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For 0 , ª , 2, let Bd
ª be a d-dimensional ª-fractional Brownian sheet with index set [0, 1]d and let

(�k)k>1 be an independent sequence of standard normal random variables. We prove the existence of

continuous functions uk such that almost surely

Bd
ª(t) ¼

X1
k¼1

�k uk(t), t 2 [0, 1]d ,

and

E sup
t2[0,1]d

����X1
k¼n

�k uk(t)

����
2

 !1=2

6 n�ª=2(1þ log n)d(ªþ1)=2�ª=2:

This order is shown to be optimal. We obtain small-ball estimates for Bd
ª, extending former results in

the case ª ¼ 1. Our investigations rest upon basic properties of different kinds of s-numbers of

operators.

Keywords: approximation numbers; fractional Brownian motion; Gaussian process; small-ball

behaviour

1. Introduction

Let E be a Banach space and let X be an E-valued centred Gaussian random variable. Then

the variable X admits an almost surely convergent representation

X ¼
X1
k¼1

�k xk (1:1)

for suitable xk in E and a standard normal independent sequence (�k)k>1 (see Lifshits 1995).

Since (1.1) is not unique, one may ask for optimal representations, i.e. for those where the

tails tend to zero as fast as possible. More precisely, we wish to determine the behaviour of
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ln(X ) :¼ inf E

9999X1
k¼n

�k xk

9999
2

 !1=2

: X ¼
X1
k¼1

�k xk a:s:

8<
:

9=
; (1:2)

as n !1, and, if possible, describe those xk for which the optimal rate is attained. This

problem appears in a natural way when simulating Gaussian random processes. Indeed, let

X ¼ (X (t)) t2K be a centred Gaussian process over a compact metric space K. If X has a.s.

continuous sample paths, by (1.1) there are continuous functions uk on K such that a.s.

X (t) ¼
X1
k¼1

�k uk(t), t 2 K: (1:3)

An example is

B(t) ¼ �0
:t þ

ffiffiffi
2

p X1
k¼1

�k
: sin(�kt)

�k
, 0 < t < 1,

for the Brownian motion B over [0, 1]; other series representations of B are well known, for

example using the Faber–Schauder system instead of the trigonometric.

In order to simulate a Gaussian process X it is necessary to replace the series in (1.3) by

a finite sum. To minimize the error one has to choose the uk such that the average of the

tail

E sup
t2K

����X1
k¼n

�k uk(t)

����
2

 !1=2

becomes minimal. But this is equivalent to the problem stated above (cf. Proposition 2.1

below).

Our aim is to investigate these questions for the d-dimensional fractional Brownian

sheets. Given ª¼ (ª1, . . . , ªd), with 0 , ª j , 2, there exists a Gaussian process Bd
ª over

[0, 1]d possessing a.s. continuous sample paths and satisfying

EBd
ª(t)Bd

ª(s) ¼ 2�d
Yd

j¼1

(jt jjª j þ js jjª j � jt j � s jjª j ), (1:4)

t ¼ (t1, . . . , td) and s ¼ (s1, . . . , sd). The process Bd
ª is called a ª-fractional Brownian

sheet. For ª¼ (1, . . . , 1) we obtain the ordinary d-dimensional Brownian sheet. The basic

result of our paper asserts that

ln(Bd
ª) 6 n�ª1=2(1þ log n)�(ª1þ1)=2�ª1=2, (1:5)

where the ª j are ordered such that

0 , ª1 ¼ . . . ¼ ª� , ª�þ1 < . . . < ªd , 2:

For the Brownian motion B this yields ln(B) 6 (n�1 log n)1=2, which was shown in the theory

of so-called average linear widths (Maiorov and Wasilkowski 1996).
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As mentioned in Li and Linde (1999), the behaviour of l n(X ) as n !1 is tightly

related to small-ball estimates for X, i.e. to the behaviour of

�logP(kXk , 
) (1:6)

as 
! 0. In this context, statement (1.5) is quite surprising because a similar precise

assertion for the small-ball behaviour of B
d
ª is known only in some very special cases

(Monrad and Rootzén 1995; Shao 1993; Talagrand 1994; Belinsky and Linde 2002). Our

results lead to general lower and upper estimates of (1.6) for ª-fractional Brownian sheets

which differ from each other by (log 
�1)1=ª1. This extends recent results in Dunker et al.

(1999) for the Brownian sheet, i.e. y ¼ (1, . . . , 1).

The paper is organized as follows. In Section 2 we introduce the l-numbers ln(T ) for an

operator T from a Hilbert space H into E and state their basic properties. Section 3 is

devoted to certain relations between these and ordinary approximation numbers. We

strengthen the results in Section 4 for the special case E ¼ C(K) with K metric compact.

Section 5 is devoted to the multidimensional case, i.e., more precisely, to the study of

tensor products of operators. We investigate, for example, the dependence of ln(T . S) on

Ln(T ) and l n(S), respectively. The main result in this section is Theorem 5.7, where we

describe the exact behaviour of ln(Rd
Æ). Here Rd

Æ denotes the d-fold tensor product of certain

Riemann–Liouville operators of fractional integration. In Section 6 we show how the

general results about l-numbers of operators lead to estimates for l n(X ) where X is a

Gaussian centred Banach space valued random variable. Furthermore, we introduce and

describe so-called approximation numbers of X. Finally, in Section 7 we give the proof of

(1.5). The basic idea is similar to that in Li and Linde (1998), namely to split Bd
ª into a

sum of processes, where one is generated by Rd
( ªþ1)=2 and the others turn out to be of lower

order.

2. Approximation numbers of operators

Let T be a compact operator from a Banach space E into a Banach space F. The behaviour

of its approximation numbers

an(T ) :¼ inffkT � Sk : S operator from E to F, rank(S) , ng (2:1)

leads to information about the degree of compactness of T. If T is an operator from a Hilbert

space H into a Banach space E, then we have (see Pietsch 1987)

an(T ) :¼ inffkT � TPk : P orthogonal projection in H , rank(P) , ng:

For example, if T maps H into itself, then it follows (Carl and Stephani 1990) that

an(T ) ¼ ºn(T )

where º1(T ) > º2(T ) > . . . > 0 denotes the sequence of singular numbers of T, i.e. ºk(T )2 is

the kth eigenvalue of TT� in decreasing order.

When investigating Gaussian random processes, another kind of approximation numbers
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is of importance. Thus suppose we are given a (linear, bounded) operator T from a

separable Hilbert space H into a Banach space E. Then its l-norm is defined by

l(T ) :¼ sup
H0�H

ð
H0

kThk2dªH0
(h)

� �1=2
( )

, (2:2)

where the supremum is taken over all finite-dimensional subspaces H0 � H and ªH0
denotes

the (unique) standard Gaussian measure on H0.

