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1. Introduction

Given a d-dimensional time-homogeneous Lévy process Z starting from the origin and a

d 3 d matrix Q, the d-dimensional Ornstein–Uhlenbeck process X driven by Z (henceforth

referred to as an OU process) is defined by

X t ¼ e� tQX 0 þ
ð t

0

e�( t�s)Q dZs, t 2 Rþ, (1:1)

where X 0 is supposed to be independent of Z. The OU process is equivalently defined as the

unique strong solution of the stochastic differential equation

dX t ¼ �QX t dt þ dZ t: (1:2)

Under some regularity conditions on Q and the Lévy measure of Z, X admits a unique invariant

distribution F, and the class of all possible Fs forms the class of all Q-self-decomposable

distributions: see Section 2 below and references therein; see also Wolfe (1982) and Jacod (1985)

for the one-dimensional case. Needless to say, if Z is a Wiener process with a certain drift and

covariance matrix, then X is a well-known Gaussian OU process.

Despite the simple structure of X , we have a wide choice of invariant distributions for

various Z and Q. Several examples of one-dimensional non-Gaussian OU processes can be

found in Barndorff-Nielsen and Shephard (2001b). See also the recent stimulating work by

Barndorff-Nielsen and Shephard (2001a), where a class of stochastic volatility models is

suggested and a positive stationary OU process describes an unobservable volatility process

whose marginal distribution is, for example, the generalized inverse Gaussian (see (A.1)
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below). We shall give a concrete example of a class of multidimensional non-Gaussian OU

processes in Section 5 below.

In this paper, we shall provide sets of sufficient conditions for the three properties of an

OU process X : first, the transition semigroup of X is strong Feller if Z has either non-

degenerate Gaussian part or absolutely continuous divergent Lévy measure; secondly, the

existence of a smooth transition density follows from good behaviour of the Lévy measure

of Z near the origin, even if the Gaussian covariance matrix of Z degenerates; and finally,

in the strictly stationary case, X is exponentially �-mixing if the marginal distribution F

admits a finite pth-order absolute moment for some p . 0. In particular, for general Lévy-

driven OU processes, no mixing bound has yet been specified, to the author’s knowledge.

As a consequence of the mixing property, a very broad subclass of general OU processes

may be ergodic: this is an important feature for statistical inference, although we do not go

any further in this direction in this paper. We are not concerned here with any mixing

bound other than exponential; however, see Remark 4.4 below.

This paper is organized as follows. Section 2 presents several previous results concerning

OU processes. We shall discuss the strong Feller property and the existence of a smooth

transition density in Section 3, and the exponential �-mixing bound in Section 4. In Section

5, we shall first give the explicit Lévy density of the d-dimensional generalized hyperbolic

distribution (GHd), and then validate the existence of the strictly stationary OU process

whose marginal distribution is the centred and non-skewed version of GHd . The former

generalizes the previous one-dimensional result: see, for example, Prause (1998, Proposition

1.31 and Theorem 1.43). Finally a brief summary of GHd is given in the Appendix for

readers’ convenience.

In this paper, we suppose that all stochastic processes are defined on a given probability space

(�, F , P), and denote by E the expectation operator under P. The following notation is used:

• L(�) stands for the distribution of a random variable � under P.

• We write jAj ¼ ftrace(ATA)g1=2 for any matrix (or vector) A, with T denoting

transposition.

• Mþ(Rd) stands for the set of all real d 3 d matrices such that the real parts of all

eigenvalues are positive: Q 2 Mþ(Rd) if and only if je� tQj ! 0 as t ! 1.

• For a Polish space S, B(S) stands for the Borel � -field generated by S, and the space

of bounded B(S)-measurable real-valued functions (bounded continuous functions and

Ck-functions whose derivatives are bounded) defined on S is denoted by bB(S) (Cb(S)

and Ck
b(S)). We denote by k � k1 the supremum norm on these spaces.

• j�(�) stands for the characteristic function of a random variable or a distribution �, and we

denote by logj�(�) the so-called distinguished logarithm of j�(�) for an infinitely divisible

distribution (or random variable) �: see, for example, Sato (1999, Lemma 7.6).

2. Fundamental results on OU processes

Here we mention several important results concerning OU processes. Most of them will be

used in the following sections.
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2.1. Operator self-decomposability and OU process

Let d be a positive integer and Z ¼ (Z t) t2Rþ a d-dimensional time-homogeneous cadlag

Lévy process such that Z0 ¼ 0 almost surely. Denote by (b, C, �) the generating triplet

of Z: that is, b ¼ (bk)
d
k¼1 2 Rd , C ¼ (Ckl)

d
k, l¼1 is a d 3 d symmetric non-negative definite

matrix and � is a � -finite measure on Rd satisfying �(f0g) ¼ 0 andÐ
Rd min(1, jzj2)�(dz) , 1, for which

jZ t
(u) ¼ exp t iuTb� 1

2
uTCuþ

ð
Rd

(eiuT z � 1 � iuTz1U (z))�(dz)

� �� �
, (2:1)

for u 2 Rd and t 2 Rþ, where 1U (z) denotes the indicator function of the unit sphere

U ¼ fz 2 Rd : jzj < 1g. Throughout this paper, we implicitly exclude the trivial Lévy

process Z t ¼ at with some constant a 2 Rd .

Given a d 3 d matrix Q, let X be the d-dimensional OU process defined by (1.1). As

already noted, we assume that the initial variable X 0 is independent of Z. Obviously X is a

Markov process whose sample path is cadlag. The stochastic integral on the right-hand side

of (1.1) is well defined as a certain limit in probability: see Sato and Yamazato (1983,

Theorem 2.1) for details. Of course the Lévy–Itô decomposition of Z (see Sato 1999,

Theorem 19.3) leads directly to a more concrete expression for this stochastic integral.

Writing Q ¼ (Qjk)dj,k¼1, x ¼ (xk)
d
k¼1 2 Rd and @ j ¼ @=@xj, the infinitesimal generator A

of X is given by

A f (x) ¼ �
Xd
k, l¼1

Qklxl@ k f (x) þ
Xd
k¼1

bk@ k f (x) þ 1

2

Xd
k, l¼1

Ckl@ k@ l f (x)

þ
ð
Rd

f (xþ y) � f (x) �
Xd
k¼1

yk@ k f (x)1U (y)

 !
�(dy): (2:2)

This A acts on the set of all real-valued C2(Rd) functions with compact support: see Sato and

Yamazato (1984, Theorem 3.1). The last three terms on the right-hand side of (2.2)

correspond to the infinitesimal generator of Z: see Sato (1999, Theorem 31.5).

