1 as the value at time 1 of a process of inhomogeneous and

independent increments is accomplished as follows. We recall that if R
t , t > 0ð Þ denotes a

Bessel process with index  . 0, starting at 0, and if

¸()
a ¼ supft . 0 : R

()
t ¼ ag,

then the process (¸()
a , a > 0) (see Getoor 1979, Pitman and Yor 1981; Revuz and Yor 1999)

has independent increments, and

¸()
a ¼law a2

2 ̂
,

where ̂ is a gamma variable with parameter . As a consequence, the process

(B(¸()
a ), a > 0) has independent increments and enjoys the scaling property of order 1,

and the density at unit time is given by (29).

4.3. Continuous martingales

We present three sets of examples that generalize in sequence. We begin with the double

negative exponential densities, then take up the Student distributions and close with a

parametric subclass connected with the Pearson families.

4.3.1. Double negative exponential

By Theorem 6 we may determine the function a(y) required in the continuous martingale

representation by performing an integration with respect to the function h. The result is given

by

a(y) ¼ � 2 þ � jyj:
It follows that the continuous martingale which solves

X (t) ¼
ð t

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2 þ �

���� X sffiffiffi
s

p
����

s
dW (s)

has densities that match the marginals (27).

Making Markov martingales meet marginals 531



4.3.2. The Student distributions

In this case we have that

am(y) ¼ 1

hm(y)

ð1
y

xhm(x)dx,

and it follows that

am(y) ¼ 1

2(m � 1)
(1 þ y2)

so that the associated continuous martingales solve

X (t) ¼
ð t

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2(m � 1)
1 þ X (s)2

s

� �s
dW (s):

4.3.3. A general class associated with Pearson densities

More generally, we may solve back for h(y) from Lipschitz candidates for a(y). Specifically,

we have from equation (18) that

yh(y)ð1
y

xh(x)dx

¼ y

a(y)
, (30)

which implies that ð1
y

xh(x)dx ¼ C exp �
ð y

0

z

a(z)
dz

� �
or that

h(y) ¼ C

a(y)
exp �

ð y

0

z

a(z)
dz

� �
:

Consider now the general model for the diffusion coefficient given by

a(y) ¼ Æþ �jyj þ ªy2:

It follows, on noting thatð y

0

z

Æþ �z þ ªz2
dz ¼ 1

2ª

ð y

0

2ªz þ �� �

Æþ �z þ ªz2
dz

¼ 1

2ª
log

Æþ �y þ ªy2

Æ

� �
� �

2ª

ð y

0

dz

Æþ �z þ ªz2

¼ 1

2ª
log

Æþ �y þ ªy2

Æ

� �
� �

2ª

2arctan[(�þ 2ªy)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Æª� �2

p
]ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4Æª� �2
p ,
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that one may write

h(y) ¼ C

Æþ �y þ ªy2

Æþ �y þ ªy2

Æ

� �1=2ª

exp
�

2ª

2arctan[(�þ 2ªy)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Æª� �2

p
]ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4Æª� �2
p !

:

Wong (1964; see also 1971, p. 174) shows that these densities are associated with the Pearson

family. We thus have a parametric subfamily with three parameters of the Pearson densities

that are matched on scaling by the continuous martingale

X (t) ¼
ð t

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Æþ �

���� X (s)ffiffiffi
s

p
����þ ª

X (s)2

s

s
dW (s):

4.3.4. The scaled generalized hyperbolic laws

The martingale component of the generalized hyperbolic law at time 1 may be written as

X (1) ¼ B(L1(1)),

where L1(1) has the generalized inverse Gaussian distribution. To represent the scaled

marginals using a continuous martingale, we determine that

a(y) ¼ E[
ffiffiffiffiffi
L1

p
exp(�y2=2L1)]

E[1=
ffiffiffiffiffi
L1

p
exp(�y2=2L1)]

:

When L1 has the GIG(º, �, ª) distribution (Barndorff-Nielsen 1977) we observe that

a(y) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ y2

p
ª

Kºþ1=2(ª
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ y2

p
)

Kºþ3=2(ª
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ y2

p
)
:

For a discussion of the applications and special cases of this distribution in a financial

context, we refer to Bibby and Sørensen (2001).

4.4. Continuous martingales and the Azéma martingale marginals

The Azéma martingale is an interesting case that in the financial context allows for

discontinuities and yet maintains the property of a complete market, as shown by Dritschel

and Protter (1999). Furthermore, it is shown in Azéma and Yor (1989) – see also Yor (1997)

– that this martingale also satisfies the Wiener chaos representation property for all square-

integrable random variables. We consider in this section the task of matching the scaled

marginals of this martingale using continuous martingales. This martingale is defined by

projecting a Brownian motion onto the filtration (G t) generated by the sign of the Brownian

motion; note that the process of last zeros to date gt ¼ supfs < t : B(s) ¼ 0g is adapted to

(G t) (Azéma and Yor 1989; Yor 1997). Explicitly, we may write

X (t) ¼ sign(B(t))
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t � g(t)

p
,

where B(t) is a Brownian motion and
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g(t) ¼ supfs < tjB(s) ¼ 0g:
The process X (t) is a Markov martingale that satisfies the scaling property, and the law

of X (1) may be deduced from the result that g(1) has the arcsine distribution (see Yor

1992, p. 101, for a short proof). Specifically, we have that the density of X (1) is given by

h(x) ¼ 1

�

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

p , �1 , x , 1:

From Theorem 7 it follows that

a(y) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � y2

p ð1

y

uffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � u2

p du ¼ 1 � y2:

Hence the continuous martingale

Z(t) ¼
ð t

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � Z(s)2

s

� �þ
s

dW (s)

for a standard Brownian motion W (t) matches the marginals of the Azéma martingale.

On the other hand, consider circular Brownian motion

fCu ¼ exp(iªu); �1 , u , 1g
in equilibrium, where the following conditions hold:

(i) For each u, (Cu) is uniformly distributed on the circle.

(ii) (Cu) satisfies

Ctþs ¼ Ct þ
ð tþs

t

iCudªu �
1

2

ð tþs

t

Cudu:

Then

(Y (u), u 2 R) ¼law
(Im(Cu), u 2 R)

and finally, our continuous martingale matching Azéma’s martingale is

Z(t) ¼
ffiffi
t

p
sin(ª(log(t))):

5. Conclusion

We consider three classes of solutions to the problem of finding one-dimensional Markov

martingales that have prespecified marginal densities at all time points. The first method

exploits the Azéma–Yor solution to the Skorohod embedding problem. The second

subordinates Brownian motion to an independent inhomogeneous Lévy process with

independent increments. The third constructs a continuous Markov martingale via a suitable

choice of a diffusion coefficient meeting the required Lipschitz conditions.

The conditions for the applicability of the methods are related to stochastic orderings of
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the densities to be matched. For the embedding solution, for example, the densities must be

ordered by mean residual value, a modification of mean residual life. The existence of the

martingale is related to the convexity order, and self-decomposability also plays an

important role. Precise conditions for each construction under scaling are presented, along

with numerous examples of theoretical and financial interest.
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