Let (�k)1k¼1 be an independent sequence of standard normal random variables. If

X1
k¼1

�k Tek (2:3)

converges a.s. in E for one (or equivalently each) orthonormal basis (ONB) (ek)1k¼1 in H, then

we have l(T ) ,1 and, moreover,

l(T ) ¼ E

9999X1
k¼1

�k Tek

9999
2

 !1=2

(2:4)

is independent of the choice of ONB.

In order to measure the convergence of (2.3) in E, we use the l-numbers defined by

ln(T ) :¼ inf E

9999X1
k¼n

�k Tek

9999
2

 !1=2

: (ek)1k¼1 ONB in H

8<
:

9=
;: (2:5)

It is well known and easy to see (Pietsch 1987; Pisier 1989) that these numbers may also be

defined by

(i) ln(T ) ¼ inffl(T � S) : S operator from H to E, rank(S) , ng or

(ii) ln(T ) ¼ inffl(T � TP) : P orthogonal projection in H, rank(P) , ng or

(iii) l n(T ) ¼ inffl(T jH?
0
) : H0 � H , dim(H0) , ng.

These numbers enjoy the following properties. Suppose that T and S are operators from H

into E. Then, for all m, n 2 N, we have

lnþm�1(T þ S) < ln(T )þ lm(S): (2:6)

Furthermore, if T : H ! E and S : H ! H, for all n, m 2 N it follows that

lnþm�1(T s S) < l n(T ):am(S), (2:7)

lnþm�1(T s S) < an(T ):lm(S):

In special cases the l-numbers may be easily calculated. If T maps H into itself, then the

l-numbers of T satisfy

l n(T ) ¼
X1
k¼n

ºk(T )2

 !1=2
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where as above ºk(T ) is the kth singular number of T.

The next result shows (among others) that there exists one fixed ONB in H for which all

nth tails admit the same estimate as ln(T ). Since the proof is standard (see Pietsch 1987,

2.3.8) we omit it. Here and later on we use the following notation: If an and bn are two

sequences of non-negative numbers, we write an d bn whenever there is a constant c . 0

such that an < c:bn for all n 2 N, while an 6 bn means an d bn as well as bn d an.

Proposition 2.1. Let Æ . 0 and � 2 R. For T : H ! E the following are equivalent.

(i) ln(T ) d n�Æ(1þ log n) �.

(ii) For some (each) q . 1 and º 2 R, the operator T may be represented as

T ¼
P1

k¼1T k, where the Tk map H into E with

rank(Tk) d q k k º and l(Tk) d q�kÆk ��Æº:

(iii) For some (each) q . 1 and º 2 R there are orthogonal projections Pk on H of rank

less than c:q k k º such that

T ¼
X1
k¼1

TPk and l(TPk) d q�kÆk ��Æº

(iv) As (iii), with the Pk pairwise orthogonal.

(v) There is a fixed ONB ( f k)1k¼1 in H such that, for all n 2 N,

E

9999X1
k¼n

�k Tf k

9999
2

 !1=2

d n�Æ(1þ log n) �:

3. Relations between approximation and l-numbers

In view of kTk < l(T ) for T : H ! E, we clearly have

an(T ) < ln(T ) (3:1)

for all n 2 N. Our next aim is to improve (3.1). To do so we need a lemma which slightly

generalizes a result due to D. R. Lewis (see Pisier 1989, Proposition 1.8).

Lemma 3.1. Let T be an operator from a Hilbert space H into a Banach space E and let P

be an orthogonal projection on H of rank n. Then there are orthonormal elements f1, f 2 . . .
in (I � P)(H) with

kTf kk . 1
2

anþk(T ), k ¼ 1, 2, . . . : (3:2)

Proof. Since rank(TP) , n, it follows that

anþ1(T ) < kT � TPk
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by the definition of approximation numbers. Consequently, we find an element
~ff 1 2 H , k ~ff 1k ¼ 1, such that

kT (I � P) ~ff1k > 1
2

anþ1(T ):

Setting

f 1 :¼ (I � P) ~ff 1

kI � P) ~ff1k
,

we obtain a normalized element f 1 2 (I � P)(H) satisfying (3.2) for k ¼ 1.

Define now an orthogonal projection P1 on H of rank nþ 1 by

P1 h :¼ Phþ hh, f 1i f 1

and apply the above procedure to P1 and nþ 1. This leads to a normalized element f 2 in

(I � P1)(H) satisfying (3.2) for k ¼ 2. By the construction of P1 we have f2 2 (I � P)(H) as

well as f 1 ? f 2. For dim(H) ¼ 1 we may now proceed in the same way to obtain f 3, f 4, . . . .

Otherwise, of course the construction stops at a certain point. This completes the proof. h

The next result is the key to obtaining lower estimates of ln(T ), in particular in the case

of E ¼ C(K) with K compact metric.

Proposition 3.2. Let T be an operator from H into E and let m, n be any natural numbers.

Then we have ffiffiffiffiffiffiffiffiffiffiffi
log m

p
:anþm�1(T ) < c:ln(T ) (3:3)

with some constant c . 0, independent of T, m and n.

Proof. Let P be an orthogonal projection in H of rank n� 1 such that

l(T � TP) < 2:ln(T ): (3:4)

Next we apply Lemma 3.1 to T and P. Then there exists an orthonormal system f 1, f 2, . . . in

(I � P)(H) with

kTf kk > 1
2
anþk�1(T ), k ¼ 1, 2, . . . : (3:5)

By the definition of the l-norm we obtain

l(T � TP) > E

9999Xm

k¼1

�k Tf k

9999
2

 !1=2

(3:6)

for each m 2 N. Recall that the right-hand expectation is increasing with respect to m. To

proceed further, we need an inequality due to Pisier (1989, (4.14)) asserting that

E sup
1<k<m

j�k j kTfkk < E

9999Xm

k¼1

�k Tf k

9999;

hence by (3.5), (3.6) and (3.4) we arrive at
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1
2
anþm�1(T ):E sup

1<k<m

j�k j < l(T � TP) < 2:ln(T ) (3:7)

and the assertion follows from (3.7) in view of

c:
ffiffiffiffiffiffiffiffiffiffiffi
log m

p
< E sup

1<k<m

j�k j

(Pisier 1989, Lemma 4.14).

4. Operators with values in spaces of continuous functions

We now specify the Banach space E. Let (K, d) be a compact metric space. As usual, C(K)

denotes the Banach space of continuous (real-valued) functions on K endowed with the

supremum norm k:k1. If � is a finite (Borel) measure on K, let

J : C(K) ! L2(K, �)

be the natural embedding. Thus, if T is some compact operator from L2(K, �) into C(K), the

operator J s T maps from a Hilbert space into itself, so that its singular numbers

ºn ¼ ºn(JT ), with º1 > º2 > . . . > 0, are well defined. Recall that ºn(JT ) ¼ an(JT ).

With these preliminaries the following is valid.