Denote by C0(Rd) the set of all real-valued continuous functions on Rd vanishing as

jxj ! 1, let k � k0 stand for the operator norm and write esQE ¼ fy 2 Rd : y ¼
esQx, x 2 Eg for E 2 B(Rd) and s 2 Rþ. The next proposition specifies the characteristic

function of the transition probability of X :

Proposition 2.1. (Sato and Yamazato 1984, Theorem 3.1). The smallest closed extension of

A is the infinitesimal generator of a strongly continuous non-negative semigroup fPt : t > 0g
such that

Pt f (x) ¼
ð
Rd

f (y)P(t, x, dy) (2:3)

for the transition probability P(t, x, �) of X , kPtk0 ¼ 1, and that f 2 C0(Rd) implies that
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Pt f (x) 2 C0(Rd) for each t 2 Rþ. Moreover, for each t 2 Rþ and x 2 Rd, P(t, x, �) is an

infinitely divisible distribution such that

jP( t,x,�)(u) ¼ exp ixTe� tQT

uþ
ð t

0

logjZ1
(e�sQT

u)ds

� �
: (2:4)

In particular, the generating triplet of P(t, x, �) is given by (bt,x, Ct, � t), where

bt,x ¼ e� tQxþ
ð t

0

e�sQb dsþ
ð
Rd

ð t
0

e�sQz 1U (e�sQz) � 1U (z)
� �

ds�(dz),

Ct ¼
ð t

0

e�sQCe�sQT

ds,

� t(E) ¼
ð t

0

�(esQE)ds, E 2 B(Rd):

Now let us recall the operator self-decomposability of a distribution on Rd . Let

Q 2 Mþ(Rd). Then an infinitely divisible distribution F on Rd is called Q-self-

decomposable if there exists a random variable � t,Q such that, for each t 2 Rþ,

jF(u) ¼ jF(e� tQT

u)j� t,Q
(u), u 2 Rd : (2:5)

An infinitely divisible distribution F on Rd which is Q-self-decomposable for some

Q 2 Mþ(Rd) is called operator self-decomposable. If d ¼ 1, then the operator self-

decomposability of F means that F is Q-self-decomposable for any Q . 0, and hence

simply called self-decomposable in this case. According to, for example, Jurek and Mason

(1993, Theorem 3.3.5), L(� t,Q) is infinitely divisible: for a strictly stationary OU process,

L(� t,Q) indeed corresponds to the distribution of the second term on the right-hand side of

(1.1). We should note that the support of any Q-self-decomposable distribution (more

generally, any infinitely divisible distribution) is unbounded except for delta distributions: see

Sato (1999, Corollary 24.4).

Now assume that ð
jzj.1

logjzj�(dz) , 1, (2:6)

or, equivalently, E[logfmax(1, jZ1j)g] , 1. It is known that the class of all possible invariant

distributions of X forms the class of all Q-self-decomposable distributions:

Proposition 2.2. (Sato and Yamazato 1984, Theorem 4.1 and 4.2). The following two

statements hold true.

(a) Let Q 2 Mþ(Rd). If (2.6) holds, there exists a limit distribution F such that

P(t, x, A) ! F(A), as t ! 1, (2:7)
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for any x 2 Rd and A 2 B(Rd). This F is Q-self-decomposable and the unique

invariant distribution of X . Moreover, the characteristic function of F is given by

jF(u) ¼ exp

ð1
0

logjZ1
(e�sQT

u)ds

� �
: (2:8)

In particular, the generating triplet of F is given by (b1, C1, �1), where

b1 ¼ Q�1bþ
ð
Rd

ð1
0

e�sQz 1U (e�sQz) � 1U (z)
� �

ds�(dz),

C1 ¼
ð1

0

e�sQCe�sQT

ds,

�1(E) ¼
ð1

0

�(esQE)ds, E 2 B(Rd):

Conversely, every Q-self-decomposable distribution appears in this way. The

correspondence between A and F is one-to-one.

(b) Let Q be any d 3 d matrix. If (2.6) fails to hold, then X has no invariant

distribution, and moreover, for any x 2 Rd, P(t, x, �) does not converge to any

probability measure as t ! 1.

Proposition 2.2 explicitly relates (b, C, �) and (b1, C1, �1).

Remark 2.1. We note that, contrary to the first statement in Proposition 2.2, the assumptions

Q 2 Mþ(Rd) and (2.6) are not required in Proposition 2.1. This fact will be implicitly used in

Section 3.

Recall that a measure F on Rd is called non-degenerate if F(aþ V ) , 1 for any

constant a 2 Rd and subspace V � Rd such that dim(V ) < d � 1. The following general

result is known:

Proposition 2.3. (Yamazato 1983). Assume that an operator self-decomposable distribution

F on Rd is non-degenerate. Then F is absolutely continuous with respect to the Lebesgue

measure on Rd.

There is a useful criterion for non-degeneracy of F:

Proposition 2.4. (Sato 1999, Proposition 24.19). A probability measure F on Rd is non-

degenerate if and only if there exist positive constants c1 and c2 such that jjF(u)j <
1 � c1juj2 for any juj , c2.
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2.2. A useful formula

Under (2.6), X is strictly stationary if L(X 0) is the invariant distribution of X . In this case

we can specify the characteristic function of Z1 for each given F:

Lemma 2.5. (Barndorff-Nielsen et al. 1998, Lemma 5.1). Let F be Q-self-decomposable for

some Q 2 Mþ(Rd). If jF(u) is differentiable for u 6¼ 0, and the real-valued function

u 7! f=u logjF(u)gQTu can be defined at u ¼ 0 by continuity, then there exists a strictly

stationary OU process with the marginal distribution F, and in this case Z is determined by

jZ1
(u) ¼ exp f=u logjF(u)gQTu

� �
, (2:9)

where =u denotes the gradient operator.

Remark 2.2. In general, the Q-self-decomposability of a distribution � on Rd does not

necessarily imply that � itself depends on Q, and hence F may be independent of Q in the

setting of Lemma 2.5; that is to say, the effect of the drift matrix Q on F may be cancelled

out by the choice of Z determined by (2.9).

Remark 2.3. When d ¼ 1, a more refined statement can be given under some regularity

conditions. Suppose that F admits a differentiable Lévy density gF(x) which does not depend

on Q . 0, and that the Lévy measure of Z admits a density gZ(x). Then we have

gZ(x) ¼ �Q gF(x) þ x
d

dx
gF(x)

� �
: (2:10)

See, for example, Barndorff-Nielsen and Shephard (2001a, Section 2.2). The relation (2.10)

enables us to determine Z for each given F, while such a simple expression is not available

for d > 2.

Remark 2.4. According to Proposition 2.2 and Lemma 2.5, the following two practical

constructions of a strictly stationary OU process X are possible, as pointed out by Barndorff-

Nielsen and Shephard (2001a, Sections 2.3 and 2.4). First, for each given Q 2 Mþ(Rd) and Z

satisfying (2.6), the marginal distribution F (depending on Q in general) can be determined by

(2.8). Secondly, for each given marginal Q-self-decomposable distribution F which does not

depend on Q, Z can be determined by (2.9) with any Q for which F is Q-self-decomposable,

and this Q is the drift matrix appearing in (1.2). In the latter case, we should note that F may

restrict the form of Q 2 Mþ(Rd); we shall treat such an example in Section 5.