Proposition 4.1. For each n 2 N, it follows that

º3n�2(JT ) < c:(n log n)�1=2:ln(T ): (4:1)

Before we prove (4.1) let us state some basic facts about Weyl numbers of operators. Let T be

an operator acting between arbitrary Banach spaces E and F. Then its nth Weyl number xn(T )

is defined by

xn(T ) :¼ supfan(T s S) : S : l2 ! E, kSk < 1g:
We shall use the following basic properties of these numbers (see Pietsch 1987; König 1989,

pp. 69, 81).

(i) The xn are a multiplicative s-scale, i.e.

xnþm�1(T1 s T2) < xn(T1):xm(T2)

whenever T1 s T2 makes sense.

(ii) For operators T defined on a Hilbert space it follows that

an(T ) ¼ xn(T ):

(iii) We have

xn(T ) < n�1=2�2(T )

where �2(T ) is the 2-absolutly summing norm of T.

The only, albeit important, property of this norm (Pietsch 1978, 17.3.8) we shall use later on is
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�2(J : C(K) ! L2(K, �)) ¼ �(K)1=2 ,1: (4:2)

Proof of Proposition 4.1. Using properties (i), (ii) and (iii) of the xn as well as (4.2) we

obtain

º3n�2(JT ) ¼ a3n�2(JT ) ¼ x3n�2(JT ) < x2n�1(T ):xn(J )

< a2n�1(T )n�1=2�2(J ) < c:n�1=2a2n�1(T ):
(4:3)

Applying (3.3) with m ¼ n impliesffiffiffiffiffiffiffiffiffiffi
log n

p
:a2n�1(T ) < c:ln(T ),

and plugging this into (4.3) completes the proof. h

Next we present a general tool for obtaining upper estimates for ln(T ) with

T having values in C[0, 1]. Let u be the piecewise linear function defined by

u(t) :¼ t:1[0,1=2](t)þ (1� t):1(1=2,1](t):

For m ¼ �2, �1, . . . we now set J�2 ¼ J�1 ¼ f0g and

J m :¼ f0, . . . , 2m � 1g, m > 0,

and define functions um, j, m > �2, j 2 J m, by

u�2,0 :¼ 1[0,1] and u�1,0(t) :¼ t

and, if m > 0, by

um, j(t) :¼ 2�m=2U (2mt � j), 0 < t < 1:

Of course, the um, j form the well-known Faber–Schauder system in C[0, 1]. Note that

kum, jk1 ¼ 2�m=2�1, m > 0, and that for fixed m the supports of the um, j are disjoint.

Given � . 0 and t 2 R with 0 < t � � , t , t þ � < 1, the functional ˜( tj�) 2 C�[0, 1]

is defined by

˜( tj�) :¼ 2� t � � tþ� � � t��,

where as usual � t denotes Dirac point measure at t 2 R. Finally, letting

j�2,0 :¼ �0, j�1,0 :¼ �1 � �0 (4:4)

and, if m > 0,

jm, j :¼ 2m=2˜((2 jþ1)2�( mþ1)j2�( mþ1)), j 2 J m, (4:5)

i.e.

h f , jm, ji ¼ 2m=2 2 f
2 jþ 1

2mþ1

� �
� f

j

2m

� �
� f

jþ 1

2m

� �� �
, j 2 J m, (4:6)

every f 2 C[0, 1] can be written as
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f ¼
X1

m¼�2

X
j2J m

h f , jm, ji:um, j:

Now, if T : H ! C[0, 1], it may be represented as

Th ¼
X1

m¼�2

X
j2J m

hh, hm, ji:um, j, h 2 H ,

with hm, j :¼ T�jm, j 2 H .

Proposition 4.2. Let T : H ! E be an operator such that, for some ª . 0, � 2 R and all

m 2 N, we have

sup
j2J m

khm, jkH ¼ sup
j2J m

kT�jm, jkH < c:m�2m(1=2�ª): (4:7)

This implies that

ln(T ) d (1þ log n)�þ1=2:n�ª: (4:8)

Proof. Let Tm : H ! C[0, 1], m ¼ �2, �1, . . . , be defined by

Tm h :¼
X
j2J m

hh, hm, jium, j, h 2 H :

Of course, rank(Tm) < 2maxfm,0g, thus in order to prove (4.8), in view of Proposition 2.1, it

suffices to verify

l(Tm) d m�þ1=22�mª: (4:9)

Let X m be a standard Gaussian random variable with values in H m ¼ spanfhm, j : j 2 J mg.

Then

l(Tm) ¼ EkTm(X m)k2
1

� �
1=2 ¼ E sup

j2J m

j� jj2kum, jk2
1

 !1=2

¼ 2�m=2�1 E sup
j2J m

j� jj2
 !1=2

,

(4:10)

where the centred Gaussian vector (� j) j2J m
is defined by

� j :¼ (hX m, hm, ji, j 2 J m:

Note that the � j are not necessarily independent. They satisfy

Ej� jj2 ¼ khm, jk2
H , (4:11)

hence a well-known estimate for general centred Gaussian vectors (Pisier 1989, Lemma 4.14),

together with (4.7) and (4.11), implies that
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E sup
j2J m

j� jj2
 !1=2

< c:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log#(J m)

p
: sup

j2J m

Ej� jj2
 !1=2

< c:m1=2: sup
j2J m

khm, jkH < c:m�þ1=22m(1=2�ª): (4:12)

Consequently, using (4.10) and (4.12), we finally obtain (4.9) as required. h

Corollory 4.3. Suppose that, for some ª . 0, we have

sup
khk<1

j2(Th)(t)� (Th)(t þ �)� (Th)(t � �)j < c:�ª (4:13)

for all t, � such that 0 < t � � , t , t þ � < 1. This implies that

ln(T ) d
ffiffiffiffiffiffiffiffiffiffi
log n

p
:n�ª:

In particular, this is satisfied for T mapping H into the space Cª[0, 1] of Hölder continuous

functions of order ª, 0 , ª < 1.

We now give a first example. If Æ . 0, let

(RÆ f )(s) :¼ 1

ˆ(Æ)

ð s

0

(s� t)Æ�1 f (t)dt (4:14)

be the Riemann–Liouville operator of fractional integration of order Æ. It is easily checked

that RÆ maps L2[0, 1] into Lp[0, 1] provided that Æ . [1=2� 1=p]þ where in the case

p ¼ 1 the operator RÆ maps L2[0, 1] even into C[0, 1].

Let us state some properties of RÆ for later use:

(i) RÆ s R� ¼ RÆþ�
(ii) If 1

2
, Æ < 3

2
, then RÆ maps L2[0, 1] into Cª[0, 1] with ª ¼ Æ� 1

2
.

(iii) If Æ . 0, then the singular numbers of RÆ regarded as an operator from L2[0, 1] into

itself behave as

ºn(RÆ) 6 n�Æ (4:15)

(see Vu and Gorenflo 1996).

Next we wish to describe the asymptotic behaviour of ln(RÆ) for RÆ mapping L2[0, 1]

into C[0, 1].

Proposition 4.4. If Æ . 1
2

and RÆ : L2[0, 1] ! C[0, 1], then we have

ln(RÆ) 6 n�Æþ1=2:(1þ log n)1=2: (4:16)

Proof. We start by proving the upper estimate. If 1
2
, Æ < 3

2
, this is a direct consequence of

property (ii) above and Corollary 4.3. Now assume Æ . 3
2

and choose a natural number k

with
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1
2
þ k , Æ < 3

2
þ k:

Using (i), we write RÆ ¼ RÆ�k s Rk , where we regard Rk as an operator from L2[0, 1] into

itself. Hence, by the first step and by property (iii) above, we obtain

l2n�1(RÆ) < ln(RÆ�k):an(Rk : L2 ! L2)

< c:n�(Æ�k)þ1=2:(log n)1=2:n�k ¼ c:n�Æþ1=2(log n)1=2,

completing the proof of the upper estimate.

For the lower estimate we use (4.15) and Proposition 4.1. Then

n�Æ # c:an(RÆ : L2 ! L2) < c:(n log n)�1=2 ln(RÆ : L2 ! C)

completes the proof. h

5. The multidimensional case

For two Banach spaces E and F, let E �.. F be their injective tensor product, i.e. the

completion of E . F with respect to the norm9999Xn

i¼1

xi . yi

9999 :¼ sup
Xn

i¼1

hxi, x�ihyi, y�i : kx�kE� < 1, ky�kF� < 1

( )
:

Given two Hilbert spaces H , K, their tensor product H . K has a natural scalar product

defined by

h f 1 . g1, f 2 . g2i :¼ h f 1, f 2ihg1, g2i,
which may be extended by linearity. The completion is denoted by H .̂.2 K and called the

(Hilbert) tensor product of H and K. If T : H ! E and S : K ! F are operators, their tensor

product T . S (defined canonically by (T . S) ( f . g) :¼ (Tf ) . (Sg)) maps H .̂.2 into

E �.. F and satisfies

kT . Sk < kTk kSk:
The next result is basic for later estimates and may be found in Ledoux and Talagrand

(1991, p. 84).

Proposition 5.1. Let T and S be as before with tensor product T . S mapping into E �.. F.

Then it follows that

l(T . S) < l(T )kSk þ l(S)kTk:
In particular, since kTk < l(T ), this implies

l(T . S) < 2l(T ):l(S): (5:1)

The preceding estimate yields the following useful result for the l-numbers of tensor

products.
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Proposition 5.2. Let T and S be operators on Hilbert spaces H and K with values in Banach

spaces E and F, respectively. If

ln(T ) d n�Æ(1þ log n)�,

ln(S) d n�ª,

for some 0 , Æ , ª and � 2 R, then for T . S mapping into E �.. F it follows that

ln(T . S) d n�Æ(1þ log n)� (5:2)

as well.

Proof. Let us choose integers p and q with

1 ,
p

q
,

ª

Æ
: (5:3)

By Proposition 2.1 we find for these numbers operators Tk and S‘ such that

T ¼
X1
k¼1

Tk , S ¼
X1
‘¼1

S‘, (5:4)

rank(Tk) < 2kp, rank(S‘) < 2‘q, (5:5)

as well as

l(Tk) < c:2�Ækp:k�, (5:6)

l(S‘) < c:2�ª‘q, (5:7)

for k, ‘ ¼ 1, 2, . . . .

Next we define operators Vn on H .̂.2 K with values in E �.. F by

Vnþ1 :¼
X

kþ‘¼n

Tk . S‘, n ¼ 1, 2, . . . ,

which possess the following properties:

(a) By (5.4) we obtain

T . S ¼
X1
n¼1

Vnþ1:

(b) Using (5.5) and p . q, hence p > qþ 1, it follows that

rank(Vnþ1) <
X

kþ‘¼n

rank(Tk):rank(S‘) <
X

kþ‘¼n

2kpþ‘q

¼ 2np:
Xn�1

‘¼1

2‘(q� p) < 2np:
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(c) Finally, because of (5.6) and (5.7), an application of (5.1) leads to

l(Vnþ1) <
X

kþ‘¼n

l(Tk . S‘) < 2:
X

kþ‘¼n

l(Tk):l(S‘)

< c:
X

kþ‘¼n

2�Ækp�ª‘q:k�

¼ c:2�Ænp n�:
Xn�1

‘¼1

2�‘(ªq�Æ p):(1� ‘=n)�

< c:2�Ænp:n�:
X1
‘¼1

2�‘(ªq�Æ p)

¼ c9:2�Ænp:n�,

where we have used Æ p , ªq by the choice of p and q. The above arguments only

apply for � > 0, yet for � , 0 a slight modification gives the same estimate.

If we summarize all the properties of Vn, Proposition 2.1 implies the desired estimate

ln(T . S) < c:n�Æ(1þ log n)�:

h

The preceding proposition no longer applies if the l-numbers of both operators are of the

same order. Ideas similar to those above give in this case the following result which, in

general, is far from optimal, yet suffices for later purposes.

Proposition 5.3. Suppose that T and S as above satisfy

ln(T ) d n�Æ(1þ log n)�,

ln(S) d n�Æ(1þ log n)�,

for some Æ . 0 and �, � 2 R. Then we have

ln(T . S) d n�Æ(1þ log n)�þ�þÆþ1:

Proof. We choose operators Tk and S‘ as above, but this time for p ¼ q ¼ 1. Defining Vnþ1

as before, we obtain

rank(Vnþ1) < n:2n

and

l(Vnþ1) < c:2�Æn:n�þ�þ1,

hence by Proposition 2.1
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ln(T . S) d n�Æ(1þ log n)�þ�þÆþ1

as asserted. h

Given Æ ¼ (Æ1, . . . , Æd), we now investigate the d-fold tensor product

Rd
Æ :¼ RÆ1

. 1 1 1 . RÆd
(5:8)

where the components RÆ j
denote as in (4.14) Riemann–Liouville operators of fractional

integration. Rd
Æ is bounded from L2[0, 1]d into itself if the Æ j are positive and it is bounded

as an operator from L2[0, 1]d into C[0, 1]d provided that Æ j .
1
2

for 1 < j < d. Furthermore,

without loss of generality, we always may order the Æ j such that

Æ1 ¼ . . . ¼ Æ� , Æ�þ1 < . . . < Æd :

With this notation the following is valid.

Proposition 5.4. Suppose Æ1 . 0 and regard Rd
Æ as an operator from L2[0, 1]d into itself.