2.3. Autocorrelation structure of OU processes and their finite

superposition

Let d ¼ 1 and assume that an OU process X of (1.1) is second-order stationary with a

marginal distribution F. Then it is well known that the autocorrelation function of X is

given by �X (t) ¼ exp(�Qt), which does not depend on F. More flexible correlation
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structures can be obtained by introducing a finite sum Yt ¼
Pm

j¼1X
( j)
t of m independent OU

processes X ( j), j ¼ 1, 2, . . . , m. Since each X ( j) can possess any self-decomposable

marginal distribution, so can Y (clearly the self-decomposability is preserved under

convolutions). If each X ( j) is second-order stationary and satisfies

dX
( j)
t ¼ �Q( j)X

( j)
t dt þ dZ

( j)
t , (2:11)

where Q( j), j ¼ 1, 2, . . . , m, are positive constants and Z ( j), j ¼ 1, 2, . . . , m, are

independent one-dimensional Lévy processes, then the resulting autocorrelation function of

Y is given by

�Y (t) ¼
Xm
j¼1

v j

v1 þ . . . þ vm

exp(�Q( j) t), (2:12)

where v j ¼ var[X
( j)
0 ]. See Barndorff-Nielsen and Shephard (2001a, Section 3) or Barndorff-

Nielsen et al. (1998, Section 5) for details. See also Barndorff-Nielsen (2001) for a more

general construction of long-memory autocorrelation structure based on an independently

scattered random measure, which is a generalization of the Poisson random measure.

An explicit expression for the d-dimensional analogue of (2.12) is also available. Let

X ( j), j ¼ 1, 2, . . . , m, be d-dimensional OU processes of the form (2.11) while now

Q( j) 2 Mþ(Rd) and Z ( j) are also d-dimensional ( j ¼ 1, 2, . . . , m). Define Y as above

except that each X ( j), and hence Y , may not be strictly stationary: that is, here L(Y0) is any

non-degenerate distribution with finite second-order absolute moment. In this case, denoting

by Vu ¼ [Vu,ij]
d
i, j¼1 the covariance matrix of L(Yu), Vu,ii is strictly positive due to the

independence between Y0 and Z ( j), j ¼ 1, 2, . . . , m. For s, t 2 Rþ such that s < t, define

the d 3 d matrix ˆY (s, t) ¼ [ªY
ij (s, t)]

d
i, j¼1 by

ˆY (t) ¼ E[YtY
T
s ] � mtm

T
s ,

where mu denotes the mean vector of Yu for each u 2 Rþ. Then the autocorrelation function

of Y is defined by �(s, t) ¼ [rY
ij (s, t)]

d
i, j¼1, where

rY
ij (s, t) ¼ (Vt,iiVs, jj)

�1=2ªY
ij (s, t), i, j ¼ 1, . . . , d: (2:13)

Let ˛Q( l )

ik (u) and X ( l ),k denote the (i, k)th entry of e�uQ( l )

and the kth component of X ( l ),

respectively.

Proposition 2.6. Suppose that L(Y0) is non-degenerate and that E[jYtj2] , 1 for each

t 2 Rþ. Then we have

rY
ij (s, t) ¼ (Vt,iiVs, jj)

�1=2
Xd
k¼1

Xm
l¼1

Xm
l9¼1

˛Q( l )

ik (t � s)cov[X ( l ),k
s , X ( l9), j

s ] (2:14)

for i, j ¼ 1, . . . , d and s, t 2 Rþ such that s < t.

The proof is similar to the one-dimensional case, and thus is omitted.

Remark 2.5. Suppose that m ¼ 1 and that Y is second-order stationary with a marginal
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distribution F. Then Proposition 2.6 says that, in the multidimensional case, the

autocorrelation function of Y does indeed depend on the covariance structure of F, unlike

the one-dimensional case. In particular, if Q is diagonal with ( j, j)th entries q j . 0, then

(2.14) becomes

rij(t) ¼ e�qi t
V0,ij

(V0,iiV0, jj)1=2
(2:15)

for each i and j. Up to a multiplicative constant depending on F, (2.15) is the same form as

the one-dimensional case.

3. The strong Feller property and smoothness of the transition

density

Let X be given by (1.1) for some Q and Z, and denote by (S, B(S)), S � Rd , the state

space of X , where S is open and convex. In this section, we require neither (2.6) nor

Q 2 Mþ(Rd), so that X may have no invariant distribution. Recall that (b, C, �) denotes the

generating triplet of Z.

3.1. The strong Feller property

Recall that the Markov transition semigroup (Pt) t2Rþ of (2.3) is called strong Feller if

Pt f 2 Cb(S) for any f 2 bB(S) and t . 0. This property in a certain sense connects with

the absolute continuity of the transition probability P(t, x, �); see Remark 3.2 below. A

general exposition of the strong Feller property can be found in Girsanov (1960).

Theorem 3.1. Suppose that either of the following conditions holds true:

(a) rank(C) ¼ d;

(b) �(Rd) ¼ 1 and � is absolutely continuous with respect to the Lebesgue measure on

Rd.

Then (Pt) t2Rþ is strong Feller.

Proof. Fix t . 0 and f 2 bB(S) arbitrarily. Obviously Pt maps bB(S) to bB(S). Write

Yt ¼
Ð t

0
e�( t�s)QdZs, where from Proposition 2.1 we know that L(Yt) is infinitely divisible

with Gaussian covariance matrix and Lévy measure given by Ct ¼
Ð t

0
esQCe�sQT

ds and

� t(dy) ¼
Ð t

0
�(esQ dy)ds, respectively.

Let us prove the continuity of x 7! Pt f (x). Since the assumption ensures the absolute

continuity of L(Zu) for any u . 0, the above expressions for Ct and � t(dy) lead to the

absolute continuity of L(Yt). Denote by g(z) the density of L(Yt). For arbitrary � . 0, we

can find an h 2 C1
c (S) such that kg � hkL1(dx) , �, where C1

c (S) stands for the set of all

smooth functions with compact support. Then using Taylor’s expansion for h, we see that,

for any x, y 2 S,
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jPt f (x) � Pt f (y)j ¼
				
ð
f (e� tQxþ z)g(z)dz�

ð
f (e� tQ yþ z)g(z)dz

				
¼
				
ð
f (e� tQxþ z)(g(z) � h(z))dz

þ
ð
f (e� tQxþ z)fh(z) � g(zþ e� tQ(x� y))gdz

				
< k f k1 �þ

ð
jh(z) � g(zþ e� tQ(x� y))jdz


 �

< k f k1 2�þ k=hk1je� tQkx� yj
� 

:

Since � . 0 is arbitrary, we are done. h

Remark 3.1. The previous result of Kwon and Lee (1999) for the strong Feller property of

general one-dimensional diffusions with jumps requires certain moment conditions on � and

also C . 0. Hence, Theorem 3.1 asserts that we can considerably weaken their sufficient

conditions for OU processes.

Remark 3.2. Suppose that X admits an invariant distribution F. The strong Feller property

ensures the existence of a density qt(x, y) of P(t, x, �) with respect to F(�); see Lin (1989,

Theorem 2.1). Since Proposition 2.4 ensures the existence of a function f such that

F(dy) ¼ f (y)dy, we see that, whenever F exists, P(t, x, �) admits a density pt(x, y)

¼ qt(x, y) f (y) with respect to the Lebesgue measure on Rd for each t 2 Rþ. However, this

argument does not generally guarantee the smoothness of pt(x, y) in y since we do not know

whether qt(x, y) is smooth or not.