Then its singular numbers ºn(Rd
Æ) satisfy

ºn(Rd
Æ) ¼ an(Rd

Æ : L2[0, 1]d ! L2[0, 1]d) 6 n�Æ1 (1þ log n)Æ1(��1): (5:9)

Proof. Let º j
1 > º j

2 > . . . . 0 be the singular numbers of RÆ j
as an operator in L2[0, 1],

1 < j < d. Then it is well known and easy to see that Rd
Æ has singular numbers

ºn1,...,nd
(Rd

Æ) :¼ º1
n1
1 1 1 ºd

nd
, (n1, . . . , nd) 2 Nd :

By (4.15) we have

º j
n 6 n�Æ j , (5:10)

hence there are constants c1, c2 . 0 with

c1
:n�Æ1

1 1 1 1 n
�Æd

d < ºn1,...,nd
(Rd

Æ) < c2
:n�Æ1

1 1 1 1 n
�Æd

d : (5:11)

Let º1 > º2 > . . . > 0 be the decreasing rearrangement of the singular numbers ºn1,...,nd
(Rd

Æ).

Now, if Æ1 ¼ . . . ¼ Æd ¼ Æ, i.e. � ¼ d, it is easily checked (Talagrand 1994) that (5.11)

implies

ºn 6 n�Æ(1þ log n)(d�1)Æ: (5:12)

Note that (5.12) is equivalent to

#f(n1, . . . , nd) : ºn1,...,nd
(Rd

Æ) > 
g 6 
�1=Æ(log 
�1)d�1,

which follows from (5.11) by a d-dimensional integration argument.

Let us now investigate the general case. This may be derived from (5.12) and the

following observation. Since Æ1 , Æ�þ1, by (5.10) we have

#f(m, n) : º1
m
:º�þ1

n > 
g 6 
�1=Æ1 :

An iterative application of this reduces the general case to that of d ¼ � and completes the

proof by (5.12). h
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A combination of Propositions 4.1 and 5.4 leads to the following lower estimate of

ln(Rd
Æ).

Corollary 5.5. Suppose that

1
2
, Æ1 ¼ 1 1 1 ¼ Æ� , Æ�þ1 < 1 1 1 < Æd :

Then it follows that

ln(Rd
Æ : L2[0, 1]d ! C½0, 18d) f n�Æ1þ1=2(1þ log n)Æ1(��1)þ1=2: (5:13)

We now introduce some more notation. For k 2 N0 ¼ f0, 1, . . .g put

łk(t) :¼ 1 if k ¼ 0,ffiffiffi
2

p
cos(k�t) if k > 1,

�

and obtain an ONB in L2[0, 1]. Given k ¼ (k1, . . . , kd) 2 Nd
0 , we set

~łłk :¼ łk1
. 1 1 1 . łkd

, (5:14)

leading to an ONB in L2[0, 1]d .

The following estimate is crucial for proving the corresponding upper estimate of (5.13).

Lemma 5.6. Let Æ ¼ (Æ, . . . , Æ), for some 0 , Æ < 1. Then it follows that

kRd
Æ
~łłkkC[0,1]d < cÆ,d

:
Yd

j¼1

maxf1, kjg�Æ (5:15)

for k ¼ (k1, . . . , kd) 2 Nd
0.

Proof. Let us first treat the one-dimensional case. For k ¼ 0 or Æ ¼ 1, estimate (5.15) holds

by trivial argument. Hence we may suppose k > 1 and Æ , 1. Then we obtain

kRÆłkkC[0,1] ¼ cÆ sup
0<x<1

����
ðx

0

(x� s)Æ�1łk(s)ds

����
< cÆ sup

0<x<1

����
ðx

0

tÆ�1cos(k�t)dt

����þ sup
0<x<1

����
ðx

0

tÆ�1 sin(k�t)dt

����
� �

¼ cÆk�Æ sup
0<x<1

����
ð kx

0

tÆ�1 cos(�t)dt

����þ sup
0<x<1

����
ð kx

0

tÆ�1 sin(�t)dt

����
� �

< c9Æk�Æ,

where we have used �1 , Æ� 1 , 0, thus

sup
0< y,1

����
ð y

0

tÆ�1 cos(�t)dt

���� ,1,

and the same is valid for the term with the sine.
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Now, if k ¼ (k1, . . . , kd) with kj > 1, the one-dimensional estimate yields

kRd
Æ
~łłkkC[0,1]d < cÆ,d

:(k1 1 1 1 kd)�Æ, (5:16)

and we are done.

If one (or more) of the kj is zero, we reduce the dimension d to #f j < d : kj . 0g,

proceed as before and obtain (5.15) via (5.16). h

We are now in a position to prove the main result of this section.

Theorem 5.7. Suppose

1
2
, Æ1 ¼ . . . ¼ Æ� , Æ�þ1 < . . . < Æd :

Then it follows that

ln(Rd
Æ : L2[0, 1]d ! C[0, 1]d) 6 n�Æ1þ1=2(1þ log n)Æ1(��1)þ1=2:

Proof. Of course, in view of Corollary 5.5 it remains to prove the upper estimate for ln(Rd
Æ).

Furthermore, a direct application of Propositions 5.2 and 4.4 shows that it suffices to treat the

case Æ ¼ (Æ . . . , Æ) for some Æ . 1
2
.

Step 1. We assume 1
2
, Æ < 1. Given n 2 N0, let

Jn :¼ k 2 Nd
0 : 2n�1 ,

Yd

j¼1

maxf1, kjg < 2n

( )
:

It may be proved either by induction over d or by an integration argument that

#(Jn) < cnd�12n: (5:17)

Thus, if Sn : L2[0, 1]d ! C[0, 1]d is defined by

Sn f :¼
X
k2Jn

h f , ~łłkiRd
Æ
~łłk ,

(cf. (5.14) for the definition of the ~łłk), we obtain

rank(Sn) < cnd�12n (5:18)

and, moreover,

Rd
Æ ¼

X1
n¼0

Sn: (5:19)

Thus we have to make a suitable estimate of l(Sn), and to do so, we use a method from

Dunker et al. (1999). For some 
n . 0 to be specified later on, let Gn � [0, 1]d be an 
n-net

(with respect to the supremum norm in Rd) of cardinality #(Gn) < c:
�d
n .

If x 2 Gn, we define

Qx :¼ ft 2 [0, 1]d : kx� tk1 , 
ng,
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and by construction

[0, 1]d ¼
[

x2Gn

Qx:

By the equivalence of the moments of a Gaussian vector (see, e.g., Lifshits 1995) there exists

some c . 0 such that

c:l(Sn) < E sup
t2[0,1]d

����X
k2Jn

�k(Rd
Æ
~łłk)(t)

����
< E sup

x2Gn

sup
t2Qx

����X
k2Jn

�k[(Rd
Æ
~łłk)(x)� (Rd

Æ
~łłk)(t)]

����þ E sup
x2Gn

����X
k2Jn

�k(Rd
Æ
~łłk)(x)

����: (5:20)

Our next aim is to estimate both terms in the last expression separately. Let us start with the

first term in (5.20). Recall that RÆ maps L2[0, 1] into the Hölder space CÆ�1=2[0, 1], hence, if

t 2 Qx, for all k > 0 and 1 < j < d we have

j(RÆłk)(xj)� (RÆłk)(tj)j < c:
Æ�1=2
n : (5:21)

Using

����Yd

j¼1

aj �
Yd

j¼1

bj

���� < kd�1:
Xd

j¼1

jaj � bjj,

with k :¼ maxfja1j, . . . , jad j, jb1j, . . . , jbd jg, from (5.21) we derive

j(Rd
Æ
~łłk)(x)� (Rd

Æ
~łłk)(t)j < c:
Æ�1=2

n

provided that t 2 Qx. Hence for the first term in (5.20) we obtain

E sup
x2Gn

sup
t2Qx

����X
k2Jn

�k[(Rd
Æ
~łłk)(x)� (Rd

Æ
~łłk)(t)]

����
< c:
Æ�1=2

n
:E

X
k2Jn

j�k j
 !

¼ c9:#(Jn)
Æ�1=2
n < c:nd�1:2n
Æ�1=2

n : (5:22)

To estimate the second term in (5.20) suitably, we use the following result (Pisier 1989,

Lemma 4.14). Let Z1, . . . , ZN be a centred Gaussian sequence. Then it follows that

E sup
1<k<N

jZk j < c:(1þ log N )1=2 sup
1<k<N

(EjZk j2)1=2:

Applying this to the second term in (5.20) gives
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E sup
x2Gn

����X
k2Jn

�k(Rd
Æ
~łłk)(x)

����

< c:(1þ log#Gn)1=2 sup
x2Gn

E

����X
k2Jn

�k(Rd
Æ
~łłk)(x)

����
2

 !1=2

< c:(1þ jlog 
nj)1=2 sup
x2Gn

X
k2Jn

j(Rd
Æ
~łłk)(x)j2

 !1=2

< c:(1þ jlog 
nj)1=2:#(Jn)1=2 sup
k2Jn

sup
x2[0,1]d

j(Rd
Æ
~łłk)(x)j:

Consequently, by Lemma 5.6 and by the choice of Jn,

E sup
x2Gn

����X
k2Jn

�k(Rd
Æ
~łłk)(x)

���� < c:(1þ jlog 
nj)1=2:nd=2�1=22n=2�nÆ: (5:23)

Now we choose 
n . 0 such that the first term in (5.20) is of lower order than the second.

With r . 0 satisfying

r .
2Æþ 1

2Æ� 1
, (5:24)

we set 
n :¼ 2�rn. Then (5.20), (5.22) and (5.23) imply

l(Sn) < c:fnd�12�n(r(Æ�1=2)�1) þ nd=22�n(Æ�1=2)g

< c:nd=22�n(Æ�1=2) (5:25)

by using (5.24). Summing up, in view of (5.19), (5.18) and (5.25), by Proposition 2.1 we

finally obtain

ln(Rd
Æ) d n�Æþ1=2(1þ log n)Æ(d�1)þ1=2

as asserted.

Step 2. We now suppose Æ ¼ (Æ, . . . , Æ) with Æ . 1. Setting � :¼ (Æ� 1, . . . , Æ� 1)

and 1 :¼ (1, . . . , 1) we split Rd
Æ as

[Rd
Æ : L2[0, 1]d ! C[0, 1]d] ¼ [Rd

1 : L2 ! C] s [Rd
� : L2 ! L2]:

Hence by (2.7), by step 1 above and by Proposition 5.4, we obtain

l2n�1(Rd
Æ : L2 ! C) < ln(Rd

1 : L2 ! C):an(Rd
� : L2 ! L2)

< c:n�1=2(1þ log n)d�1=2:n��(1þ log n)�(d�1)

¼ c:n�Æþ1=2(1þ log n)Æ(d�1)þ1=2,
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completing the proof also in this case. h

A consequence of Theorem 5.7 is as follows.

Proposition 5.8. For Æ ¼ (Æ1, . . . , Æd) as before it follows that

an(Rd
Æ : L2 ! C) 6 n�Æ1þ1=2(1þ log n)Æ1(��1):

Proof. In view of Proposition 3.2, we have

a2n�1(Rd
Æ : L2 ! C) < c:(1þ log n)�1=2:ln(Rd

Æ : L2 ! C),

so that the upper estimate follows from Theorem 5.7.

From (4.3) we derive

a2n�1(Rd
Æ : L2 ! L2) < n�1=2:an(Rd

Æ : L2 ! C): (5:26)

Hence, the lower estimate is a direct consequence of Proposition 5.4 and (5.26). h

6. Application to Gaussian random variables

Let X be a centred Gaussian random variable with values in a Banach space E, i.e. X attains

a.s. values in a separable subspace of E and, moreover, given any x� 2 E�, the dual of E, the

random variable hX , x�i is centred normal (possibly degenerated). Each such X can be

represented in the form

X ¼
X1
k¼1

�k xk a:s: (6:1)

for suitable xk in E and the �k independent standard normal. Now let H be some separable

Hilbert space and ( f k)k>1 some ONB in H . Then by setting

T ( f k) :¼ xk , k ¼ 1, 2, . . . ,

the operator T : H ! E is well defined and bounded. Hence (6.1) now becomes

X ¼
X1
k¼1

�k Tf k a:s:, (6:2)

and with ln(X ) defined in (1.2) we easily obtain

ln(X ) ¼ ln(T ):

Consequently, all properties of l-numbers of operators carry over to those of Banach space

valued centred Gaussian random variables. Let us state a first application.

We say that a centred Gaussian random variable X has rank n whenever there are

linearly independent elements x1, . . . , xn in E such that X ¼
Pn

k¼1�k xk a:s: Now

Proposition 2.1 implies the following.
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Proposition 6.1. If Æ . 0 and � 2 R, the following statements are equivalent:

(i)

ln(X ) d n�Æ(1þ log n)�:

(ii) There exists a representation (6.1) of X such that

E

9999X1
k¼n

�k xk

9999
2

 !1=2

d n�Æ(1þ log n)�:

(iii) There are (independent ) E-valued random variables Xk such that

rank(X k) , 2k , (EkXkk2)1=2 < c:k�2�Æk , X ¼
X1
k¼1

X k :

In particular, Proposition 6.1 tells us the following. Let (X (t)) t2K be a centred Gaussian

process over a compact set K possessing a.s. continuous paths. Then we find continuous

functions uk on K with

X (t) ¼
X1
k¼1

�k uk(t), t 2 K,

and

E sup
t2K

����X1
k¼n

�k uk(t)

����
2

 !1=2

d n�Æ(1þ log n)�

if and only if

ln(X ) d n�Æ(1þ log n)�:

Finally, we treat another problem. Suppose that an operator T : H ! E and a random

variable X are connected by (6.2). A natural question is now how the approximation

numbers of T may be described by properties of X only. Note that neither T nor the ONB

( f k)k>1 in (6.2) is unique, yet it is not difficult to check that an(T ) depends only on X . In

other words, we may define approximation numbers of X by

an(X ) :¼ an(T )

provided T and X are related by (6.2). To give an intrinsic description of an(X ), we first note

that

an(T ) ¼ dn(T�),

where dn(T�) denotes the nth Kolmogorov number of the dual operator T� : E� ! H ; see