3.2. Smoothness of the transition probabilities

Recall that, for any OU process, the characteristic function of P(t, x, �) for each t 2 Rþ and

x 2 S is explicitly given by (2.4). This is advantageous to investigation of the existence of a

C1
b transition density.

Theorem 3.2. The following statements hold true for each t 2 Rþ.

(a) If rank(C) ¼ d, then P(t, x, �) admits a C1
b density.

(b) If there exist constants Æ 2 (0, 2) and c . 0 such thatð
fz:jvT zj<1g

jvTzj2�(dz) > cjvj2�Æ (3:1)

for any v 2 Rd satisfying jvj > 1, then P(t, x, �) admits a C1
b density.
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Proof. As is well known, it suffices to show that
Ð
jujk jjP( t,x,�)(u)jdu , 1 for any non-

negative integer k; see, for example, Sato (1999, Proposition 28.1).

It follows from (2.1) and (2.4) that, for all u 2 Rd ,

jjP( t,x,�)(u)j <
				exp

ð t
0

logjZ1
(e�sQT

u)ds

� �				
< exp � 1

2
uT

ð t
0

e�sQCe�sQT

ds


 �
u

� �
jJ t(u)j,

where

J t(u) ¼ exp

ð t
0

ð
Rd

(eiuTe�sQ z � 1 � iuTe�sQz1U (z))�(dz)ds

� �
, (3:2)

so that, whenever rank(C) ¼ d, assertion (a) follows since jJ t(u)j < 1 for any t and u.

Turning to (b), find two positive finite constants m
Q
t and M

Q
t such that

m
Q
t < je�sQT j < M

Q
t for any s 2 [0, t]: such constants do indeed exist since s 7! je�sQT j

is continuous and zero-free. Since C is non-negative definite, we have jjP( t,x,�)(u)j < jJ t(u)j.
Fix u large enough so that je�sQT

uj > 1. Then, using the inequality 1 � cos (x) > 2(x=�)2

for jxj < � and assumption (3.1), we have

jjP( t,x,�)(u)j < exp �~cc

ð t
0

je�sQT

uj2�Æ ds

� �

for some constant ~cc . 0. It is obvious that there exists a constant c
Q
t . 0 such that

~cc

ð t
0

je�sQT

uj2�Æ ds > c
Q
t juj2�Æ,

and we thus obtain jjP( t,x,�)(u)j < expf�c
Q
t juj2�Æg for sufficiently large u. The proof is

complete. h

Remark 3.3. For the solution of a stochastic differential equation driven by a pure-jump Lévy

process with infinitely many small jumps, Picard (1996) obtained sufficient conditions for the

existence of a C1
b transition density; one can readily apply his Corollary 4.4 for OU

processes without Gaussian component. However, Theorem 3.2 says that, for OU processes,

we do not need the infinite-dimensional stochastic calculus (the so-called Malliavin calculus)

which is essential in his work.

4. Exponential �-mixing bounds for a strictly stationary OU
process

In this section, we shall obtain the exponential �-mixing bound for X of (1.1) under strict

stationarity. Here we suppose that Q 2 Mþ(Rd) and that the marginal Q-self-decomposable

106 H. Masuda



distribution F is given. Recall that in this case Z can be determined by (2.9): see Remark

2.2. Due to the Markov nature of X , the �-mixing coefficient �X (t) of X is given by

�X (t) ¼
ð
kP(t, x, �) � F(�)kTVF(dx), (4:1)

where k � kTV stands for the total variation norm; see, for example, Doukhan (1994, Section

2.4). To attain our goal, we shall utilize the results of Tuominen and Tweedie (1979) and

Nummelin and Tuominen (1982). Denote the state space of X by (SF , B(SF)), where

SF � Rd is an open set.

Write N ¼ f1, 2, . . .g and N0 ¼ f0, 1, 2, . . .g, and denote by X (˜) ¼ (X (˜)
n )n2N0

the

discrete-time Markov chain regularly sampled from X at the time points 0, ˜, 2˜, . . . for a

constant ˜ . 0. As usual, we call this X (˜) the ˜-skeleton chain (associated with X ).

Obviously the m-step transition semigroup of X (˜) is equal to Pm˜. Following Tuominen

and Tweedie (1979), we call the transition semigroup (Pt) t2Rþ simultaneously j-irreducible

(for some �-finite measure j) if any ˜-skeleton chain X (˜) is j-irreducible, that is,P1
n¼1P(n˜, x, A) . 0 for any x 2 SF and A 2 B(SF) such that j(A) . 0.

Lemma 4.1. (Tuominen and Tweedie 1979, Proposition 1.2). If (Pt) t2Rþ is simultaneously

j-irreducible, then any ˜-skeleton chain is aperiodic.

It is easy to see that any OU process is weak Feller, that is, Pt f 2 Cb(S) for any

f 2 Cb(S) and t . 0. Therefore any compact set K 2 B(SF) such that F(K) . 0 is small:

see, for example, Meyn and Tweedie (1992, Section 3). The following general result (the

so-called Foster–Lyapunov criterion) will be used in order to derive the geometric

ergodicity of X (˜):

Proposition 4.2. (Nummelin and Tuominen 1982, Theorem 2.1 and 3.1). Let x ¼ (xn)n2N0

be a j-irreducible aperiodic Markov chain with an n-step transition probability Pn(x, dy)

(the superscript n 2 N is suppressed when n ¼ 1), and denote the state space of x by

(S, B(S)), where B(S) is countably generated. Assume that there exist a measurable function

g : S ! Rþ, a small set K 2 B(S) and constants c1 2 (0, 1) and c2 . 0 such that

sup
z2K

ð
Kc

g(y)P(z, dy) , 1, (4:2)

where Kc stands for the complement of K, and thatð
g(y)P(z, dy) < c1 g(z) � c2 (4:3)

for any z 2 Kc. Then x is geometrically ergodic, that is, there exists a constant r 2 (0, 1)

such that ð
kPn(z, �) � FkTVF(dz) ¼ O(rn), as n ! 1: (4:4)
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The claim in this section is the following:

Theorem 4.3. Let Q 2 Mþ(Rd) and X be the strictly stationary OU process given by (1.1)

with a Q-self-decomposable marginal distribution F. If we haveð
jxj pF(dx) , 1 (4:5)

for some p . 0, then there exists a constant a . 0 such that �X (t) ¼ O(e�at) as t ! 1. In

particular, X is ergodic.

Proof. For each ˜ and n 2 N, we have

X (˜)
n ¼ e�˜QX

(˜)
n�1 þ �n,

where � ¼ (�n)n2N is a sequence of independent and identically distributed random variables

such that L(�1) ¼ L(
Ð˜

0
e�(˜�s)Q dZs). Obviously X (˜) is strictly stationary with the marginal

distribution F.