Pietsch (1987) for the definition of those numbers. We now choose H and T such that T is

connected to X as in (6.2). Suppose that X is defined on a probability space (�, P) and

define H � L2(�, P) as the closure of

H0 :¼ fhX , x�i : x� 2 E�g:
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Given f 2 H , we set

Tf :¼
ð
�

f (ø)X (ø)dP(ø),

where this integral has to be understood in the sense of Bochner. It is easy to prove that

T : H ! E is injective and is connected to X . Moreover, its dual T� satisfies

T�x� ¼ hX , x�i, x� 2 E�: (6:3)

Consequently, letting

BX :¼ fhX , x�i : kx�kE� < 1g � H ,

we obtain

an(X ) ¼ inff
 . 0 : d(BX , H n�1) , 
 for some H n�1 � H , dim(H n�1) ¼ n� 1g (6:4)

(as usual by d we denote the distance between two sets, generated by the underlying norm,

here in H). Next, recall that H0 is dense in H and BX is bounded. Thus, whenever there is a

subspace H n�1 � H as in (6.4) satisfying d(BX , H n�1) , 
, then we also find a subspace

H0
n�1 � H0 of dimension n� 1 possessing exactly the same property. Summing up, we

obtain the following.

Proposition 6.2 We have an(X ) , 
 if and only if there are x�1 , . . . , x�n�1 2 E� such that, for

all x� 2 E�, we find º1, . . . , ºn�1 2 R with

E

����hX , x�i �
Xn�1

j¼1

º jhX , x�j i
����
2

 !1=2

, 
:kx�k: (6:5)

Let us specify Proposition 6.2 further. To do so, first notice that by Lebesgue’s theorem the

operator T� given by (6.3) is [	 (E�, E), k:kH ]-continuous on bounded subsets of E�, hence

if A � E� denotes the set of extreme points in the unit sphere of E�, then it suffices that

(6.5) is satisfied for all x� 2 A.

An interesting application is as follows. Suppose that X ¼ (X (t)) t2K is a centred

Gaussian process over the compact metric space K with a.s. continuous sample paths. Then

X may be regarded as a C(K)-valued Gaussian random variable. In this case we have

an(X ) , 
 if and only if there are (signed) measures u1, . . . , un�1 over K such that for

each s 2 K we find reals º1, . . . , ºn�1 such that

E

����X (s)�
Xn�1

j¼1

º j

ð
K

X (t)d� j(t)

����
2

 !1=2

, 
:

In other words, up to an error of at most 
, the values of X can be linearly reconstructed from

n� 1 functionals of the process.
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7. Fractional Brownian sheets

We start with an application of Proposition 4.2 (or Corollary 4.3) to Gaussian processes over

[0, 1]. This implies a quite general upper estimate of ln(X ) for those processes. Similar

assertions for the small-ball behaviour can be found in Csörg}oo and Shao (1994).

Proposition 7.1. Let X be a centred Gaussian process over [0, 1] such that, for some ª . 0

and � 2 R,

Ej2X (t)� X (t þ �)� X (t � �)j2 < c:�2ª log
1

�

� �2�

(7:1)

for 0 < t � � , t , t þ � < 1. Then this implies that

ln(X ) d n�ª(1þ log n)�þ1=2: (7:2)

In particular, (7.1) is satisfied if

EjX (t)� X (t9)j2 < c:jt � t9j2ª log
1

jt � t9j

� �2�

for 0 < t 6¼ t9 < 1.

Remark. It is worth mentioning that a good approximation of X is obtained by

Xn(t) :¼
Xn

m¼�2

X
j2Jm

hX , jm, jium, j(t)

(we use the notation of Section 4). We have rank(X n) < 2nþ2 and

E sup
0< t<1

jX (t)� Xn(t)j2
� �1=2

d n�þ1=22�ªn,

provided (7.1) is satisfied. By Theorem 7.4 below, this order is optimal for fractional

Brownian motion.

Our next objective is to apply the former results to fractional Brownian sheets defined in

(1.4). First, we have to find a Hilbert space H and suitable operators Tª from H into

C[0, 1]d related to Bd
ª in the sense of (6.2). Let us start with the one-dimensional case.

If 0 , ª , 2, let H ¼ L2[0, 1]9 L2(�1, 0] and define Tª from H to C[0, 1] by

Tª :¼ kª(R(ªþ1)=2 9 Qª), (7:3)

where

(Qª f )(t) ¼ 1

ˆ((ªþ 1)=2)

ð0

�1
(t � s)(ª�1)=2 � (�s)(ª�1)=2
� �

f (s)ds, (7:4)

the operator R(ªþ1)=2 : L2[0, 1] ! C[0, 1] is the Riemann–Liouville integration operator of

order (ªþ 1)=2 defined in (4.14) and
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kª ¼ ˆ
ªþ 1

2

� �
ª�1 þ

ð0

�1
(1� s)(ª�1)=2 � (�s)(ª�1)=2
� �

2ds

� ��1=2

: (7:5)

Since, for t, s 2 [0, 1],

hT�ª � t, T�ª �si ¼ 1
2
(jsjª þ jtjª � js� tjª)

(Mandelbrot and Van Ness 1968), the following is valid.

Proposition 7.2. For any ONB ( f k)1k¼1 in H ¼ L2[0, 1]9 L2(�1, 0], the series

X1
k¼1

�k Tª f k

converges a.s. in C[0, 1] and defines a ª-fractional Brownian motion.

Now let ª ¼ (ª1, . . . , ªd) be a multi-index with 0 , ª j , 2. We define on operator T d
ª

from H.d to C[0, 1]d as

T d
ª :¼ Tª1

. 1 1 1 . Tªd
(7:6)

and obtain the following d-dimensional version of Proposition 7.2.

Proposition 7.3. The operator T d
ª is related to Bd

ª, i.e. for each ONB ( f k)1k¼1 in H.d (here H

is in Proposition 7.2) the series

X1
k¼1

�k T d
ª f k

converges a.s. in C[0, 1]d and defines a ª-fractional Brownian sheet.

For later purposes let us state the following properties of T d
ª .

(a) Note that the approximation numbers, and hence also the l-numbers, of the operator

Qª defined in (7.4) tend to zero exponentially (Belinsky and Linde 2002). In

particular, it follows that

ln(Qª) d n�r (7:7)

for any r . 0. Li and Linde (1998) give an estimate for the entropy of Qª implying

ln(Qª) d n�1(1þ log n)2. This would suffice for later purposes as well.

(b) Representation (7.3) implies

T d
ª ¼

Yd

j¼1

kª j

 !
R(ª1þ1)=2 . 1 1 1 . R(ªdþ1)=2

2 3
þ
X2d�1

i¼1

Vi

" #

¼ k Rd
(ªþ1)=2 þ

X2d�1

i¼1

Vi

 !
(7:8)
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with the kª j
defined by (7.5), k ¼

Qd
j¼1 kª j

and the Vi given by

Vi ¼ S1 . 1 1 1 . Sd ,

where Sj is either R(ª jþ1)=2 or Qª j
and, moreover, the latter case appears at least for

one j.

(c) Denote by P : H.d ! L2[0, 1]d the orthogonal projection defined by

Pf :¼ f :1[0,1]d , f 2 H.d :

By (7.3) and (7.6), we have

T d
ª s P ¼ k:Rd

(ªþ1)=2

with k . 0 as in (7.8), hence

ln(Rd
(ªþ1)=2) < k�1:ln(T d

ª): (7:9)

Thus prepared, we can now prove the main result of the paper.

Theorem 7.4. Let ª¼ (ª1, . . . , ªd) and suppose that

0 , ª1 ¼ . . . ¼ ª� , ª�þ1 < . . . < ªd , 2:

Then it follows that

ln(Bd
ª) 6 n�ª1=2(1þ log n)�(ª1þ1)=2�ª1=2:

Proof. We start with the upper estimate for � ¼ d, i.e. ª¼ (ª, . . . , ª) for a certain ª 2 (0, 2):
By (7.8) we have

T d
ª ¼ k Rd

(ªþ1)=2 þ
X2d�1

i¼1

Vi

 !
(7:10)

with the Vi as defined there. In our situation (perhaps after some permutation of the

coordinates) each operator Vi admits the representation

Vi ¼ Y1 . Y2, (7:11)

where Y1 is the tensor product of a certain number, say ~dd, of operators R(ªþ1)=2 while Y2 is

the (d � ~dd)-fold tensor power of Qª. Note that necessarily 0 < ~dd , d. Using (7.7), an

application of Proposition 5.3 implies

ln(Y2) d n�r (7:12)

for all r . 0. On the other hand, from Theorem 5.7 we derive

ln(Y1) d n�ª=2(1þ log n)
~dd(ªþ1)=2�ª=2: (7:13)

If we combine (7.11), (7.12) and (7.13), Proposition 5.2 yields
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ln(Vi) d n�ª=2(1þ log n)�, (7:14)

where

� ¼
~dd(ªþ 1)

2
� ª

2
,

d(ªþ 1)

2
� ª

2
: (7:15)

Of course, by (7.12) estimate (7.14) also holds for Y1 ¼ 0, i.e. ~dd ¼ 0. If we now compare

(7.14) and (7.15) with

ln(Rd
(ªþ1)=2) 6 n�ª=2(1þ log n)d(ªþ1)=2�ª=2, (7:16)

by (2.6) we derive, using (7.10),

ln(T d
ª) d ln(Rd

(ªþ1)=2):

Consequently, (7.16) gives the desired upper estimate for ln(T d
ª) in the case � ¼ d.

In the general situation, i.e. ª¼ (ª1, . . . , ªd), we write

T d
ª ¼ T�

ª1
. Tª�þ1

. 1 1 1 . Tªd
(7:17)

with ª1 :¼ (ª1, . . . , ª�) Recalling ª1 ¼ . . . ¼ ª�, from the previous paragraph it follows that

ln(T�
ª1

) d n�ª1=2(1þ log n)�(ª1þ1)=2�ª1=2, (7:18)

while Proposition 4.4 gives

ln(Tª j
) 6 n�ª j=2(1þ log n)1=2

for j ¼ �þ 1, . . . , d. Since ª j . ª1 for those j, an iterative application of Proposition 5.2 to

(7.17) shows that ln(T d
ª) admits the same upper estimate as ln(T d

ª1
) in (7.18). This completes

the proof of the upper estimate.

The lower estimate of ln(T d
ª) is a direct consequence of (7.9) and Theorem 5.7. This

concludes the proof of Theorem 7.4. h

Let us state a first application of Theorem 7.4.

Corollary 7.5. For the Gaussian process Bd
ª we have


�2=ª1 (log 
�1)(��1)(1þ1=ª1) d � logP sup
t2[0,1]d

jBd
ª(t)j , 


 !

d 
�2=ª1 (log 
�1)(��1)(1þ1=ª1)þ1=ª1 : (7:19)

Proof. The upper estimate in (7.19) follows directly from the preceding theorem and

Proposition 4.1 in Li and Linde (1999).

For the lower estimate let Jd : C[0, 1]d ! L2[0, 1]d be the canonical embedding and

define

Optimal series representation of fractional Brownian sheets 693



X d
ª :¼ Jd s Bd

ª :

Then

�logP(kX d
ªkL2

, 
) < �logP sup
t2[0,1]d

jBd
ª(t)j , 


 !
:

But it is known – or follows from Theorem 1.2 in Li and Linde (1999) and properties of

entropy numbers of operators acting between Hilbert spaces – that

�logP(kX d
ªkL2

, 
) 6 
�2=ª1 (log 
�1)(��1)(1þ1=ª1):

This completes the proof. h

Remark. For d ¼ 1 the left-hand estimate in (7.19) is known to give the precise order (Shao

1993; Monrad and Rootzén 1995), while for d ¼ 2 and ª¼ (ª, ª) the right-hand expression

is the correct one (Talagrand 1994; Belinsky and Linde 2002). If d . 2, the exact small-ball

behaviour of Bd
ª is an open problem. Estimate (7.19) was proved in Dunker et al. (1999) for

the Brownian sheet.

Another corollary of Theorem 7.4 leads to the following information about the

approximation numbers of Bd
ª (with respect to the supremum norm).

Corollary 7.6. It follows that

an(Bd
ª) 6 n�ª1=2(1þ log n)(ª1þ1)(��1)=2:

Proof. The upper estimate follows directly from Theorem 7.4 and Proposition 3.2, while the

lower estimate is an immediate consequence of (7.9) and Theorem 5.7. h

Final remark. Given a Gaussian random variable X, we say that a representation

X ¼
P1

k¼1�k xk is optimal provided that

E

9999X1
k¼n

�k xk

9999
2

 !1=2

6 ln(X ):

A careful inspection of the proofs in Theorems 5.7 and 7.4 gives some information about

optimal representations of Bd
ª at least if ª1 < 1. Let us explain this for d ¼ 1. Here we have

Bª(t) ¼
X1
k¼1

�k uk(t)þ
X1
l¼1

�9lv l(t) (7:20)

with (�k)k>1 and (�9l) l>1 independent,

uk ¼ kª:R(ªþ1)=2łk and v l ¼ kª:Qª f l

for a certain ONB ( f l) l>1 in L2(�1, 0]. If ª < 1 then, by Theorem 7.4, we have
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E

9999X1
k¼n

�k uk

9999
2

1

 !1=2

6 ln(Bª),

while by the results in Belinsky and Linde (2002) the f k may be chosen such that

E

9999X1
l¼n

�9lv l

9999
2

 !1=2

d n�r

for any r . 0. Thus, after suitably combining the two sums in (7.20), this leads to an optimal

representation of Bª. We do not know if a similar assertion is true for 1 , ª , 2.
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