Step 1. First, we show that X (˜) is geometrically ergodic. Note that the simultaneous

F-irreducibility of X (˜) follows directly from (2.7) since lim t!1P(t, x, A) ¼
limn!1P(n˜, x, A) for any ˜ . 0 and A 2 B(SF). Hence, for any ,̃ the aperiodicity of

X (˜) is implied by Lemma 4.1.

Put � ¼ je�˜Qj. To prove (4.2) and (4.3), we note that there exists a (sufficiently large) ˜
such that � , 1 since Q 2 Mþ(Rd). Fix ˜ thus in the rest of this proof.

Suppose that p 2 (0, 1] without loss of generality. Since (aþ b) p < a p þ b p for any

non-negative a and b, it follows from the strict stationarity of X that

E[j�1j p] ¼ E[jX (˜)
1 � e�˜QX

(˜)
0 j p]

< E[(jX (˜)
1 j þ �jX (˜)

0 j) p]

< (1 þ � p)E[jX 0j p] , 1

under (4.5). Put C� ¼ fx 2 SF : jxj < �g for some constant � . 0; then C� is a small set by

virtue of its compactness. Since �1 and X
(˜)
0 are independent, we haveð

Cc
�

jyj pP(˜, x0, dy) < E[je�˜Qx0 þ �1j p]

< � p� p þ E[j�1j p] , 1

for any x0 2 C�. Since the upper bound does not depend on the choice of x0, we obtain (4.2).

On the other hand, for x1 2 Cc
�, we similarly obtainð
jyj pP(˜, x1, dy) < c1jx1j p � c2, (4:6)

where c1 is a constant such that � p , c1 , 1, and c2 ¼ (c1 � � p)jx1j p � E[j�1j p]. The set Cc
�

is not empty for any � since the support of F is unbounded, and therefore we can choose �
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large enough so that c2 . 0. Thus (4.3) also follows, and hence Proposition 4.2 yields the

geometric ergodicity of X (˜) with g(x) ¼ jxj p.
Step 2. By step 1, there exists a constant r such that r 2 (0, 1) and thatð

sup
j f j<1

jPn˜ f (x) � F( f )jF(dx) ¼ O(rn), as n ! 1, (4:7)

where F( f ) ¼
Ð
f (y)F(dy). Denote by [t] the integer part of t 2 Rþ, and put t˜ ¼ [t=˜]˜

and f t ¼ Pt˜ f 2 bB(SF). Then (4.1), a property of the semigroup, the invariance of F and

(4.7) yield that

�X (t) ¼
ð

sup
j f j<1

jPt f (x) � F( f )jF(dx)

¼
ð

sup
j f j<1

j[Pt˜Pt� t˜ f ](x) � F( f )jF(dx)

¼
ð

sup
j f j<1

j[Pt˜Pt� t˜ f ](x) � F(Pt� t˜( f ))jF(dx)

<

ð
Rd

sup
j f t j<1

jPt˜ f t(x) � F( f t)jF(dx)

¼ O(r t˜=˜)

as t ! 1, so taking a ¼ �(log r)=˜ completes the proof (recall that strict stationarity and

�-mixing property imply ergodicity). h

Remark 4.1. Condition (4.5) results from the general Lévy-driven setting. This condition is

slightly stronger than (2.6), which is the necessary and sufficient condition for the existence

of F; however, (4.5) would be satisfactory for applications.

Remark 4.2. The class of all operator-stable distributions (see Section 5.2) is contained in the

class of all operator self-decomposable distributions. Since any operator-stable distribution on

Rd satisifes (4.5) (see Jurek and Mason 1993, Theorem 4.12.6), any OU process with an

operator-stable marginal distribution is exponentially �-mixing.

Remark 4.3. Let f be any F-integrable function defined on SF and denote by PX
F0

the image

measure of an OU process X such that L(X 0) ¼ F0 for some F0. Since lim t!1
kP(t, x, �) � FkTV ¼ 0 for any x 2 SF under the assumptions in Theorem 4.1, we have

1

t

ð t
0

f (X s)ds ! F( f ) as t ! 1 (4:8)

almost surely under PX
F0

for any F0; see Bhattacharya (1982, pp. 193–194) for an illustration.

The ergodic theorem (4.8) is often crucial for parameter estimation.
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Theorem 4.3 implies that an OU process may be ergodic even if the distribution of its

driving Lévy process is singular, as illustrated by the following example. Define a

distribution F on Rþ by

jF(u) ¼ exp

ð1
0

(eiuy � 1)y�1�c([y, 1))dy

� �
, (4:9)

where �c stands for the delta measure at c . 0. Then the Lévy density of F is

�c([y, 1))y�1, which is discontinuous at y ¼ c. Also, let q be a positive constant and define

a Lévy measure � on Rþ by �(dz) ¼ q�c(dz). Now consider the one-dimensional OU process

given by

dX t ¼ �qX t dt þ dZ t, (4:10)

where L(X0) ¼ F and Z is a subordinator with the Lévy measure �, that is, Z is a compound

Poisson process with intensity q and the degenerate jump distribution �c. Then X is strictly

stationary with the marginal distribution F, and also exponentially �-mixing. Indeed, we have

E[eiuX t jX 0 ¼ x] ¼ exp iue�qtxþ
ð t

0

logjZ1
(e�qsu)ds

� �

¼ exp iue�qtxþ
ðu
ue�qt

(eivc � 1)v�1 dv

� �

! jF(u), as t ! 1,

by applying (2.4), and it is also not difficult to see that (4.5) holds (apply, for example, Jurek

and Mason 1993, Proposition 1.8.13, with the submultiplicative function max(1, jxj)). Hence,

according to Theorem 4.3, X is exponentially �-mixing and ergodic.

Since �Y (t) <
Pm

j¼1�X ( j) (t) for the �-mixing coefficients of Y and (X ( j))mj¼1 (see, for

example, Doukhan 1994, p. 4, Theorem 1), we can also establish the exponential mixing

bound for a finitely superposed OU process Y ¼
Pm

j¼1X
( j) (recall the notation in Section

2.3) as a simple corollary of Theorem 4.3:

Corollary 4.4. Let X ( j), j ¼ 1, 2, . . . , m, be independent strictly stationary OU processes

with marginal distributions F ( j) such that
Ð
jxj pF ( j)(dx) , 1, j ¼ 1, 2, . . . , m, for some

p . 0. Then there exists a constant a . 0 such that �Y (t) ¼ O(e�at) as t ! 1.

Remark 4.4. One may ask if it is possible to establish some mixing bound other than

exponential under strict stationarity. By Theorem 4.3, we must choose an F satisfyingÐ
jxj pF(dx) ¼ 1 for any p . 0. Such a case rarely appears, at least in practice. For several

types of Markov chain or process, many researchers worked on the derivation of non-

exponential bounds such as subgeometric and polynomial; see, for example, Tweedie (1983),

Tuominen and Tweedie (1994), Veretennikov (1997, 1999) and Fort and Moulines (2000).

However, for a strictly stationary OU process, we observe that most of the sufficient

conditions in such works yield the exponential rate. For example, Tuominen and Tweedie
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(1994) gave a set of sufficient conditions for the polynomial mixing bound for a first-order

Markov chain x ¼ (xn)n2N0
of the form

xn ¼ G(xn�1) þ �n, (4:11)

where � ¼ (�n)n2N is a sequence of independent and identically distributed random variables

and the function G defined on the state space of x satisfies a certain regularity condition. Any

˜-skeleton chain sampled from an OU process corresponds to G(x) ¼ e�˜Qx, which satisfies

the condition of Tuominen and Tweedie (1994). However, they also require that

E[j�1jm] , 1 for some m > 2, which yields
Ð
jxj2F(dx) , 1 in the case of stationary

OU processes, and hence we can derive the exponential �-mixing bound from Theorem 4.3;

in other words, the simple linear structure of G here does not suffice to obtain the desired

mixing bound within their framework. By the same token, the sufficient conditions of

Veretennikov (1999) for the polynomial �-mixing property of a class of Markov chains also

yield the exponential mixing bound for OU processes. We do not pursue this topic in this

paper.

5. GHd distribution and OU process

In this section, we shall first obtain the explicit Lévy density of the general

GHd(º, Æ, �, �, 	, ¸) distribution with respect to the Lebesgue measure on Rd , and then

formulate the strictly stationary OU process whose marginal distribution is the centred and

non-skewed GHd, which does not depend on Q. We should note that GHd can be defined as

a normal variance–mean mixture associated with the generalized inverse Gaussian (GIG)

distribution (see (A.1)), which is self-decomposable. See the Appendix for a brief review of

GHd .

5.1. Explicit Lévy densities of GHd

It is known that the Lévy measure of GH1 admits an explicit density with respect to the

Lebesgue measure, as stated in the Introduction. Here we give its d-dimensional version,

using the general theory of the subordination of Lévy processes.

Before the statement, let us recall that the GIG(º, �, ª) distribution admits the explicit

Lévy density f (x) given by

f (x) ¼ e�ª2x=2

x
max(0, º) þ 1

2

ð1
0

exp � xy

2�2


 �
gº(y)dy

� �
(5:1)

with

gº(y) ¼ 2

y�2 J2
jºj(y

1=2) þ Y 2
jºj(y

1=2)
n o

where J jºj (Yjºj) stands for the Bessel functions of first (second) kind; see Barndorff-Nielsen

and Shephard (2001a, Theorem 2).
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Theorem 5.1. The Lévy measure of GHd(º, Æ, �, �, 	, ¸) admits the density given by

h(x) ¼ 2e�
Tx

f2�(xT¸�1x)1=2gd=2fdet(¸)g1=2

(
max(0, º)Æd=2Kd=2(Æ(xT¸�1x)1=2)

þ
ð1

0

(Æ2 þ 2y)d=4Kd=2(f(Æ2 þ 2y)(xT¸�1x)g1=2)

�2 y J 2
jºj(�(2y)1=2) þ Y 2

jºj(�(2y)1=2)
n o dy

)
: (5:2)

Proof. First of all, we note that the Lévy measure � of GHd(º, Æ, �, �, 	, ¸) is given by

�(B) ¼
ð1

0

ð
B

f (s)

(2s�)d=2fdet(¸)g1=2
exp � 1

2
(x� s¸�)T¸�1(x� s¸�)

� �
dx ds (5:3)

for B 2 B(Rdnf0g), where f (s) is given by (5.1) and ª2 ¼ Æ2 � �T¸� > 0 (see (A.5)): (5.3)

follows from (A.3) and Sato (1999, Theorem 30.1). By (5.1) and interchanging the order of

integration, (5.3) can be rewritten as

�(B) ¼
ð
B

ð1
0

s�d=2�1e�
Tx�ª2 s=2

2(2�)d=2fdet(¸)g1=2
exp � 1

2

xT¸�1x

s
þ s�T¸�


 �� �

3

ð1
0

e�sy=(2�2) gº(y)dy


 �
ds dx

þ
ð
B

ð1
0

max(0, º)
s�d=2�1e�

Tx�ª2 s=2

2(2�)d=2fdet(¸)g1=2

3 exp � 1

2

xT¸�1x

s
þ s�T¸�


 �� �
ds dx

¼
ð
B

h1(x)dxþ
ð
B

h2(x)dx,

say, so that h(x) ¼ h1(x) þ h2(x).

For h1(x), by interchanging the order of integrations and then using the expression (A.1)

to eliminate the factor integrating to 1, we have

h1(x) ¼ e�
Tx

(2�)d=2fdet(¸)g1=2

ð1
0

gº(y)

ð1
0

s�d=2�1

2
exp � 1

2

xT¸�1x

s
þ s Æ2 þ y

�2


 �( )" #
ds dy

¼ e�
Tx

(2�)d=2fdet(¸)g1=2

ð1
0

gº(y)
Æ2 þ y=�2

xT¸�1x


 �d=4

Kd=2 f(Æ2 þ y=�2)(xT¸�1x)g1=2
� 

dy:

Here we have used the property Kº(�) ¼ K�º(�). Then the change of variable y ¼ 2�2z and

the definition of gº(�) give
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h1(x) ¼ 2e�
Tx

f2�(xT¸�1x)1=2gd=2fdet(¸)g1=2

3

ð1
0

(Æ2 þ 2z)d=4Kd=2 f(Æ2 þ 2z)(xT¸�1x)g1=2
� 

�2z J 2
jºj(�(2z)1=2) þ Y 2

jºj(�(2z)1=2)
n o dz: (5:4)

For h2(x), analogous calculations yield

h2(x) ¼ 2Æd=2e�
Tx max(0, º)

f2�(xT¸�1x)1=2gd=2fdet(¸)g1=2
Kd=2 Æ(xT¸�1x)1=2

� 
: (5:5)

Combining (5.4) and (5.5) concludes the proof. h

By Lemma A.1, each one-dimensional marginal distribution of GHd(º, Æ, �, �, 	, ¸)

belongs to the GH1 family, hence the Lévy measure of GHd(º, Æ, �, �, 	, ¸) obviously has

infinite mass around the origin.

Let us consider a special case of º ¼ �1
2
, namely, the so-called d-dimensional normal

inverse Gaussian distribution denoted by NIGd(Æ, �, �, 	, ¸). In the one-dimensional case,

its Lévy density is given by (�jxj)�1Æ�e�xK1(Æjxj); see, for example, Barndorff-Nielsen

(1998).

Corollary 5.2. The Lévy measure of NIGd(Æ, �, �, 	, ¸) admits the density given by

q(x) ¼ 2�e�
Tx

fdet(¸)g1=2

Æ

2�(xT¸�1x)1=2

� �(dþ1)=2

K(dþ1)=2 Æ(xT¸�1x)1=2
� 

: (5:6)

Proof. Taking º ¼ �1
2

reduces GIG(º, �, ª) to the inverse Gaussian distribution with the

Lévy density given by

~ff (x) ¼ �

(2�)1=2
x�3=2 exp � ª2x

2


 �
:

Replacing f (s) by this ~ff (s) in the proof of Theorem 5.1 yields (5.6). h

5.2. A relation between centred and non-skewed GHd and the OU

process

Now we consider the strictly stationary OU process whose marginal distribution is the

centred and non-skewed GHd(º, Æ, �, ¸) with density

pGHd(x; º, Æ, �, ¸) ¼
Æd=2Kº(�Æ)Kº�d=2 Æ(�2 þ xT¸�1x)1=2

� 
(2�)d=2�º(�2 þ xT¸�1x)d=4�º=2

: (5:7)

Here we assume that det(¸) ¼ 1 for simplicity, and denote GHd(º, Æ, 0, �, 0, ¸) simply by
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GHd(º, Æ, �, ¸). Put ¸ ¼ [¸ij]
d
i, j¼1. Let ˛Q

ij (t) denote the (i, j)th entry of the matrix e� tQ

with some Q 2 Rd � Rd , and let I d stand for the d 3 d identity matrix.

Proposition 5.3. Let Q 2 Rd � Rd be of the form

Q ¼ rI d=2 þ¸1=2S¸�1=2, (5:8)

where r . 0 is a constant and S 2 Rd � Rd is a skew-symmetric matrix. Then any

GHd(º, Æ, �, ¸) is Q-self-decomposable. The associated strictly stationary OU process X is

strong Feller and exponentially �-mixing, with the driving Lévy process Z given by

jZ1
(u) ¼

exp � 2ºuT¸QTu

Æ2 þ uT¸u


 �
,

for � ¼ 0(Æ . 0)

and º . 0,

exp � Kºþ1 �(Æ2 þ uT¸u)1=2
� 

Kº �(Æ2 þ uT¸u)1=2
� 

( )
�uT¸QTu

(Æ2 þ uT¸u)1=2

" #
, otherwise:

8>>>>>><
>>>>>>:

(5:9)

Moreover, the autocorrelation matrix function �(t) ¼ [rij(t)]
d
i, j¼1 of X is given by

rij(t) ¼ (¸ii¸ jj)
�1=2

Xd
k¼1

¸ jk˛
Q
ik(t): (5:10)

Proof. First, let us prove the Q-self-decomposability of GHd(º, Æ, �, ¸). To this end, we

introduce strict operator stability.

Denote by MI (R
d) the class of all d 3 d matrices whose eigenvalues have real parts in

I � R and by F� t the tth convolution of a distribution F on Rd . Put

tQ ¼
X1
k¼0

(log t)k

k!
Qk (5:11)

for t . 0 and d 3 d matrix Q. Now suppose that Q 2 M [1=2,1)(R
d). Then a distribution F on

Rd is called Q-stable if and only if there exists a deterministic function b : (0, 1) ! Rd

such that, for every t . 0,

jF
� t (u) ¼ jF(tQ

T

u)eib( t)Tu: (5:12)

The characterization (5.12) of Q-stability goes back to Sharpe (1969). When b(t) � 0 in

(5.12), F is called strictly Q-stable. See Sato (1987) for a detailed analysis of strict

Q-stability. A Lévy process L is called (strictly) Q-stable if L(L1) is (strictly) Q-stable. We

shall utilize the following result:

Proposition 5.4. Let Z be a (one-dimensional) self-decomposable subordinator and Y a

d-dimensional strictly Q-stable Lévy process with some Q 2 M [1=2,1)(R
d). Then, the

subordinated Lévy process Lt ¼ YZ t
is ~QQ-self-decomposable for any ~QQ of the form

~QQ ¼ rQ 2 Mþ(Rd) with some r . 0.
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Proposition 5.4 is a reduced version of Theorem 6.1 of Barndorff-Nielsen et al. (2001),

where more general multivariate subordinators are taken into consideration.

Remark 5.1. The reason for setting � ¼ 	 ¼ 0 in this section is that the author presently does

not know whether it is possible to replace strict Q-stability of Y in Proposition 5.4 with

Q-stability (Sato (2001) gave an affirmative answer when d ¼ 1 and Y is a Wiener process

with non-zero drift): if this is possible, then � and 	 may be non-zero due to the construction

of general GHd . We should remark that, if d > 2 and Q ¼ cI d for some constant c . 0 (i.e.

S � 0), then there exists a non-Q-self-decomposable GHd with � 6¼ 0; see Shanbhag and

Sreehari (1979, p. 24).

Any Wiener process Y with no drift and a non-singular covariance matrix ¸ is strictly

Q-stable for some Q. Indeed, by Jurek and Mason (1993, Theorem 4.6.10), we know that

the exponent Q of Y is of the form

Q ¼ 1

2
I d þ¸1=2S¸�1=2, (5:13)

where S is a d 3 d skew-symmetric matrix. For any t . 0 and Q as in (5.13), we have

tQ
T ¼ t I d=2 t¸

�1=2ST¸1=2

¼ t I d=2¸�1=2
X1
k¼0

(log t)k

k!
(ST)k

( )
¸1=2

¼ t I d=2¸�1=2 tS
T

¸1=2,

and hence

H(u) :¼ uT tQ¸tQ
T

u� tuT¸u ¼ 0: (5:14)

Then (5.14) ensures strict Q-stability of Y since, for F ¼ Nd(�, ¸),

jF
� t (u) ¼ jF(tQ

T

u)expfi�T(tI d � tQ
T

)ugexpfH(u)=2g

¼ jF(tQ
T

u)expfi�T(tI d � tQ
T

)ug,

so that the convolution F � �(��) ¼ Nd(0, ¸) is strictly Q-stable for Q of (5.13). Thus

Proposition 5.4 guarantees the existence of the GHd(º, Æ, �, ¸) OU process with any Q of

the form (5.8).

The strong Feller property of any GHd(º, Æ, �, ¸) OU process automatically follows

from Theorems 3.1 and 5.1.

Since the absolute moments of any order exist when Æ . 0 (allowing � ¼ 0), we discuss

only the case of Æ ¼ 0 for the exponential �-mixing property. In this case, the associated

GHd(º, Æ, �, ¸) becomes the d-dimensional centred and non-skewed Student t whose

density is given by
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ptd (x; ł, �, ¸) ¼ �łˆ (łþ d)=2ð Þ
�d=2ˆ(ł=2)

(�2 þ xT¸�1x)�(łþd)=2, (5:15)

where ł ¼ �2º . 0 corresponds to the degrees of freedom (each marginal is one-

dimensional Student t with the same degrees of freedom ł; see Lemma A.1). In this case,

only rth-order (r , d � 1 þ ł) absolute moments exist; however, the condition (4.5) still

holds for p 2 (0, r], and hence it is concluded that any OU process whose marginal

distribution is GHd(º, Æ, �, ¸) is exponentially �-mixing.

Letting m ¼ 1 and s ¼ 0 in (2.14) and then using (A.8), the autocorrelation matrix

function turns out to be (5.10); the finitely superposed version mentioned in Section 2.3 can

be computed in the same way.

A direct application of Lemma 2.5 gives (5.9) if we use the properties

d

dz
K�(z) ¼ �K��1(z) � �

z
K�(z),

K��1(z) ¼ K�þ1(z) � 2�

z
K�(z),

together with the following expression for the characteristic function of GHd(º, Æ, �, ¸):

jGHd
(u) ¼

Æ2

Æ2 þ uT¸u


 �º=2
Kº �(Æ2 þ uT¸u)1=2
� 

Kº(�Æ)
for Æ� 6¼ 0,

Æ2

Æ2 þ uT¸u


 �º

for � ¼ 0, Æ . 0 and º . 0,

2ºþ1Kº �(uT¸u)1=2
� 

ˆ(�º)�º(uT¸u)º=2
for Æ ¼ 0, � . 0 and º , 0:

8>>>>>>>>><
>>>>>>>>>:

(5:16)

Here we have used the asymptotic properties (A.2) in cases where either � ¼ 0 or Æ ¼ 0.

Summarizing the statements above now yields Proposition 5.3. h

Appendix: Multidimensional generalized hyperbolic
distributions

In this appendix, we give a brief review of the general GHd distribution originally

introduced by Barndorff-Nielsen (1977) for investigation of the mass-size distribution of

Aeolian sand deposits. The general GHd depends on the parameters (º, Æ, �, �, 	, ¸),

where º 2 R, Æ, � > 0, �, 	 2 Rd and ¸ is a d 3 d symmetric positive definite matrix. The

interested reader may refer to Blæsild and Jensen (1981) for a systematic exposition of

GHd .

Let Y be a random variable such that L(Y ) ¼ GIG(º, �, ª) whose density is given by
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pGIG(x; º, �, ª) ¼ (ª=�)º

2Kº(�ª)
xº�1 exp � 1

2
ª2xþ �2

x


 �� �
, x . 0, (A:1)

where Kº(x), º 2 R, stands for the modified Bessel function of third order with index º; see

Abramowitz and Stegun (1968). The case where � ¼ 0 and º . 0 (ª ¼ 0 and º , 0)

corresponds to the gamma (inverse gamma), via the following asymptotic properties of Kº(�)
for z # 0:

K�(z) �
ˆ(�)2��1z��, if � . 0,

ˆ(��)2���1z�, if � , 0:

(
(A:2)

Further, when º ¼ �1
2
, the GIG becomes the inverse Gaussian. Halgreen (1979) proved the

self-decomposability of GIG and GH1. See Jørgensen (1982) for a detailed exposition of

GIG.

Let � be a d-dimensional standard normal random variable independent of Y . Then

L(X ) ¼ GHd(º, Æ, �, �, 	, ¸), where

X ¼ 	þ Y¸�þ (Y¸)1=2�, (A:3)

that is, GHd is defined as the multivariate normal variance–mean mixture where the mixing

distribution is GIG. Thus the density of GHd with respect to the Lebesgue measure on Rd is

given by

pGHd
(x; º, Æ, �, �, 	, ¸)

¼
f(Æ2 � �T¸�)1=2=�gºKº�d=2 ÆV (x; �, 	, ¸)ð Þexpf�T(x� 	)g

(2�)d=2fdet(¸)g1=2Kº �(Æ2 � �T¸�)1=2
� 

fV (x; �, 	, ¸)=Ægd=2�º
, x 2 Rd , (A:4)

where V (x; �, 	, ¸) ¼ f�2 þ (x� 	)T¸�1(x� 	)g1=2. Usually we assume that det(¸) ¼ 1.

The parameters Æ, �, � and 	 express heaviness of tails, degree of asymmetry, scale and

location, respectively, and moreover they vary within the following region in order that (A.4)

indeed defines a density:

� > 0, Æ . 0, Æ2 . �T¸� if º . 0,

� . 0, Æ . 0, Æ2 . �T¸� if º ¼ 0, (A:5)

� . 0, Æ > 0, Æ2 > �T¸� if º , 0:

The case where Æ ¼ 0 (� ¼ 0) corresponds to a multivariate version of the symmetric Student

t (normal gamma). Also, if Æ2 � �T¸� ¼ 0 with � 6¼ 0, we obtain a multivariate version of

the asymmetric Student t. These special cases result from the property Kº(z) ¼ K�º(z) and

(A.2). Moreover, GHd contains a multivariate version of the hyperbolic (normal inverse

Gaussian and hyperboloid), which corresponds to º ¼ (d þ 1)=2 (º ¼ �1=2 and

º ¼ (d � 1)=2).
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The characteristic function of X is given by

jX (u) ¼ eiuT	 Æ2 � �T¸�

Æ2 � U (u; �, ¸)

( )º=2

Kº �fÆ2 � U (u; �, ¸)g1=2
� 
Kº �(Æ2 � �T¸�)1=2
�  , (A:6)

where U (u; �, ¸) ¼ (iuþ �)T¸(iuþ �), hence the mean and covariance matrix are given by

E[X ] ¼ 	þ �Rº(
)¸1=2�, (A:7)

var[X ] ¼ �2f
�1Rº(
)¸þ Sº(
)(¸1=2�)(¸1=2�)Tg, (A:8)

where 
 ¼ �fÆ2 � �T¸�g1=2, � ¼ ¸1=2�fÆ2 � �T¸�g�1=2,

Rº(
) ¼ Kºþ1(
)

Kº(
)
and Sº(
) ¼ Kºþ2(
)Kº(
) � K2

º(
)

K2
º(
)

:

Whenever Æ2 � �T¸� . 0, X admits absolute moments of any order.

It is known that the GHd family is closed under taking marginals, conditioning and

regular affine transformations: see Blæsild and Jensen (1981, Theorem 1). In particular, we

can specify each marginal of a given GHd(º, Æ, �, �, 	, ¸):

Lemma A.1. Let L(X ) ¼ GHd(º, Æ, �, �, 	, ¸), and write X ¼ (X1, . . . , Xd)T, ¸ ¼
[¸i, j]

d
i, j¼1, � ¼ (� j)

d
j¼1 and 	 ¼ (	 j)

d
j¼1. Then, for each j ¼ 1, 2, . . . , d, we have

L(X j) ¼ GH1(º[ j], Æ[ j], �[ j], �[ j], 	[ j], ¸[ j]), (A:9)

where

º[ j] ¼ º, Æ[ j] ¼ ¸�1=2
j, j fÆ2 � �̂�T

j (
^̧̧

22 � ^̧̧
21¸

�1
j, j
^̧̧

12)�̂� jg1=2,

�[ j] ¼ � j þ¸�1
j, j
^̧̧

12�̂� j, �[ j] ¼ ¸1=2
j, j �, 	[ j] ¼ 	 j, ¸[ j] ¼ 1

together with

�̂� j ¼ (�1, . . . , � j�1, � jþ1, . . . , �d)T,

^̧̧
12 ¼ (¸ j,1, . . . , ¸ j, j�1, ¸ j, jþ1, . . . , ¸ j,d), ^̧̧

21 ¼ ^̧̧ T
12,

and ^̧̧
22 denoting the (d � 1) 3 (d � 1) matrix equal to ¸ with jth row and jth column

removed.

Proof. It suffices to apply Blæsild and Jensen (1981, Theorem 1(a)) after arranging the

components of X as (X j, X 1, . . . , X j�1, X jþ1, . . . , Xd)T (and similarly for � and 	), and ¸ as

^̧̧ ¼ ¸ j, j
^̧̧

12

^̧̧
21

^̧̧
22

 !
:

h
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